
High-coverage testing of softwarized networks
Santhosh Prabhu

University of Illinois at Urbana-Champaign
prabhum2@illinois.edu

Gohar Irfan Chaudhry
University of Illinois at Urbana-Champaign

gic2@illinois.edu

Brighten Godfrey
University of Illinois at Urbana-Champaign

pbg@illinois.edu

Matthew Caesar
University of Illinois at Urbana-Champaign

caesar@illinois.edu

ABSTRACT
Network operators face a challenge of ensuring correctness as net-
works grow more complex, in terms of scale and increasingly in
terms of diversity of software components. Network-wide verifica-
tion approaches can spot errors, but assume a simplified abstraction
of the functionality of individual network devices, which may de-
viate from the real implementation. In this paper, we propose a
technique for high-coverage testing of end-to-end network correct-
ness using the real software that is deployed in these networks. Our
design is effectively a hybrid, using an explicit-state model checker
to explore all network-wide execution paths and event orderings, but
executing real software as subroutines for each device. We show that
this approach can detect correctness issues that would be missed
both by existing verification and testing approaches, and a prototype
implementation suggests the technique can scale to larger networks
with reasonable performance.

CCS CONCEPTS
• Networks → Network properties;

KEYWORDS
Network Verification, Correctness

ACM Reference Format:
Santhosh Prabhu, Gohar Irfan Chaudhry, Brighten Godfrey, and Matthew
Caesar. 2018. High-coverage testing of softwarized networks. In SecSoN ’18:
Workshop on Security in Softwarized Networks: Prospects and Challenges,
August 24, 2018, Budapest, Hungary. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3229616.3229617

1 INTRODUCTION
Networks have long been complex entities, with dozens of protocols,
thousands of lines of configurations, and the need to satisfy many
services and users. In service providers and increasingly in enter-
prises, these networks are changing, incorporating software compo-
nents on commodity hardware. Software network functions allow
sophisticated functionality to be deployed (like security services

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SecSoN ’18, August 24, 2018, Budapest, Hungary
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the Asso-
ciation for Computing Machinery.
ACM ISBN 978-1-4503-5912-2/18/08. . . $15.00
https://doi.org/10.1145/3229616.3229617

or transcoding video streams) and improve the ease of deploying
new services. However, the diversity of such software can increase
complexity of the network even further, and this is compounded by
the desire to make rapid changes. We also speculate that the lack of
industry standards for middlebox software may increase the chance
of an accidental misconfiguration in some environments. The result
is that ensuring correctness and security of modern networks with
software components is critical and challenging.

Network verification has brought mathematical rigor into policy
enforcement, generally checking either data plane state [9, 12, 14] or
configurations [2, 5, 6, 16]. In either case, the verifier assumes an ab-
straction or model of the network. For example, a verifier may model
IP longest prefix match forwarding hardware, whether packet filters
are applied on ingress or egress ports, and how BGP route selection
breaks ties. If the model does not match reality, then the verifier may
produce incorrect results. In some cases, like data plane verification
of traditional switches and routers, these assumptions might typi-
cally be realistic. But for a network incorporating extensive software
elements, assuming a network model becomes a serious limitation,
for several reasons:

• Implementation bugs: Given the highly specialized nature of
middleboxes, there is both a high likelihood of bugs occurring,
and also the risk of them being uncaught for a significant
length of time. These bugs (or simply implementation quirks)
may cause network policy violations even if the network
operator has configured the middlebox fully correctly. Writing
a bug-for-bug faithful model of the software would be close
to impossible.

• Lack of a model: Part of the point of building a softwarized
network is to be able to code custom features, behaviors,
and even whole distributed systems. As such, we may lack a
starting point for a model, unlike data plane and control plane
elements that typically operate with standardized protocols
(BGP, spanning tree, etc.).

An alternate approach is to emulate the network. For example,
instead of simulating BGP, CrystalNet [13] runs an emulation of
the network using real router VMs, and this could apply to Virtual-
ized Network Functions (VNFs) as well. The disadvantage is that
emulation has low coverage of the network’s execution paths; even
an approach like ATPG [18] that injects many packets would be
unable to guarantee exploration of the network’s dynamics, which
are perhaps more important in a softwarized environment built to
automatically respond to network events.

46

https://doi.org/10.1145/3229616.3229617
https://doi.org/10.1145/3229616.3229617

SecSoN ’18, August 24, 2018, Budapest, Hungary Prabhu, Chaudhry, Godfrey and Caesar

Figure 1: Policy violations in VNFs

In this paper, we ask: How close can we come to getting the best
of both worlds, with the faithfulness of real software and the high
coverage of verification?

We initiate an exploration of that question with a hybrid approach.
Intuitively, to retain high accuracy, we need to execute the actual
running software with its actual configuration for each individual
component. But we use those components, and partial executions of
them, as building blocks to assemble and reassemble in an exhaustive
exploration of network-wide execution paths driven by an explicit-
state model checker. Our key contributions are as follows:

• We propose a hybrid approach combining emulation-based
testing and model-based verification, and show through ex-
amples that it can find intent violations that would be missed
by each approach individually (§2).

• We design such a hybrid system, Plankton-neo (network em-
ulation option), which builds on the Plankton network veri-
fication platform [16] but inserts invocation of real software
network elements in its execution loop, inserting packets and
interpreting the results. Our design explores how to invoke
these devices efficiently by both running parallel instances
and state restoration.

• We implement and evaluate a prototype of Plankton-neo,
showing that it can catch actual problems that arise with
the iptables software firewall on Linux, and that it can
validate a multi-tenant data center with 196 routers and 64
tenants under 80 minutes.

While more remains to be done (e.g., improving performance and
experimenting with more diverse software elements), we believe
these results show that hybrid approaches are both valuable and po-
tentially feasible for checking security and correctness properties of
softwarized networks. We expect that verification-emulation hybrids
may offer a rich design space to explore in the future.

2 MOTIVATION
In this section, we review automated debugging of VNFs, and il-
lustrate using examples how Plankton-neo can advance the state of
the art. Past work in debugging softwarized networks falls into two
broad categories, as we discuss below.

2.1 Model-based verification
Model-based verification techniques such as VMN [15] use manu-
ally created models for the network components, including middle-
boxes, and use formal techniques such as model checking to analyze
the behavior of the system under various possible execution paths.
While these techniques perform an exhaustive analysis, their accu-
racy depends on the correctness of the models they use. Consider the
network fragment illustrated in Figure 1(a). It shows a virtualized
firewall running on a server, configured to perform standard stateful
filtering — block connection attempts from outside the organization,
but allow replies to past requests. Additionally, routing has computed
forwarding paths such that requests and replies pass through differ-
ent switches (but the same firewall). In this setup, one may expect
that if a request originates from inside, it should not be blocked, nor
should be its reply. An intuitive model-based verification platform
may even declare that this condition holds. However, when running
a virtualized firewall using iptables on Linux, the behavior of
this setup depends on specific kernel configuration variables. For
example, when the rp_filter variable is enabled, the kernel per-
forms reverse-path filtering (RPF) — for each packet it forwards, it
constructs a hypothetical reply and tries injecting it into the outgoing
port for the current packet. If this hypothetical reply does not go out
the incoming interface of the current packet, the current packet is
dropped. This would cause the reachability condition above to be
violated.

2.2 Emulation-based testing
CrystalNet [13] executes real software implementations of net-
work components in emulated environments, and the results can
be checked for correctness. However, this technique executes only
one (potentially non-deterministic) run of the network at a time, and
may hence miss issues that may occur only under certain specific
conditions of protocol execution, packet delivery, failures, etc.

In particular, softwarized networks may have issues that neither
model-based verification nor emulation-based testing would find.
Consider Figure 1(b). The network is being updated from using the
path through S1 (top figure) to using the path through S2 (bottom
figure). Suppose the devices’ forwarding entries are updated in the
order S2, FW, S3, S1. In this network, we may require that for any
request was sent previously, the reply is not dropped. If the firewall
was implemented on Linux with rp_filter enabled, there exists
a potential violation of the correctness policy, as follows. The request
reaches the firewall, and is sent to S3 through S1. S2 and FW get
updated to the new configuration. The reply reaches S3, and gets
forwarded to FW through S1. At this point, RPF at FW would drop
the reply, because according to FW’s new configuration, the packet
should have come from S2 and not S1.

The above issue is unlikely to be caught by emulation, since it
manifests only when events are interleaved in a particular order.
While a fully accurate model of the VNF firewall could detect this,
creating such a model is near-impossible in practice. Consider the
rp_filter variable. The default value in the Linux kernel for this
variable is 0, which disables RPF. However, some Linux distributions
set it to a different value (most commonly 1), enabling RPF. But even
using the same distribution is not sufficient to guarantee consistency:
RedHat 5 and 6 both use the same value 1 for rp_filter, but the

47

High-coverage testing of softwarized networks SecSoN ’18, August 24, 2018, Budapest, Hungary

Figure 2: System organization

semantics for this configuration value is different in RedHat 5 and
RedHat 6 [1]. In other words, bugs and the lack of standardization
pose a formidable challenge to writing (and keeping up-to-date)
high-fidelity models for middleboxes.

This issue is one example among countless that might arise. Our
goal is to be able to discover such issues with high-coverage testing,
particularly with respect to the dynamic events that software network
elements will increasingly create (compared to static data planes).
The hybrid technique we describe next is the first form of automated
analysis that can reliably diagnose the example above. Of course,
we should expect that we will give up some coverage compared with
full formal verification; we will discuss this limitation later.

3 DESIGN
Figure 2 illustrates the organization of Plankton-neo. It builds upon
Plankton [16], which uses model checking to formally verify net-
work models. We shall now briefly describe the architecture of
Plankton.

3.1 Plankton Design
Plankton models the control plane protocols and the network’s
environment as agents, which are written manually to simulate
the behavior of their real-world counterparts. The key difference
between Plankton’s model and a real network is that the agents
in Plankton are designed to operate on equivalence classes of
packets rather than a single packet at a time (For example, the OSPF
routing agent performs route computation for each equivalence class
separately.) For each equivalence class, the collection of agents
may execute in various non-deterministic ways, causing the overall
network state to evolve differently. Plankton uses an explicit-state
model checker to exhaustively explore all the possible executions,
verifying that correctness policies are not violated in any of these
executions. In order to do so, the model checker invokes a dataplane
verifier as an oracle that determines the truth of Boolean predicates
over individual dataplane states, and uses the results to reason about
temporal policies defined over these predicates.

Plankton-neo implements its hybrid testing technique by aug-
menting Plankton’s design in certain specific ways, which we now
discuss.

3.2 The Dataplane Agent
Plankton’s use of a dataplane verifier to check individual dataplane
states means that in terms of network state transitions, a single data-
plane state is atomic. In other words, Plankton cannot reason about
fine-grained state changes caused by packets moving through the
dataplane. This makes Plankton unusable for any form of policy ver-
ification involving dynamic dataplane elements, whose behavior is
closely tied to these fine-grained changes. In order to overcome this
limitation, Plankton-neo replaces the dataplane verifier in Plankton
with a dataplane agent. The dataplane agent mimics the dataplane
of the network, by forwarding a single symbolic packet, as dictated
by the forwarding rules computed by the control plane agents. In
other words, the dataplane agent is a manually written model for
the forwarding behavior of the devices in the network. However,
the dataplane agent makes one important exception. While simple
forwarding devices such as switches and routers are represented
using the manually-created model, middlebox software elements
execute in their original form. For each middlebox in the network,
a “virtual device” is created on the host that runs Plankton-neo,
consisting of virtual interfaces in one-to-one correspondence with
the actual interfaces on the middlebox, and running the same soft-
ware. The configuration supplied to the middlebox is updated to
operate over the virtual interfaces rather than the original physical
interfaces. Since middlebox software can work only with concrete
packets and not equivalence classes, a fully instantiated representa-
tive is picked for each equivalence class. The difference between a
symbolic packet and a representative packet is subtle, but important.
A symbolic packet is a logical entity, that merely denotes an equiva-
lence class, whereas a representative packet is a real packet that can
be processed by network devices, chosen from the many packets that
constitutes the equivalence class. We elaborate on the computation
of equivalence classes and the selection of the representatives later.

The model checker in Plankton-neo exhaustively explores the
various execution paths of system, for each equivalence class. In ad-
dition to protocol execution, topology changes etc, in Plankton-neo,
this includes the hop-by-hop forwarding of the symbolic packet by
the dataplane agent. When the symbolic packet reaches a middlebox,
the representative packet for the equivalence class is injected into the
appropriate interface of the emulated copy of the middlebox. Then,
the fate of the injected packet is observed, and the dataplane agent
interprets the observation as an action performed on the symbolic
packet. In essence, each middlebox defines an “API” that allows the
verification algorithm to query for the outcome of packets reaching
one of the interfaces. Using such a system, we can verify a variety
of policies about end-to-end correctness of the network. Perhaps the
most relevant are temporal policies that pertain to how the network
changes its behavior in response to traffic. For example, a network
with a web cache may state that No HTTP requests should be sent to
the server more than once.

3.3 Saving and restoring middlebox state
As the model checking algorithm exhaustively searches through
possible executions of the network looking for policy violations, it
will be required to perform packet injection into various middleboxes
many times, under various hypothetical scenarios. Each time such
an injection happens, the intention of the algorithm is to observe the

48

SecSoN ’18, August 24, 2018, Budapest, Hungary Prabhu, Chaudhry, Godfrey and Caesar

Figure 3: Duplicate eliminated update history storage

fate of the packet if it was to reach the middlebox under the specific
circumstances that the algorithm has contrived. So, we require the
state of the virtual middlebox to match the state intended by the
algorithm before the packet can be injected. In order to do so, we
implement the network model in the following way: In addition
to the middlebox software running on the emulated interfaces, for
each middlebox, Plankton-neo stores the initial state, plus a list of
all updates that have been made to the middlebox. We define this
update trace to hold two types of updates: any control plane messages
updating the middlebox state, such as routing table changes, and any
packets that were previously injected, along with the interfaces where
the injection happened. When a new packet needs to be injected
into a middlebox, we first match the emulator state with the one
described by the trace — by first restarting middlebox software with
the initial configuration, and then replaying all the historical updates
that have supposedly happened in the past. This approach of putting
a middlebox into a desired state is attractive, because it does not
require any knowledge of the internal workings of the software. It
is also more practical than snapshotting the virtual memory of the
middlebox in order to store its state. However, it does assume that the
software is deterministic, and has no dependency on timing. In other
words, starting from an initial state, replaying the same sequence of
updates is assumed to put the middlebox in the same final state.

We rely on two observations to make our update history storage
scalable:

• The same update may be part of multiple update histories.
• Many update histories may differ from each other only in terms

of a few updates.

Our optimization reduces memory overhead by leveraging these
redundancies in update histories. Updates that have historically been
made to any middlebox in the network are kept in a hash table,
and reused. No update is created twice, at any point during the
exploration of the system. Furthermore, every sequence of updates is
also duplicate-eliminated through hashing. This happens not only for
full sequences, but also subsequences. Figure 3 illustrates this layout.
With this technique, each middlebox needs to store only a pointer
as its entire history (In addition to the amortized cost of storing the
updates).

3.4 Computing equivalence classes and
representatives

Just like Plankton, the network model in Plankton-neo is defined in
terms of equivalence classes. However, while Plankton allows the

equivalence classes to be abstract (Request Class, Reply Class, Sus-
picious Class etc), they cannot be when working with real software
because for each class, we need to inject a representative concrete
packet into the emulated middlebox. Plankton-neo can use any set
of equivalence classes that has the property that all members of the
class have identical behavior throughout the network, in the data
and control planes. A good starting point for equivalence classes
is to compute each equivalence class as a maximal set of packets
that such that the network-wide configurations specify that they
should be handled in the same way; e.g., if the network had a single
firewall, the collection of all packets that it is configured to drop
could be one equivalence class; this could be subdivided as other
devices with different configurations are added. (This assumes all
devices have configurations that specify the relevant packet handling,
which is generally true for industry-standard switches, routers, and
middleboxes.)

The representative for each packet class can be picked arbitrarily.
However, once it is injected, the state within the middlebox may
change in ways that affect future packets, effectively creating a finer
set of equivalence classes, each of which must be checked if we
want full coverage. But these finer classes are not externally visible.
Plankton-neo currently takes an educated guess: it considers packets
that would be a reply to the injected packet (i.e., P′ with source and
destination IP swapped) as a new class, and will therefore later try
injecting such a packet into the network.

3.5 The coverage tradeoff
As we discussed in § 1, Plankton-neo’s hybrid approach attempts to
combine the high coverage of model checking with the fidelity of
real software. The gap between the hybrid approach and a fully for-
mal approach is defined by two major assumptions — the accuracy
of equivalence class selection, and the validity of the determinism
assumption. Plankton-neo’s guess of the relevant set of classes is nat-
urally not guaranteed to be perfect (so that Plankton-neo’s execution
of the middlebox with a single representative packet per equivalence
class is insufficient to cover all behavior). The closer these classes
are to the actual equivalence classes defined by hidden states in the
middlebox software, the higher the coverage. The assumption of
deterministic software execution also has a direct impact on the cov-
erage achieved by Plankton-neo. Any internal non-determininism
may cause missed execution paths, since we execute each middlebox
just once per injected packet. Non-determinism may also interfere
with replay, though deterministic replay techniques may apply.

Since either of the two assumptions may be violated in practice,
Plankton-neo may not always achieve full coverage of the state
space. However, Plankton-neo does achieve much better coverage
of execution paths as compared to simple testing, while avoiding
the need for a full behavioral model and the lack of fidelity to real
software that is inherent in model-based verification.

4 PROOF OF CONCEPT
We implemented a simple version of our technique over Plankton,
with support for Linux-based middleboxes. For emulating VNF
devices, we create tap interfaces, and create separate routing tables
in the kernel for the emulated middleboxes. When the verification
algorithm invokes packet injection, the representative is sent into

49

High-coverage testing of softwarized networks SecSoN ’18, August 24, 2018, Budapest, Hungary

Greylisted
Traffic

Public/Private Servers

S1

S2 iptables

Greylisted
Traffic

Whitelisted
Traffic

Figure 4: Policy enforcement in a multi-tenant DC

the appropriate tap interface. A special data payload is used to
distinguish the injected packet from any other packets that may
originate from the kernel (we assume that payloads are not modified
by the middleboxes). If the packet does not make it to any of the
tap interfaces within a configurable timeout (we use 50ms in our
experiments), it is assumed to be dropped.

Using this implementation, we attempted the problem described
in § 1. We verify a network with 4 switches and a virtualized
iptables firewall, as illustrated in Figure 1 a. The policy we
verify is that the request and reply traffic reach their respective desti-
nations. When reverse path filtering is enabled, the firewall blocks
the request traffic, causing the policy to fail. However, when we
disable reverse path filtering in the kernel, the policy passed.

To test our approach at scale, we perform an experiment inspired
by [7]. We consider a multi-tenant datacenter with varying number
of tenants, with two types of traffic — whitelisted or greylisted. Each
tenant also has two types of servers — public or private. Initially,
each tenant allows all traffic to public servers, but for private servers,
whitelisted traffic is always allowed, and for greylisted traffic, only
replies to past requests are allowed. We use iptables running
on Ubuntu 14.04 to enforce the policies, as shown in Figure 4.
This use of a real VNF implementation is what distinguishes our
experiment from similar experiments in past work [7, 15]. In our
test, we assume that some of the tenants now wish to reclassify
HTTP from greylisted to whitelisted . This change is implemented
by updating two routers. Naturally, at any point during the transition,
the correctness spec for the network states that no legitimate reply
to a past request be dropped. In our experiments, Plankton-neo finds
the following violation. Access switch S1 gets updated before the
request packet reaches it. So, the request is forwarded directly to S2,
without passing through the firewall. The reply packet reaches S2,
before S2 is updated with the new policy. Abiding by the old policy,
S2 forwards the reply to the iptables firewall. The firewall drops
the reply, since it has not seen the request.

We perform the above experiment with different number of ten-
ants, with varying number of tenants performing the whitelisting
change. Figure 5 a illustrates the time and memory used by a single
run of the test (Time and number of tenants axes are logarithmic).
When the fraction is 0, there are no changes being made, and hence,
the policy passes. When at least one tenant updates its policy, a
violation of the policy exists, and we correctly find it.

Figure 5 a provides some interesting insights into the nature of
the problem. Intuitively, the verification problem is hardest when

Figure 5: Measurements from DC experiment

Experiment Models Real Software

64 Tenants, no update 36.66 s 4732.13 s
32 Tenants, no update 5.41 s 413.84 s
64 Tenants, all tenants update 22.47 s 27.73 s

Figure 6: Comparison with model-based verification

there is no update happening in the network. This is because the
testing procedure has to exhaust every possible execution and finally
declare that the policy holds. This is reflected in the time and memory
consumption.

Figure 5 b illustrates the CDF of the latency incurred in perform-
ing packet injection and observing the outcome. It is clear that there
exist two different groups of latency measurements. The faster one
indicates packet processing at line rate, without having to restore
middlebox state or wait for timeouts. This is the case where the em-
ulated middlebox is in the same state as the one the verifier requires
it to be, and the packet that is newly injected does not get dropped.
The slower measurements may be due to timeout or state restoration.

One aspect we wish to evaluate is the overhead of verifying
middleboxes in their true form as opposed to using models. To this
end, we repeat the multi-tenant datacenter experiment with models
rather than actual software for the virtualized firewalls. The models
we use are similar to the ones used by VMN [15]. They perform
stateful firewalling, without any support for advanced features such
as reverse-path filtering. Figure 6 compares the time taken by the
two approaches. It can be seen that incorporating real software is at
times as much as two orders of magnitude slower. This is, however,
to be expected. Determining the behavior of a packet at a middlebox
may take as long as 1 second when done using actual software, as
illustrated in Figure 5 b. With our simplistic firewall model this
operation requires only a few machine instructions. We believe the
increased time overhead is justified by the greater fidelity of the
verification process. In fact, the results obtained using models are

50

SecSoN ’18, August 24, 2018, Budapest, Hungary Prabhu, Chaudhry, Godfrey and Caesar

Experiment Single emulation Multiple Emulation

64 Tenants, no update 5835.52 s 4732.13 s
32 Tenants, no update 680.28 s 413.84 s
64 Tenants, all tenants update 29.22 s 27.73 s

Figure 7: Single emulated device vs. one per middlebox

correct only if we configure the middleboxes to behave exactly the
way the models expect them to behave. Nevertheless, we are working
on techniques to optimize the process further.

5 DISCUSSION
We now discuss some specific elements of our design.

5.1 Number of emulated devices
The design we described in § 3 uses a separate set of virtual interfaces
and uses a separate emulation of each middlebox in the network.
Alternatively, we can also have multiple middleboxes emulated on a
single (or smaller number of) middlebox instances. This is possible
because the model checking algorithm only checks the behavior
of one middlebox at any given time. When the packet needs to be
injected into a particular middlebox, we run that middlebox over the
virtual interfaces, and use update replay to put the middlebox in the
required state. But doing so has an impact on performance, due to the
inherently high latency incurred in update replay (See Figure 5(b)).
When using a separate emulation for each middlebox, there is a
higher likelihood that the emulated middlebox is in the same state as
expected by the verifier, and hence, does not require additional state
restoration. We empirically evaluate this design choice by repeating
the multi-tenant DC experiment using a single emulation setup for all
middleboxes. Figure 7 shows that for our test case, having separate
emulation for each middlebox reduces execution time by as much
as 39%. This can be further improved by having multiple emulated
devices to run the same middlebox, so we can save different states.
In general, the relationship between the middleboxes in the network
and the emulation setups in Plankton-neo can be many-to-many. A
full exploration remains to be done.

5.2 Matching the production environment
As stated in § 1, the primary goal of Plankton-neo is to test middle-
boxes as close as possible to their production settings. This includes
executing the actual middlebox software, matching the operating
system, the system configuration etc. In our presentation so far, we
have made two implicit assumptions — all the VNFs in the network
run on the same operating system with identical configuration, and
the verification is performed on a host that is identical. These are not
fundamental assumptions. The design of the system also allows for
the packet injection to be performed on multiple machines, as long
as the outcome is conveyed to the model checking algorithm.

5.3 Beyond middleboxes
Although our discussion in this paper has focused on testing middle-
box software, the technique itself is not strictly limited to middle-
boxes. Any network component that allows state restoration through
update replay may be incorporated into Plankton-neo in a similar
manner. This may include control plane software or even hardware.

We intend to study the various challenges and opportunities in this
space in greater detail.

6 RELATED WORK
Data plane verification: This class includes offline network
verification techniques such as Anteater [14] and HSA [11], and
more recent real-time tools such as VeriFlow [12], NetPlumber [10]
and DeltaNet [9]. They are designed for verifying single dataplane
states, without taking into account the possible dynamics that
are introduced by middleboxes. Moreover, they are perform the
verification using an internal model of the dataplane, rather than the
actual hardware/software.

Configuration verification: Configuration verification tools such
as Minesweeper [2] and ARC [6] verify the network configuration
rather than a single dataplane state. However, they too are not
capable of handling the dynamics of softwarized networks.

Model-based verification: VMN [15] uses manually created
models of dynamic dataplane devices and an SMT-based problem
formulation to verify temporal policies over softwarized networks.
In § 2, we discussed the limitations of model based techniques,
and illustrated that Plankton-neo’s hybrid approach can detect real
issues that would be missed by techniques such as VMN. NICE [3]
is architecturally similar to Plankton-neo in that it executes real
software for some parts of the network, along with models for the
others. However, Plankton-neo targets verification of dataplanes
with middleboxes, rather than Openflow, as NICE does.

Emulation: CrystalNet [13] performs an emulation of actual
device virtual machines, and its results could be fed to a data plane
verifier. However, as we illustrated in § 2, Plankton-neo can uncover
correctness issues that may occur only under specific conditions that
cannot be reliably produced by emulation.

Software dataplane verification: Past work on software dataplane
verification has focused on correctness of the individual software
components, such as software implementations of single routers or
NAT [4, 17]. In contrast, Plankton-neo performs end-to-end correct-
ness testing of networks that deploy such software components.

Concolic execution: The hybrid approach proposed by Plankton-
neo closely resembles concolic execution [8] used for software
testing. We expect to leverage past work in this space to improve
Plankton-neo further.

7 CONCLUSION
We proposed Plankton-neo, a high coverage testing technique for
softwarized networks. By combining real implementations of middle-
boxes with models for standardized network components, Plankton-
neo aims to combine the advantages of both emulation as well
as model-based verification. Our experiments have shown that
Plankton-neo can be a powerful and scalable tool that can assist
in faster adoption of software in networks.

The authors thank the anonymous reviewers for their insightful
comments. This work was supported by NSF CNS Award #1513906.

51

High-coverage testing of softwarized networks SecSoN ’18, August 24, 2018, Budapest, Hungary

REFERENCES
[1] [n. d.]. Red Hat Customer Portal. https://access.redhat.com/solutions/53031. ([n.

d.]). Accessed: 2018-03-20.
[2] Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David Walker. 2017. A General

Approach to Network Configuration Verification. In Proceedings of SIGCOMM
’17. ACM, New York, NY, USA, 155–168.

[3] Marco Canini, Daniele Venzano, Peter Perešíni, Dejan Kostić, and Jennifer Rex-
ford. 2012. A NICE Way to Test OpenFlow Applications. In Presented as part of
NSDI 12. USENIX, San Jose, CA, 127–140.

[4] Mihai Dobrescu and Katerina Argyraki. 2014. Software Dataplane Verification.
In 11th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 14). USENIX Association, Seattle, WA, 101–114.

[5] Seyed K. Fayaz, Tushar Sharma, Ari Fogel, Ratul Mahajan, Todd Millstein, Vyas
Sekar, and George Varghese. 2016. Efficient Network Reachability Analysis Using
a Succinct Control Plane Representation. In OSDI 16. GA, 217–232.

[6] Aaron Gember-Jacobson, Raajay Viswanathan, Aditya Akella, and Ratul Maha-
jan. 2016. Fast Control Plane Analysis Using an Abstract Representation. In
Proceedings of the SIGCOMM 2016.

[7] Soudeh Ghorbani and Philip Brighten Godfrey. 2017. COCONUT: Seamless
Scale-out of Network Elements.. In EuroSys. 32–47.

[8] Patrice Godefroid, Nils Klarlund, and Koushik Sen. 2005. DART: Directed
Automated Random Testing. SIGPLAN Not. 40, 6 (June 2005), 213–223. https:
//doi.org/10.1145/1064978.1065036

[9] Alex Horn, Ali Kheradmand, and Mukul Prasad. 2017. Delta-net: Real-time
Network Verification Using Atoms. In NSDI 17. USENIX Association, Boston,
MA, 735–749.

[10] Peyman Kazemian, Michael Chang, Hongyi Zeng, George Varghese, Nick McKe-
own, and Scott Whyte. 2013. Real Time Network Policy Checking Using Header
Space Analysis. In NSDI 13. Lombard, IL.

[11] Peyman Kazemian, George Varghese, and Nick McKeown. 2012. Header Space
Analysis: Static Checking for Networks. In NSDI 12. USENIX, San Jose, CA,
113–126.

[12] Ahmed Khurshid, Xuan Zou, Wenxuan Zhou, Matthew Caesar, and P. Brighten
Godfrey. 2013. VeriFlow: Verifying Network-wide Invariants in Real Time. In
Proceedings of NSDI ’13. USENIX Association, Berkeley, CA, USA, 15–28.

[13] Hongqiang Harry Liu, Yibo Zhu, Jitu Padhye, Jiaxin Cao, Sri Tallapragada, Nuno P.
Lopes, Andrey Rybalchenko, Guohan Lu, and Lihua Yuan. 2017. CrystalNet:
Faithfully Emulating Large Production Networks. In Proceedings of the 26th
Symposium on Operating Systems Principles (SOSP ’17). ACM, New York, NY,
USA, 599–613.

[14] Haohui Mai, Ahmed Khurshid, Rachit Agarwal, Matthew Caesar, P. Brighten
Godfrey, and Samuel Talmadge King. 2011. Debugging the Data Plane with
Anteater. In Proceedings of SIGCOMM ’11. New York, NY, USA, 290–301.
https://doi.org/10.1145/2018436.2018470

[15] Aurojit Panda, Ori Lahav, Katerina Argyraki, Mooly Sagiv, and Scott Shenker.
2017. Verifying Reachability in Networks with Mutable Datapaths. In NSDI 17.
USENIX Association, Boston, MA, 699–718.

[16] Santhosh Prabhu, Ali Kheradmand, Brighten Godfrey, and Matthew Caesar. 2017.
Predicting Network Futures with Plankton. In Proceedings of the First Asia-
Pacific Workshop on Networking (APNet’17). ACM, New York, NY, USA, 92–98.
https://doi.org/10.1145/3106989.3106991

[17] Arseniy Zaostrovnykh, Solal Pirelli, Luis Pedrosa, Katerina Argyraki, and George
Candea. 2017. A Formally Verified NAT. In Proceedings of the SIGCOMM ’17.
ACM, New York, NY, USA, 141–154.

[18] Hongyi Zeng, Peyman Kazemian, George Varghese, and Nick McKeown. 2012.
Automatic Test Packet Generation. In Proceedings of CoNEXT ’12. ACM, New
York, NY, USA, 241–252.

52

https://access.redhat.com/solutions/53031
https://doi.org/10.1145/1064978.1065036
https://doi.org/10.1145/1064978.1065036
https://doi.org/10.1145/2018436.2018470
https://doi.org/10.1145/3106989.3106991

	Abstract
	1 Introduction
	2 Motivation
	2.1 Model-based verification
	2.2 Emulation-based testing

	3 Design
	3.1 Plankton Design
	3.2 The Dataplane Agent
	3.3 Saving and restoring middlebox state
	3.4 Computing equivalence classes and representatives
	3.5 The coverage tradeoff

	4 Proof of Concept
	5 Discussion
	5.1 Number of emulated devices
	5.2 Matching the production environment
	5.3 Beyond middleboxes

	6 Related Work
	7 conclusion
	References

