
PCC Proteus: Scavenger Transport And Beyond
Tong Meng

1
Neta Rozen Schiff

2
P. Brighten Godfrey

1
Michael Schapira

2

1
UIUC

2
Hebrew University of Jerusalem

ABSTRACT
Many Internet applications need high bandwidth but are not time

sensitive. This motivates a congestion control “scavenger” that

voluntarily yields to higher-priority applications, thus improving

overall user experience. However, the existing scavenger protocol,

LEDBAT, often fails to yield, has performance shortcomings, and

requires a codebase separate from other transport protocols.

We present PCC Proteus, a new congestion controller that can

behave as an effective scavenger or primary protocol. Proteus incor-

porates several novel ideas to ensure that it yields to primary flows

while still obtaining high performance, including using latency devi-

ation as a signal of competition, and techniques for noise tolerance

in dynamic environments. By extending the existing PCC utility

framework, Proteus also allows applications to specify a flexible

utility function that, in addition to scavenger and primary modes,

allows choice of hybrid modes between the two, better capturing

application needs. Extensive emulation and real-world evaluation

show that Proteus is capable of both being a much more effec-

tive scavenger than LEDBAT, and of acting as a high performance

primary protocol. Application-level experiments show Proteus sig-

nificantly improves page load time and DASH video delivery, and

its hybrid mode significantly reduces rebuffering in a bandwidth-

constrained environment.

CCS CONCEPTS
• Networks→ Transport protocols.

KEYWORDS
Congestion Control; Scavenger

ACM Reference Format:
Tong Meng, Neta Rozen Schiff, P. Brighten Godfrey, Michael Schapira. 2020.

PCC Proteus: Scavenger Transport And Beyond. In Annual conference of
the ACM Special Interest Group on Data Communication on the applications,
technologies, architectures, and protocols for computer communication (SIG-
COMM ’20), August 10–14, 2020, Virtual Event, USA. ACM, New York, NY,

USA, 17 pages. https://doi.org/10.1145/3387514.3405891

1 INTRODUCTION
It was a scorching summer. A camel and a zebra embarked on a

desert expedition. The two companions brought a container of wa-

ter, which, being best friends, they decided to share equally during

their journey. Unfortunately, the zebra suffered serious dehydration,

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SIGCOMM ’20, August 10–14, 2020, Virtual Event, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-7955-7/20/08. . . $15.00

https://doi.org/10.1145/3387514.3405891

even though the camel could easily have waited until they reached

an oasis to quench its thirst. The moral of the story is that equally

sharing resources is often not optimal when user requirements are

heterogeneous.

The same principle applies to the classic problem of Internet con-

gestion control. Traditional congestion control, dividing bandwidth

equally among flows on a common bottleneck, may result in lower

network-wide utility. For example, in a typical home, Alice may

be watching a high-definition video, while Bob is sleeping at the

same time, having left his device downloading a large volume of

files from a remote-updated Dropbox folder. Ideally, Alice should

enjoy high video quality smoothly as usual, while the Dropbox

download could be delayed by hours without Bob even noticing.

However, thanks to the “fair” transport layer, Alice suffers from

constant video quality degradation.

Among the diverse applications using the network today, there

are many with similarly elastic resource requirements, for at least

some of their flows: software update, online data backup, back-

ground replication of cloud storage (e.g., Dropbox), proactive cache

warmup in CDNs, and aggregation of IoT sensor data for offline an-

alytics, among others. Those applications could occupy bandwidth

that is excessive for their users, and could have been consumed by

more data-intensive applications.

Even those applications that are often time-sensitive sometimes

become elastic. For example, a video client may not need to ur-

gently preload chunks as long as the highest bitrate is smoothly

streamed, or when the client has little free space in its playback

buffer. When a machine learning task is hindered by a slow worker,

receiving its input for its next phase of work may be lower priority.

Likewise, applications with usually-elastic requirements may at

times demand increased priority, e.g., when a Dropbox user specifi-

cally requests to view a file. Standard congestion control protocols

cannot accommodate such context-sensitive priorities.

We claim that a scavenger mode that yields to normal (primary)
flows helps mitigate this problem, by deprioritizing traffic with

elastic requirements. Of course, this approach will not be as close

to optimal as a centralized resource allocator, but its deployability

makes it a practical approach for general-purpose Internet conges-

tion control, i.e., within end-to-end transport. More specifically, a

scavenger has two goals:

(1) Yielding: Minimally impact primary flows on a common bot-

tleneck. That is, flows running traditional transport protocols

should experience throughput, latency, etc., almost as if the

scavenger were not present.

(2) Performance: Act like a traditional congestion controller when
only scavengers share a bottleneck. For example, competing

scavengers should fairly and fully utilize bandwidth while min-

imizing queueing delay.

The main existing scavenger proposal, Low Extra Delay Back-

ground Transport (LEDBAT) [34], tries to defer to high priority

https://doi.org/10.1145/3387514.3405891
https://doi.org/10.1145/3387514.3405891

SIGCOMM ’20, August 10–14, 2020, Virtual Event, USA Tong Meng, Neta R. Schiff, Brighten Godfrey, and Michael Schapira

flows by never adding more than a target delay in queueing. How-

ever, it is designed mainly as a scavenger against TCP CUBIC [21].

Aswewill see, it is relatively aggressive comparedwith recently pro-

posed latency-sensitive protocols such as BBR [13] and COPA [8].

When only LEDBAT flows compete, it also has shortcomings: it

gives an advantage to latecomers [32], and as its design is based

on traditional TCP, it inherits problems like lack of tolerance to

random packet loss and poor performance with shallow buffers.

Therefore, LEDBAT falls short of both goals above.

Furthermore, as explained above, a flow may dynamically switch

between scavenger and primary modes. This is hard for LEDBAT,

which, as deployed in Microsoft Windows Server 2019 [7] and

BitTorrent [32], is implemented separately from primary protocols.

Maintaining separate codebases also imposes an increased software

engineering burden, and makes it difficult for improvements in the

implementation of one protocol to benefit another.
1
We thus add a

third goal:

(3) Flexibility: A single transport protocol framework and code-

base should be able to easily switch between primary mode and

scavenger mode.

We aim to design a congestion control scavenger that meets all

three goals. However, this is challenging. The scavenger needs to

be both conservative (against primary flows) and aggressive (when

alone or among scavengers). It should ideally meet the desired goals

whatever the primary protocol is, and we can no longer assume

that will always be CUBIC: BBR has widespread deployment, and

many research advances are waiting in the wings [8, 16, 17, 42],

mostly latency-aware.

Our solution, PCC Proteus, extends the utility-based approach in

PCC [16, 17] with the following design contributions:

• To achieve our goals of performance and yielding, we build
utility function objectives for both primary (Proteus-P) and

scavenger (Proteus-S) senders. The scavenger utility employs

a penalty based on latency deviation which provides a sensi-

tive signal of competition and is typically not used by primary

flows, allowing Proteus-S to act as a good scavenger even relative

to latency-aware protocols. Our theoretical analyses show that

competing Proteus-P and Proteus-S senders produce a unique

equilibrium, and this equilibrium is fair when all senders use the

same utility function.

• We extend the utility design to support more than two modes of

service, including a hybrid mode, Proteus-H, with a piecewise

utility function that switches between primary and scavenger

modes at an adaptive threshold determined by cross-layer appli-

cation requirements (e.g., maximum bitrate for an online video).

The modular architecture of Proteus allows applications to easily

select modes and fulfills the goal of flexibility.
• To further improve performance in light of Proteus-S’s sensitivity

to latency deviation, we introduce techniques to better respond

to network latency noise (i.e., non-congestion variability in end-

to-end latency associated with the channel rather than with the

senders’ chosen rates) such that the scavenger can achieve robust

performance in highly dynamic environments such as wireless

networks.

1
This cost is hard to quantify, but anecdotally, multiple major content providers have

expressed this concern to us.

We implement Proteus and evaluate it and LEDBAT along with

many primary protocols (CUBIC, BBR, COPA, and PCC Vivace)

in emulated networks and the live Internet. To the best of our

knowledge, this is the broadest performance test of scavengers

currently available. Our results show that Proteus achieves the

scavenger goals more effectively:

• Yielding: Proteus yields ≥ 90% of bandwidth to competing pri-

mary flows, while LEDBAT may yield less than 50%, particularly

against modern latency-aware protocols like BBR and COPA.

In application-level tests on the live Internet, web pages load

33% faster and DASH video delivery receives 2.5× higher bi-

trate when Proteus, instead of LEDBAT, is scavenging in the

background.

• Performance: When scavengers compete with themselves, Pro-

teus maintains a Jain’s index over 90%, and reaches up to 1.75×
higher than LEDBAT. Proteus needs 32× lower buffer to achieve

90% utilization when running alone.

• Flexibility: The hybrid mode in Proteus delivers up to 11% higher

bitrate for 4K video and 68% lower rebuffering ratio in a video

streaming benchmark.

Our code is available open source [4]. This work does not raise

any ethical issues.

2 PRELIMINARIES AND MOTIVATION
2.1 When Does Scavenging Makes Sense?
There is a rich literature on prioritizing network bandwidth across

flows in ways other than max-min fairness, such as using cen-

tralized knowledge of applications [23] or pricing [11], which are

generally impractical for the present Internet.

In contrast, a scavenger’s prioritization approach is very coarse:

flows that are clearly low priority can voluntarily deprioritize them-

selves. Given that the scavenger may lack incentive to yield for the

sake of another flow, and has no idea of other flows’ true priorities,

when does this make sense? Generally, we believe scavenging will

be effective when (1) the scavenger is so time-insensitive that the

cost is negligible, and (2) the application designer choosing to use a

scavenger has some chance of benefiting, perhaps indirectly.

As an example, a mobile phone manufacturer may choose a

scavenger for automated software updates. The long-running soft-

ware update is unlikely to be significantly delayed by occasional

higher-priority flows like web page loads, and even if it is, the user

is unlikely to notice. The manufacturer benefits because other apps

perform better, providing an improved user experience across the

whole device.

As another example, some large cloud providers offer multi-

ple popular services ranging from cloud storage to video delivery.

Background replication of stored files from the cloud to a particular

device can act as a scavenger with negligible cost. The provider

benefits from improved video quality of experience on the same

device, or on other devices with a shared bottleneck like a home

DSL connection.

We believe there are numerous other use cases following this

pattern. We will explore several in our evaluation.

PCC Proteus: Scavenger Transport And Beyond SIGCOMM ’20, August 10–14, 2020, Virtual Event, USA

2.2 Signaling Scavengers to Yield
Congestion control protocols typically reward and penalize spe-

cific control signals. Different sensitivities to these signals cause

differential aggressiveness among competing protocols. What met-

ric(s) should a scavenger use in order to yield to primary flows? We

consider two approaches.

(1) Samemetrics, greater penalty. The scavenger could adopt
the same metrics as the primary protocol(s) of interest, but with a

greater penalty so it is more conservative. For example, a design

in [17] has greater or lesser tolerance for packet loss, for the purpose

of proportional bandwidth allocation among senders. This approach

has several difficulties.

First, metrics chosen by primary protocols generally represent

something very undesirable happening in the network; so if the pri-

mary and scavenger protocols have different sensitivities to these

important metrics, one or the other of them will sacrifice their per-

formance as a good stand-alone congestion controller (violating our

performance goal). For example, the aforementioned proportional

allocation design [17] can cause very high loss in order to acquire

more bandwidth.

Second, this approach assumes the primary and scavenger rely on

the same or similar metrics, which may not be true with a diversity

of primary protocol designs. Whatever its target bandwidth share

is, the aforementioned proportional allocator of [17] can easily

dominate a latency-sensitive sender.

(2) Different metric. Due to the above drawbacks, ideally, a

scavenger would somehow take signals from a different metric than

primary protocols of interest. To gain some insights on the require-

ments for this dedicated metric, we start by analyzing performance

metrics adopted by existing primary protocols.

As a simplistic example, suppose a scavenger is intended to

coexist with a latency-based primary protocol like PCC Vivace or

COPA. The scavenger could use packet loss as a different metric,

but the loss signal will come too late, if ever, since Vivace and COPA

avoid filling queues.

LEDBAT’s congestion signal is RTT exceeding a threshold,
e.g., 100 ms above the minimum RTT. This signal often comes

earlier than loss, but still fails for primary protocols that react to

even earlier signals – as will occur with Vivace’s and COPA’s latency

sensitivity. Even with CUBIC as primary, it will fail if a moderate-

size buffer causes loss before latency inflation hits 100 ms.

Another interesting signal isRTT gradient, used by Timely [28]

and PCC Vivace [17]. For example, Vivace calculates the gradient

of recently received RTT samples, and avoids inflation by penal-

izing positive gradient. This will occur earlier than many other

signals, but being in use by certain protocols and having similar

latency-awareness to a protocol like COPA, it may not be appropri-

ate for a scavenger. Furthermore, there is a chance that the gradient

calculation (e.g., linear regression in [17]) may average out some

transient congestion-related RTT fluctuation. In an extreme case,

RTT gradient may stay close to zero while the bottleneck buffer is

repeatedly inflated and deflated by other concurrent senders.

To sum up, we can’t hope to guarantee that a scavenger is robust

to every conceivable primary protocol. But ideally, its signal of

competition should be typically not used by primary protocols, and

should provide as early as possible a signal of competing senders.

NIC

Utility

Calculator

Utility

Module

Rate Control

Module
Requirements

U
tility

_
P

rim
a

ry U
tility

_…

U
tility

_
S
c
a
ve

n
g
er

U
tility

_
H

y
b
rid

U
tility

_…

 Metric Collection

U
tility

 L
ib

Packet Level Events

Performance Metric
(Throughput, Loss Rate, …)

Utility

Function

Utility

Applications

Control

Algorithm

Control Storage

Sending

Rate

Control

Info

Utility1 Sending Rate1

Utility2 Sending Rate2

Figure 1: Proteus congestion control architecture

2.3 Motivation for Flexibility
The Internet congestion control domain accumulates massive code-

bases after decades of effort, ranging from traditional kernel mod-

ules to recent user-space implementations (e.g., QUIC [25]). For

example, the main existing scavenger protocol, LEDBAT, uses a

different implementation from primary protocols such as BBR and

CUBIC. As content providers try to optimize use cases with dif-

ferent needs (web traffic, video, real-time voice, scavengers, etc.),
a proliferation of codebases would impose a nontrivial burden to

develop initially and to maintain. The interaction between different

protocols, especially the deprioritization of the scavenger, can be

challenging to analyze, and brittle even with minor implementation-

level code updates or bugfixes.

Separate implementations are also limited to coarse-grained pri-

ority changes. Most operating system kernels use a single conges-

tion control protocol for all traffic. Although it is possible to config-

ure different protocols on a per-socket basis or through tools such

as iptables, this cannot accommodate priority changes mid-flow.

For example, when a software update has a deadline requirement,

it may want to yield dynamically, only after reaching a certain

throughput.

Therefore, it would be of great value if there is a flexible, generic

architecture for Internet congestion control that synthesizes both

primary and scavenger modes, and eases the formal analysis for

intra- and inter-protocol interaction, i.e., scavenger vs. scavenger,
and scavenger vs. primary flow.

3 PROTEUS DESIGN OVERVIEW
Fig. 1 summarizes the PCC Proteus architecture. We begin with a

utility-based approach, similar to [16, 17]. Proteus separates con-

gestion control into a utility module and a rate control module.

The utility module has a library of utility functions, which may

be tailored to different applications’ needs. During data transmis-

sion, the utility module collects packet-level events (e.g., loss, RTT,
timeout), summarizes these metrics in the form of a numeric utility

value, and associates the utility with the corresponding sending

rate (or window size). Based on the relationship between different

sending rates and their corresponding utilities, the rate control

module algorithmically adjusts sending rate in the direction that

empirically maximizes utility. The sender uses different sending

rates in consecutive time intervals called monitor intervals (MIs),

SIGCOMM ’20, August 10–14, 2020, Virtual Event, USA Tong Meng, Neta R. Schiff, Brighten Godfrey, and Michael Schapira

and calculates the utility for each MI when all packets sent in that

MI are acknowledged or lost.

We adopt PCC’s utility approach because of its decoupled utility

design and rate control. We can construct utility functions based

on selected performance metrics (§2.2), while allowing these util-

ity functions to share the same rate control algorithm (e.g., the
gradient-based rate control in PCC Vivace [17]). In fact, a sender

can even switch utility functions dynamically within a running in-

stance of the rate controller, which provides flexibility with minimal

overhead (§2.3).

To apply this approach to our setting, Proteus introduces sev-

eral new components. First, we design a new utility function for

scavenger senders, called Proteus-S, that satisfies our yielding
and performance goals by leveraging latency deviation as a signal

of flow competition. Second, to satisfy our flexibility goal, the

Proteus system supports dynamic utility function selection. The

application may select or re-select a utility function in real-time,

even in the middle of a flow. (In our user-space implementation,

this is a simple API call.) In addition to Proteus-S, applications

may select among a primary-flow utility function called Proteus-P,

and a new hybrid-mode utility function that we call Proteus-H,

which combines Proteus-S and Proteus-P in an adaptive piece-wise
function according to applications’ throughput requirements.

Within this high-level design, there are two hard problems,

which are the subject of the upcoming sections. First, we design

the new utility functions, especially the scavenger and its exten-

sion to hybrid mode (§4). We employ a game-theoretic analysis

of equilibria when senders use the proposed utility functions to

show that our performance goal is met for both our primary and

scavenger utility functions. Second, because the scavenger utility

function is sensitive to non-congestion RTT noise, we design novel

noise-tolerant control mechanisms (§5).

4 PROTEUS UTILITY DESIGN
In this section, we present the utility functions employed by Proteus.

After introducing the primary-protocol mode, we discuss the key

metric employed by our scavenger and then the scavenger utility

function for Proteus-S. Finally, we combine Proteus-P and Proteus-S

into a hybrid mode (Proteus-H), using a piecewise utility function

with cross-layer design, to improve bandwidth allocation.

4.1 Primary Utility Function
Webeginwith the relatively easy part: for Proteus-P, we use the PCC

Vivace utility function [17] with a minor modification – negative

RTT gradient is ignored:

𝑢𝑃 (𝑥𝑖) = 𝑥𝑡𝑖 − 𝑏 · 𝑥𝑖 ·𝑚𝑎𝑥
{
0,
𝑑 (𝑅𝑇𝑇𝑖)
𝑑𝑡

}
− 𝑐 · 𝑥𝑖 · 𝐿 , (1)

where 𝑥𝑖 is the sending rate of sender 𝑖 , 𝐿 is the observed loss rate,

and 𝑑 (𝑅𝑇𝑇𝑖)/𝑑𝑡 represents RTT gradient. We ignore negative RTT

gradient because we found it ultimately slows convergence (the

sender tends to reduce its rate significantly below capacity so the

queue drains quickly). This change still results in a fair equilibrium

among competing Proteus-P senders, similar to [17]. We prove the

following theorem in Appendix A).

Theorem 4.1. In a shared bottleneck, 𝑛 Proteus-P senders will
converge to a fixed rate configuration (𝑥∗

1
, 𝑥∗

2
, · · · , 𝑥∗𝑛) such that 𝑥∗

1
=

𝑥∗
2
= · · · = 𝑥∗𝑛 , and the link is fully utilized.

The above Proteus-P utility function is latency-aware, and penal-

izes two performance metrics: RTT gradient and packet loss rate. Its

convergence property is determined by three constant parameters

as proved in [6]. The exponent 𝑡 (0 < 𝑡 < 1) should guarantee

function concavity, and thus, the existence of a unique equilibrium.

The latency coefficient 𝑏 (𝑏 > 0) corresponds to a theoretical maxi-

mum number of competing senders on a specific bottleneck with

no inflation in equilibrium state, i.e., all senders’ sending rates sum

up to the bottleneck capacity. For example, 𝑏 = 900 is used by PCC

Vivace [17], aimed at up to 1000 competing senders on a bottleneck

of at most 1000 Mbps. The coefficient 𝑐 sets a threshold on random

loss tolerance, e.g., 𝑐 = 11.35 to tolerate up to 5% random loss rate.

In Proteus-P, we use the same default values as in [17] (𝑡 = 0.9,

𝑏 = 900, 𝑐 = 11.35).

4.2 Competition Indicator: RTT Deviation
As analyzed in §2.2, the ideal signal for a scavenger is not just

ongoing congestion; we would like to know of impending conges-

tion, i.e., competition between flows. The implication is twofold.

First, when there are multiple concurrent primary flows with a

scavenger on a common bottleneck, if they are under-utilizing the

bandwidth, the scavenger does not need to back off since there is

no competition. Second, if the bottleneck buffer starts to be inflated

and deflated alternatively due to flows probing for bandwidth, the

scavenger should identify and react to such an early signal even

before persistent congestion is induced. That is crucial to guarantee

consistent low priority whether the primary flow is latency-aware

or not. Based on that intuition, we choose RTT deviation as the indi-
cator for flow competition. RTT deviation is the standard deviation

of RTT samples within an MI and is calculated as

𝜎 (𝑅𝑇𝑇) =
√

1

𝑛
·
∑
𝑗

(
𝑅𝑇𝑇𝑗 − 𝑅𝑇𝑇

)
2

,

where𝑛 is the number of RTT samples in the corresponding MI, and

𝑅𝑇𝑇𝑗 and𝑅𝑇𝑇 are the 𝑗-th and the mean RTT of theMI, respectively.

RTT deviation captures the latency, and thus buffer occupancy

dynamics, caused by flow competition. As long as the competing

primary flows actively probe for available bandwidth and do not

blindly speed up transmission, their competition will cause RTT

fluctuation. This is true for both the early scenario when several

latency-aware flows have just come close to full bandwidth utiliza-

tion (where brief random bursts will cause RTT deviation even if

the queue isn’t persistently growing), and the late scenario when

several loss-based flows already bloat the buffer to full occupancy.

Even if multiple latency-sensitive flows converge at the steady state,

primary senders still repeatedly probe around the steady-state rate

so that they can adapt to channel dynamics, for example, bandwidth

that is freed up when competing flows stop transmitting. That pro-

cess causes positive RTT deviation, driving scavenger senders to

back off. Of course, this is not to imply that RTT deviation is ideal

when competing with any possible primary protocol, but we believe

the above arguments are broadly true of current protocols.

PCC Proteus: Scavenger Transport And Beyond SIGCOMM ’20, August 10–14, 2020, Virtual Event, USA

0

4

8

12

16

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

P
ro

b
a
b

ili
ty

 D
e
n
si

ty
 (

%
)

RTT Deviation (ms)

0 flows/sec
3 flows/sec
6 flows/sec
9 flows/sec

(a) RTT Deviation

0

10

20

30

40

50

 0 0.005 0.01 0.015 0.02

P
ro

b
a
b

ili
ty

 D
e
n
si

ty
 (

%
)

Absolute Value of RTT Gradient

0 flows/sec
3 flows/sec
6 flows/sec
9 flows/sec

(b) RTT Gradient

Figure 2: PDF of RTT deviation/gradient under Poisson ar-
rival CUBIC flows

To show its advantage as a competition indicator, we compare

RTT deviation with RTT gradient, a metric used by Proteus-P and

Vivace for latency-awareness. More specifically, we will compare

whether RTT deviation and absolute value of RTT gradient
2
in-

deed increase as flow competition increases. Considering that RTT

gradient is a metric used by the primary protocol, the scavenger’s

dedicated performance metric should be something that produces

an earlier signal of impending congestion than RTT gradient, so

that the scavenger can also yield to latency-sensitive senders.

For this comparison, we set up a 100Mbps, 60ms RTT bottleneck

with 1500 KB (2 BDP) buffer on Emulab. To emulate impending

congestion, we generate short CUBIC flows with uniform flow sizes

ranging from [20, 100] KB and Poisson interarrival time. To measure

the two metrics, we use a fix-rate UDP flow at 20Mbps and analyze

the RTT gradient and deviation it observes in consecutive 1.5 RTT

intervals across a 2-minute run. We test flow arrival rates ranging

from 0-9 flows/sec, resulting in average link utilization in the range

of 20-24%. This gives an indication of how the metrics perform

as an early signal of congestion: congestion is not persistent, but

random arrivals will cause occasional brief periods of congestion.

Fig. 2 presents the probability distribution function (PDF) of

the two metrics. RTT deviation closely captures the extent of con-

gestion, with its most significant probability peak getting further

from the non-congestion peak as the arrival rate of CUBIC flows

increases. Specifically, because the arrival rate of 3 flows/sec can-

not introduce continuous congestion, RTT deviation shows two

peaks, corresponding to non-congestion and congestion cases, re-

spectively. In comparison, RTT gradient has more similar peaks

in all cases. To quantify this, we calculate a confusion probability
from the observed RTT samples, defined as the probability, across

uniform-randomly-chosen pairs of (0 flow/sec, 9 flow/sec) samples,

that a metric has smaller value in the congested (9 flow/sec) sample

than in the non-congested (0 flow/sec) sample. RTT deviation has

a confusion probability of 0.6%, significantly lower than 8.0% for

RTT gradient. This validates that RTT deviation provides a more

sensitive, early signal of RTT fluctuation dynamics, confirming our

intuition in §2.2 that the averaging effect of RTT gradient delays or

hides important information.

Nevertheless, latency noise (i.e., non-congestion RTT variability)

may also cause deviation in some networks, like rapidly chang-

ing wireless networks. Proteus’s rate controller (from [17]) helps

2
We use the absolute value of RTT gradient since either significantly positive or

significantly negative gradients could indicate flow competition. RTT deviation, of

course, is never negative.

ameliorate possible confusion by trying to distinguish whether the

sender’s rate is the cause of utility changes, by experimenting with

different rates. However, we found realistic noise still impacted

performance, so we designed noise control mechanisms (§5) for

enhanced robustness.

4.3 Scavenger Utility Function
Given the intuition that RTT deviation can indicate when to yield,

we define the utility function for Proteus-S as:

𝑢𝑆 (𝑥𝑖) = 𝑢𝑃 (𝑥𝑖) − 𝑑 · 𝑥𝑖 · 𝜎 (𝑅𝑇𝑇𝑖) , (2)

where 𝑢𝑃 (𝑥𝑖) is the utility function for Proteus-P, 𝑑 > 0 is a pa-

rameter, and 𝜎 (𝑅𝑇𝑇𝑖) denotes the RTT deviation calculated from a

corresponding MI.

We show that this utility function results in a fair equilibrium

among competing Proteus-S senders, as required by our perfor-

mance goal. We prove the following theorem in Appendix A.

Theorem 4.2. In a shared bottleneck, 𝑛 Proteus-S senders will
converge to a fixed rate configuration (𝑥∗

1
, 𝑥∗

2
, · · · , 𝑥∗𝑛) such that 𝑥∗

1
=

𝑥∗
2
= · · · = 𝑥∗𝑛 , and the link is fully utilized.

When Proteus-P and Proteus-S senders compete with each other,

we prove in the appendix that there exists a unique equilibrium. We

leave the formal analysis of Proteus-S senders yielding bandwidth to

Proteus-P senders to future work. As informal intuition, a Proteus-

S sender yields to a Proteus-P sender because the RTT deviation

term in the Proteus-S utility function generates larger penalty, and

makes the Proteus-S sender relatively conservative.

When the primary protocol is something other than Proteus-P,

the effectiveness of RTT deviation can be informally justified by

§ 4.2, and validated by our experiments.

Since we adopt the rate control algorithm from PCC Vivace, the

above theorem and analysis deal with the existence of equilibria.

We leave a study of the dynamics of convergence (e.g., convergence

speed) to future work.

4.4 Proteus-H: Hybrid Mode
Network-wide utility can also benefit from applications only occa-

sionally switching to scavenger mode. For example, when watch-

ing an online video, users may complain about rebuffering if the

throughput cannot fulfill a certain bitrate, but will be satisfied once

the video is played in the highest bitrate smoothly. For that purpose,

we extend Proteus-P and Proteus-S into Proteus-H, a hybrid mode

with a piecewise utility function constructed from Proteus-P and

Proteus-S:

𝑢𝐻 (𝑥𝑖) =
{
𝑢𝑃 (𝑥𝑖) if 𝑥𝑖 < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑,

𝑢𝑆 (𝑥𝑖) otherwise.
(3)

Effectively, Proteus-H switches between scavenger and primary

modes based on a threshold. But there is no explicit switch in the

control algorithm; it happens implicitly, simply by comparing utility

values of different sending rates.

Intuitively, when two senders deviate from the equilibrium send-

ing rate, they will either change towards fair share if they are in

the same modes, or the sender in scavenger mode will yield, both

of which drive them back to equilibrium. In an ideal situation, then,

when two Proteus-H senders with switching threshold 𝑟1 and 𝑟2

SIGCOMM ’20, August 10–14, 2020, Virtual Event, USA Tong Meng, Neta R. Schiff, Brighten Godfrey, and Michael Schapira

(𝑟1 < 𝑟2) compete on a bottleneck with capacity C, we would expect
them to converge towards the rate pair (𝑥∗

1
, 𝑥∗

2
) where:

(𝑥∗
1
, 𝑥∗

2
) =

C/2, C/2 if C ∈ [0, 2𝑟1),
𝑟1, (C − 𝑟1) if C ∈ [2𝑟1, 𝑟1 + 𝑟2),

(C − 𝑟2), 𝑟2 if C ∈ [𝑟1 + 𝑟2, 2𝑟2),
C/2, C/2 if C ∈ [2𝑟2, ∞) .

Cross-Layer Design for Switching Threshold. The thresh-

old in 𝑢𝐻 (𝑥𝑖) should be set adaptively by the application. We de-

velop a threshold policy for video streaming. We start with three

observations of video bitrate adaptation:

(1) Users are oblivious to transport throughput as long as the

highest video quality is rendered smoothly.

(2) The client will only request the next video chunk if there is

enough space in the local playback buffer.

(3) When the video stalls upon rebuffering, the client wants as

large throughput as possible to recover.

With this in mind, for bitrate adaptation, we can dynamically set

the threshold to the maximum value which satisfies the following

two rules:

(1) Sufficient rate rule: threshold ≤ 𝐺 · bitratemax. We set

𝐺 = 1.5 so there is a sufficient margin of safety to avoid

rebuffering.

(2) Buffer limit rule: threshold ≤ 1

2−𝑓 · bitratecurrent, where 𝑓
is the (possibly fractional) number of chunks of free space in

the buffer. This rule applies when 𝑓 < 2, and is checked upon

requesting a new chunk. The effect is that the threshold will

decrease as the buffer approaches full (and therefore loading

chunks quickly is not necessary, since anyway, the ABR

algorithm will pause transmission if the buffer is full).

Then, whenever rebuffering happens, the following rule will over-

ride the switching threshold, until the video resumes.

(3) Emergency rule: threshold = ∞.
As our experiments show, when a buffer-based adaptation algo-

rithm such as BOLA [35] is used, the above rules effectively increase

network-wide efficiency. We should note that we present this as a

representative solution for benchmarking; it may not be suitable for

bitrate adaptation that uses throughput for control. We leave the

incorporation of Proteus-H into other video streaming algorithms,

and other types of applications, to future work.

5 HANDLING LATENCY NOISE
Inherent network dynamics, e.g., wireless channel noise, raise chal-
lenges for latency-aware congestion control. In Proteus, a noisy

utility calculation, which is based on RTT gradient and deviation,

can result in incorrect rate change decisions during ramping up,

and thus, capacity under-utilization.

For the purpose of noise tolerance, a fixed tolerance threshold for

RTT gradient is used by PCC Vivace [17] (any RTT gradient with a

smaller magnitude is ignored). But a fixed threshold is ineffective

with rapid fluctuations that can occur on the Internet. We therefore

design more robust mechanisms.

Per-ACK: RTT Sample Filtering. We found that in dynamic

environments such as wireless networks, ACK reception can be

bursty even on a non-congested link, possibly due to irregular MAC

scheduling. This leads to excessive penalty from both RTT gradient

and deviation, and can mislead a Proteus sender into slowing down.

To mitigate this, we use the “ACK interval” (the time between

reception of two consecutive ACKs) to filter out abnormal RTT

samples, when the ratio between two consecutive ACK intervals

exceeds a threshold (set to 50 in our implementation). All RTT

samples are then ignored until an RTT is observed that is below

the exponentially weighted moving RTT average.

Per-MI: Regression Error Tolerance. In RTT gradient calcu-

lation, the error in linear regression also reflects the accuracy of

calculated RTT gradient. Specifically, for the 𝑖-th packet sent in the

MI whose sent time is 𝑠𝑒𝑛𝑡_𝑡𝑖𝑚𝑒𝑖 and RTT is 𝑅𝑇𝑇𝑖 , we calculate its

estimated regression RTT as:

𝑅𝑇𝑇 ∗𝑖 = 𝑎𝑣𝑔(𝑅𝑇𝑇𝑖) +𝑟𝑡𝑡_𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 · (𝑠𝑒𝑛𝑡_𝑡𝑖𝑚𝑒𝑖 −𝑎𝑣𝑔(𝑠𝑒𝑛𝑡_𝑡𝑖𝑚𝑒𝑖)) ,

where𝑎𝑣𝑔(𝑅𝑇𝑇𝑖) and𝑎𝑣𝑔(𝑠𝑒𝑛𝑡_𝑡𝑖𝑚𝑒𝑖) are the average RTT and sent

time for all acknowledged packets in the MI, respectively. Then, we

calculate regression error based on the residual in linear regression:

𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛_𝑒𝑟𝑟𝑜𝑟 =

√
1

𝑛
·
∑
𝑖

(𝑅𝑇𝑇𝑖 − 𝑅𝑇𝑇 ∗𝑖)2 ·
1

𝑀𝐼_𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛
,

where 𝑛 is the number of acknowledged packets in the MI and the

final factor simply normalizes by MI duration to produce a relative

error. Then, for each MI, if the calculated RTT gradient’s magnitude

is less than 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛_𝑒𝑟𝑟𝑜𝑟 , we treat both the RTT gradient and

the RTT deviation as 0.

MI History: Trending Tolerance. The above per-MI error tol-

erance may hide a slow but persistent RTT increase, which stays

within tolerance for several consecutiveMIs, leading to late reaction

against inflation. Since RTT deviation is ignored too, a Proteus-S

sender may stop behaving as a scavenger until it sees more sig-

nificant inflation. To avoid such late reaction, Proteus keeps track

of latency-related metrics for a longer time period. Specifically, a

sender maintains the RTT deviation and average RTT of the most

recent 𝑘 MIs (e.g., 𝑘 = 6 in our experiments for a reasonable trade-

off between noise-vulnerability and slow responsiveness), based

on which it computes two trending metrics: trending gradient and
trending deviation. Specifically, using linear regression based on the

stored MIs’ average RTTs, trending gradient is calculated as:

𝐾 =
1

𝑘
·

𝑘∑
𝑗=1

𝑗 , 𝑅𝑇𝑇 =
1

𝑘
·

𝑘∑
𝑗=1

𝑀𝐼 𝑗 (𝑅𝑇𝑇) ,

𝑡𝑟𝑒𝑛𝑑𝑖𝑛𝑔_𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 =

∑𝑘
𝑗=1 (𝑗 − 𝐾) (𝑀𝐼 𝑗 (𝑅𝑇𝑇) − 𝑅𝑇𝑇))∑

𝑖 (𝑗 − 𝐾)2
,

and by taking standard deviation of stored RTT deviations, trending

deviation is calculated as:

𝐷𝐸𝑉 =
1

𝑘
·

𝑘∑
𝑗=1

𝑀𝐼 𝑗 (𝐷𝐸𝑉) ,

𝑡𝑟𝑒𝑛𝑑𝑖𝑛𝑔_𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 =

√√√√
1

𝑘
·

𝑘∑
𝑗=1

(𝑀𝐼 𝑗 (𝐷𝐸𝑉) − 𝐷𝐸𝑉)2 .

In the above expressions,𝑀𝐼 𝑗 (𝑅𝑇𝑇) and𝑀𝐼 𝑗 (𝐷𝐸𝑉) represent the
𝑗-th stored MI’s average RTT and deviation, respectively.

PCC Proteus: Scavenger Transport And Beyond SIGCOMM ’20, August 10–14, 2020, Virtual Event, USA

In addition, we also maintain the exponentially weighted mov-

ing average and per-sample deviation for both trending metrics

(similar to how smoothed RTT and RTT deviation are updated in

the Linux kernel). Then, for each new sample of the two metrics,

we compare it with the corresponding average. Our insight is that,

when the calculated trending metric sample is several deviations

away from its average, it is statistically unlikely to be caused by

non-congested noise, and thus, cannot be ignored. We illustrate

with the pseudocode below.

1 if |trending_gradient - avg_trend_grad| < G1 * dev_trend_grad :
2 rtt_gradient ← 0
3 if trending_deviation - avg_trend_dev < G2 * dev_trend_dev :
4 rtt_deviation ← 0

Specifically, the new RTT gradient sample will be ignored if the

difference between the updated trending gradient and its moving

average (avg_trend_grad) is smaller than 𝐺1 times the deviation

of trending gradient (dev_trend_grad). In that case, RTT deviation

is also ignored if the difference between trending deviation and

its moving average (avg_trend_dev) is smaller than 𝐺2 times its

deviation (dev_trend_dev). In our implementation, we conserva-

tively select 𝐺1 = 2 and 𝐺2 = 4 to approximately achieve above

95% confidence with normally-distributed latency noise.

Control Algorithm: Majority Rule. For each rate control de-

cision in its “probing” state, Vivace tries a pair of sending rates

(in random order) twice, and changes sending rate only if they

imply a consistent rate change direction [16]. That may cause slow

rate ramp-up and under-utilization in highly noisy environments,

where the sender sees more inconsistent rate change indicators

and has to repeatedly test the same pair of sending rates before

increasing rate correctly. To improve on that, we let Proteus senders

try each pair of sending rates three times (instead of twice), and

change the sending rate based on the majority decision from the

three pairs of trials. By adding the additional pair, the sender can

generally determine the direction of rate change more quickly in

noisy networks, while the majority rule effectively avoids frequent

false rate change direction.

Note.We do not have enough space to show how each tolerance

mechanism contributes to Proteus’s performance. Briefly, per-MI

regression error tolerance is necessary for Proteus senders to satu-

rate bandwidth even on relatively stable bottleneck, while trending

tolerance helps enhance latency sensitivity. The RTT sample fil-

tering mechanism and the usage of majority rule in rate control

mainly benefit Proteus in highly dynamic networks, which can be

demonstrated to some extent by the performance improvement

of Proteus over Vivace on the live Internet (§6.2.1). However, we

emphasize that the above tolerance mechanisms are heuristics, and

do not have theoretical performance guarantees. Performance may

still be impacted when network latency noise appears very bursty

on the timescale of a MI (observed in our real-world WiFi test

in §6.2.1), causing abnormal samples of RTT gradient and RTT

deviation. More robust designs could employ statistical inference

techniques, and taking advantage of all available information in-

cluding in-network feedback [19].

6 EVALUATION
We implemented Proteus by branching off of the existing open-

source UDP-based PCC implementation [17] and implementing the

0

10

20

30

40

50

 1 10 100 1000

T
h
ro

u
g
h
p
u
t

(M
b
p
s)

Buffer Size (KB)

Proteus-S
LEDBAT
CUBIC
BBR
Proteus-P
COPA
Vivace

(a) Throughput

 0

 0.2

 0.4

 0.6

 0.8

 1

0 300 600 900

9
5

-t
h
 I
n
fl
a
ti

o
n
 R

a
ti

o

Buffer Size (KB)

Proteus-S
LEDBAT
CUBIC
BBR
Proteus-P
COPA
Vivace

(b) Latency inflation

Figure 3: Bottleneck saturation with varying buffer size

1

10

50

 0 0.01 0.02 0.03 0.04 0.05 0.06

T
h
ro

u
g
h
p
u
t

(M
b
p
s)

Random Loss Rate

Proteus-S
LEDBAT
CUBIC
BBR
Proteus-P
COPA
Vivace

Figure 4: Loss tolerance

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 3 4 5 6 7 8 9 10

Ja
in

's
 F

a
ir

n
e
ss

 I
n
d
e
x

Number of Flows

Proteus-S
LEDBAT
CUBIC
BBR
Proteus-P
COPA
Vivace

Figure 5: Fairness index

design of the previous sections.
3
For Proteus-P’s utility function,

we adopt the default parameters from [17]: 𝑡 = 0.9, 𝑏 = 900, and

𝑐 = 11.35. For Proteus-S, we set the RTT deviation coefficient

𝑑 = 1500 (with RTT deviation in units of 𝑠𝑒𝑐𝑜𝑛𝑑𝑠).

We compare two scavengers – Proteus-S and LEDBAT – and let

them compete with various primary protocols: TCP CUBIC [21],

BBR [13], COPA [8], PCC-Vivace [17], and Proteus-P. We employ

the LEDBAT implementation in the open-source `Torrent Trans-

port Library [2], with the target extra delay set to 100𝑚𝑠 , as in the

current IETF standard [34] as well as `Torrent’s default setting.4

To measure transport-level performance, our test environment

uses Pantheon [42] to run flows and collect performance metrics,

both on Emulab [38] and in the live Internet. Unless otherwise

specified, we use Emulab tests with a 50Mbps bandwidth, 30 ms

RTT setup, and show the mean of at least 10 trials in each sce-

nario. We also measure application-level performance (DASH video

streaming [1] and webpage loading) to show the benefits of having

scavengers competing with primary flows.

For the evaluation of Proteus-H, we implement emulated video

streaming on top of our UDP implementation. Specifically, Proteus

receiver runs a BOLA [35] agent that takes a DASH video definition

as input and consumes the received bytes to maintain an emulated

playback buffer. The receiver uses a side channel to notify the

sender of: (1) its requested bitrate for each chunk, (2) when to

stop/resume transmission due to limited playback buffer space, and

(3) the calculated switching threshold if Proteus-H is used.

3
At the moment, both Proteus-P and Proteus-S, as well as PCC Vivace, are based on

UDT [20]. However, we adopt QUIC-compatible APIs [25] in the Proteus implementa-

tion, which should facilitate its real-world deployment.

4
The first LEDBAT IETF draft [33] used a 25𝑚𝑠 target. We evaluate its performance

as well, and get similarly undesirable results as achieved by 100𝑚𝑠 ; see Appendix B.

SIGCOMM ’20, August 10–14, 2020, Virtual Event, USA Tong Meng, Neta R. Schiff, Brighten Godfrey, and Michael Schapira

0

20

40

60

80

100

0 20 40 60 80 100P
ri

m
a
ry

 T
h
ro

u
g

h
p

u
t

R
a
ti

o
 (

%
)

Capacity Utilization (%)

BBR
CUBIC
COPA
Proteus-P
Vivace

Buffer: 75KB 375KB

(a) LEDBAT as Scavenger

0

20

40

60

80

100

0 20 40 60 80 100P
ri

m
a
ry

 T
h
ro

u
g

h
p

u
t

R
a
ti

o
 (

%
)

Capacity Utilization (%)

BBR
CUBIC
COPA
Proteus-P
Vivace

Buffer: 75KB 375KB

(b) Proteus-S as Scavenger

0

20

40

60

80

100

0 20 40 60 80 100P
ri

m
a
ry

 T
h
ro

u
g

h
p

u
t

R
a
ti

o
 (

%
)

Capacity Utilization (%)

BBR
CUBIC
COPA
Proteus-P
Vivace

Buffer: 75KB 375KB

(c) Proteus-P as Scavenger

0

20

40

60

80

100

0 20 40 60 80 100P
ri

m
a
ry

 T
h
ro

u
g

h
p

u
t

R
a
ti

o
 (

%
)

Capacity Utilization (%)

BBR
CUBIC
COPA
Proteus-P
Vivace

Buffer: 75KB 375KB

(d) COPA as Scavenger

Figure 6: Scavenger competes with primary protocols

6.1 Scavenger-Only Performance
When there are no primary flows, a good scavenger should have

high performance like a normal congestion controller. We evaluate

this single-protocol performance with typical congestion control

objectives (high throughput, low latency) across different environ-

ment variables (buffer size, random loss probability, and number of

competing flows).

6.1.1 Latency Awareness. We run a single flow on the above speci-

fied Emulab bottleneck link for 100 seconds, with varying buffer size.

We compare the protocols’ throughput and RTT inflation (Fig. 3).

As shown in Fig. 3(a), both Proteus-P and Proteus-S need as

small as 4.5 KB buffer to achieve at least 90% capacity utilization,

i.e., 45 Mbps throughput, which is the same as needed by BBR

and PCC Vivace. In comparison, both CUBIC and COPA need 5.7×
larger buffer to reach the same utilization. LEDBAT, always trying

to inflate the RTT by 100𝑚𝑠 , needs 150 KB buffer, which is close to

the BDP (187.5 KB), and 32.3× larger than needed by Proteus.

We then evaluate latency sensitivity in terms of 95th percentile

inflation ratio, calculated as:

95th inflation ratio =
95th percentile RTT − base RTT
buffer size/bottleneck bandwidth ,

which effectivelymeasures the 95th percentile buffer occupancy.We

report this value in Fig. 3(b). Both Proteus-S and Proteus-P, similar

to Vivace, limit the inflation ratio below 10% as long as the buffer

is ≥ 150 KB. Even COPA, which is latency-aware, needs 3× larger

buffer (600 KB) to keep inflation ratio below 10%. In comparison,

LEDBAT has around 100% inflation ratio until the buffer size is large

enough (at least 625 KB) to accommodate its target delay. More

specifically, at 2 BDP buffer size (375 KB), Proteus-S has 75.3%,

93.8%, 96.4%, and 96.42% smaller inflation ratio compared with

COPA, BBR, CUBIC, and LEDBAT, respectively.

6.1.2 Random Loss Tolerance. Next, when there exists random non-

congestion loss, we compare different protocols’ average through-

put from multiple 100-second runs on the same bottleneck with

375 KB buffer (2 BDP) in Fig. 4. Thanks to its improved noise con-

trol, Proteus-P, using a similar utility function as Vivace, performs

somewhat better than Vivace on that front, achieving 74% higher

throughput with 5% random loss. Proteus-S, on the other hand, has

somewhat worse throughput than Vivace, which can be attributed

to its RTT deviation-based rate control which causes it to ramp up

more conservatively.

LEDBAT is fragile even when facing a 0.001% random loss rate,

suffering from 50% degradation compared with Proteus.

We note that COPA and BBR have higher random loss tolerance

because they do not directly react to packet losses. In comparison,

as explained in §4.1, the loss coefficient in Proteus and PCC Vivace’s

utility function is set to achieve 5% random loss tolerance. We could

tune the coefficient for higher tolerance, although this induces

higher congestion loss [17].

6.1.3 Fairness With Competing Flows. To evaluate convergence

when multiple senders of the same protocol compete with each

other, we use a 30 ms RTT bottleneck link on Emulab. We test

𝑛 ∈ 2, . . . , 10 flows with 20𝑛 Mbps link bandwidth and 300𝑛 KB

buffer size. In each run, a flow is started after waiting 20 seconds

for the previous flow to ramp up. We measure mean throughput

of each flow during the 200 seconds after all flows are started, and

present Jain’s fairness index in Fig. 5. We see that Proteus-P, PCC

Vivace, CUBIC, BBR and COPA all keep Jain’s index around 99%.

Proteus-S has lower, but still always above 90%, fairness index.

In comparison, LEDBAT’s fairness decreases and then increases

with 𝑛. The decreasing fairness is known as its latecomer issue [34],

which occurs because after one LEDBAT flow is running, the min-

imum delay observation for any subsequent flow is based on an

already-inflated buffer. For example, with 6 competing flows, Proteus-

S is 75%more fair than LEDBAT. LEDBAT’s fairness begins improv-

ing once 𝑛 is large enough that the sum of the target extra delay of

all flows exceeds the maximum inflation allowed by the bottleneck

buffer size.

6.2 Yielding to Primary Flows
When a scavenger competes with a primary flow, our goals are that

(1) most importantly, the scavenger should have minimal impact

on the primary flow (compared to running the primary flow alone);

and (2) secondarily, the scavenger should opportunistically use any

remaining resources.

Our evaluation uses two flows, one primary followed by one

scavenger. Again, we use the specified Emulab link. We consider

both shallow (75 KB, i.e., 0.4 BDP) and large buffer (375 KB, i.e.,
2 BDP) setups. In addition to LEDBAT, we test Proteus-P in the role

of the scavenger, to emphasize the effectiveness of Proteus-S’s RTT

deviation-based utility function. We calculate two performance

metrics. To measure goal (1), we use the primary throughput ratio,
defined as the primary flow’s throughput when running with the

PCC Proteus: Scavenger Transport And Beyond SIGCOMM ’20, August 10–14, 2020, Virtual Event, USA

1

2

3

CUBIC BBR COPA Proteus-P PCC

9
5

-t
h
 R

T
T
 R

a
ti

o

Primary Protocol

Proteus-S
LEDBAT
Proteus-P
COPA

Figure 7: RTT with competition

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
u
m

u
la

ti
v
e
 D

is
tr

ib
u
ti

o
n

Primary Throughput Ratio

BBR vs. Proteus-S

BBR vs. LEDBAT

CUBIC vs. Proteus-S

CUBIC vs. LEDBAT

Proteus-P vs. Proteus-S

Proteus-P vs. LEDBAT

Figure 8: Throughput ratio CDF

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
u
m

u
la

ti
v
e
 F

ra
ct

io
n

Normalized Throughput

Proteus-S
LEDBAT
CUBIC
BBR
Proteus-P
COPA
Vivace

Figure 9: Single flow on WiFi

scavenger divided by its throughput when running alone. To mea-

sure goal (2), we use the the total capacity utilization of the two

flows.

Although designed as a scavenger against TCP CUBIC, LEDBAT

fails to yield to CUBIC when its target extra delay exceeds the max-

imum inflation allowed by the buffer. This occurs with both buffer

setups (Fig. 6(a)). In that situation, it approximately fairly shares the

bottleneck with CUBIC. LEDBAT also fails to yield when the com-

peting sender is less aggressive, e.g., it lowers BBR’s throughput to
26.0% with 375 KB buffer. Similarly, the other three latency-aware

protocols, COPA, PCC Vivace, and Proteus-P, are more significantly

impacted by LEDBAT, e.g., they all have lower than 43% throughput

ratio when competing with LEDBAT.

In contrast, Proteus-S yields well (Fig. 6(b)): with CUBIC, BBR,

COPA, and Proteus-P as the primary flow, the primary throughput

ratio is above 98%, 95%, 87%, and 88%, respectively, in all test cases.

For primary flows COPA and Proteus-P, regardless of the buffer size,

the performance gains are more than 1.1× and 2.3× over LEDBAT.

When competing with Vivace, Proteus-S has somewhat lower pri-

mary throughput ratio (since Vivace does not have adaptive noise

tolerance, and thus may tolerate less RTT fluctuation). However, it

is still at least 3.2× better than both LEDBATs.

The other two latency-aware protocols, as expected, do not con-

sistently yield (Fig. 6(c),6(d)). Specifically, Proteus-P competes with

COPA and Vivace fairly under both buffer setups, while COPA is

friendly (i.e., has fair equilibrium) to all the other protocols except

when competing with BBR with a shallow buffer. We also observe

that Proteus-P can lower the throughput of BBR to 88%, compared

with at least 95% from Proteus-S. This validates our claim in Sec-

tion 4.2 that RTT deviation signals competition better than RTT

gradient, and hence is a better scavenger penalty metric.

Proteus-S also outperforms LEDBAT in our secondary goal of

utilizing the remaining bandwidth. When competing with BBR,

CUBIC, Proteus-P and PCC Vivace, Proteus-S maintains a joint

capacity utilization of at least 95%. Its utilization competing with

COPA is 89% (although we note this is the same utilization COPA

can achieve when it competes with itself). LEDBAT only delivers

around 85% utilization when competing with Proteus-P and Vivace

with 75 KB buffer.

Furthermore, the competition between LEDBAT and primary

protocols leads to more significant RTT inflation. Fig. 7 presents

the ratio between 95th percentile RTT seen by a primary flow when

competing with a scavenger flow and when the primary flow runs

alone (achieved with 375 KB buffer). Latency-aware protocols see

larger inflation increment, because loss-based protocols such as

CUBIC already fill the buffer when they run alone. For instance,

COPA sees 2.3× RTT when competing with LEDBAT. Proteus-S,

unlike LEDBAT, has negligible influence on RTT, e.g., BBR even

sees 18.8% smaller 95-th RTT. Proteus-P and COPA are also inferior,

doubling the 95-th RTT when competing with each other.

To further stress Proteus-S’s robustness as a congestion control

scavenger, we let it compete with BBR, CUBIC, and Proteus-P under

the 180 distinct bottleneck configurations representing all combina-

tions of the following parameters: bandwidth chosen from {20, 50,

100, 200, 300, 500} Mbps, RTT chosen from {5, 10, 30, 60, 100, 200} ms,

and buffer size chosen from {0.2, 0.5, 1.0, 2.0, 5.0} BDP. For presenta-

tion clarity, we only compare Proteus-S with LEDBAT, and present

the CDF of primary throughput ratios in Fig. 8. In the median case,

the three primary protocols, BBR, CUBIC, and Proteus-P, achieve

7.8%, 28.0%, and 2.8× higher throughput competing with Proteus-S

than with LEDBAT. That corresponds to our above conclusion, i.e.,
the extra delay target used by LEDBAT may be too aggressive for

a moderate-sized buffer, and is a late congestion signal especially

against latency-sensitive protocols.

One may argue that the inferior yielding performance of LED-

BAT can be improved by using a smaller extra target delay. However,

as shown by the results with 25ms extra delay in Appendix B, using

a smaller extra target delay induces other performance problems, in-

cluding more significant latecomer advantage and worse multiflow

unfairness. Meanwhile, as a general congestion control protocol,

LEDBAT still has high inflation under shallow buffers, and is more

aggressive than latency-sensitive protocols such as PCC Vivace and

Proteus-P.

6.2.1 Scavenger Performance on the Internet. Wenowmove our test

scenarios for the same single-flow and two-flow experiments to the

live Internet. Specifically, we use WiFi connections at four different

locations (two residential apartments, and two restaurants), and test

using the uplink by transmitting from a laptop to an AWS server

in each of 16 different regions.
5
For each source-destination pair,

we conduct 4 trials, each lasting 2 minutes, and report the median

value (i.e., the mean of the two middle values).
6
Finally, to ease

visualization, we normalize this median throughput by the highest

value obtained by any protocol on that source-destination pair.

5
These are all of the AWS regions except Hong Kong, Bahrain, and Capetown which

we were unable to use for logistical reasons.

6
We do not observe performance issues due to interference from shared CPU.

SIGCOMM ’20, August 10–14, 2020, Virtual Event, USA Tong Meng, Neta R. Schiff, Brighten Godfrey, and Michael Schapira

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
u
m

u
la

ti
v
e
 F

ra
ct

io
n

Primary Flow Throughput Ratio

vs Proteus-S
vs LEDBAT

(a) BBR as Primary

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
u
m

u
la

ti
v
e
 F

ra
ct

io
n

Primary Flow Throughput Ratio

vs Proteus-S
vs LEDBAT

(b) CUBIC as Primary

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
u
m

u
la

ti
v
e
 F

ra
ct

io
n

Primary Flow Throughput Ratio

vs Proteus-S
vs LEDBAT

(c) COPA as Primary

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
u
m

u
la

ti
v
e
 F

ra
ct

io
n

Primary Flow Throughput Ratio

vs Proteus-S
vs LEDBAT

(d) Proteus-P as Primary

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
u
m

u
la

ti
v
e
 F

ra
ct

io
n

Primary Flow Throughput Ratio

vs Proteus-S
vs LEDBAT

(e) PCC Vivace as Primary

Figure 10: Primary throughput ratio in real-world WiFi

Fig. 9 shows the CDF of normalized median throughputs across

the 64 source-destination pairs. The protocols intended as primary

flows are, interestingly, among the worst and the best. Two latency-

aware primary protocols, COPA and Vivace, have the worst per-

formance, because they are affected by RTT fluctuations. (Even

though these are WiFi links and not LTE, we observe significant

fluctuation in RTT. The typical RTT deviation is up to 5ms but RTT

occasionally spikes tens of milliseconds higher.) Meanwhile, CUBIC

and BBR have highest throughput because they are much more

aggressive than other protocols (see latency inflation in Fig. 3(b)).

CUBIC is even better than BBR because CUBIC is loss-based and

the least latency-sensitive.

Among the scavengers, since LEDBAT relies on (one-way) de-

lay, it is also somewhat prone to noisy measurement. Proteus-S is

comparable to LEDBAT.

Overall, in these environments, our latency noise tolerance tech-

niques allow Proteus-P and Proteus-S to each be among the best in

their class (primary and scavenger respectively). Specifically, they

each have close to the best throughput while being much more

latency-aware (Fig. 3(b)) than the other high-throughput protocols.

This helps show our design is generally successful in achieving a

single codebase which can be either a primary or scavenger. While

there might still be room for improvement (such as closing the

moderate throughput gap between Proteus-P and BBR), a tradeoff

between throughput and latency is to be expected.

We move now to the scavenger goal of yielding to primary flows,

quantified by the CDF of primary flow throughput ratio in the same

WiFi environments (Fig. 10). When competing with LEDBAT, BBR

and CUBIC’s median throughput ratios are 80.0% and 76.1% respec-

tively. With Proteus-S as the scavenger, they respectively achieve

17.6% and 19.2% higher throughput ratios. Meanwhile, Proteus-S

enables BBR and CUBIC to have at least 90% throughput ratio in

71.8% and 51.3% of all cases, respectively, which are 1.2× and 81.9%

higher than LEDBAT. Considering BBR and CUBIC are today the

most widely adopted primary protocols, and LEDBAT is perhaps

the only deployed scavenger protocol on the Internet, this is an im-

portant improvement. Furthermore, Proteus-S has more significant

performance gain when the competing primary protocol is latency-

aware. Specifically, when competing with Proteus-S, the median

throughput ratios of COPA, Proteus-P, and Vivace are 39.3%, 41.0%,

and 44.1% higher than achieved when competing with LEDBAT.

These results are consistent with those in Fig. 6.

6.2.2 Application Performance Benchmarks. To demonstrate the

significance of a congestion control scavenger in practice, we use

0

4

8

12

16

1 2 4 8

A
v
e
ra

g
e
 B

it
ra

te
 (

M
b
p
s)

Number of Concurrent Videos

DASH only
DASH + Proteus-S
DASH + LEDBAT
DASH + CUBIC

(a) DASH Video

0

20

40

60

80

100

0 3 6 9 12 15

C
u
m

u
la

ti
v
e
 D

is
tr

ib
u
ti

o
n
 (

%
)

Page Loading Time (sec)

Chrome only
Chrome + Proteus-S
Chrome + LEDBAT
Chrome + CUBIC

(b) Webpage Load

Figure 11: Scavenger with Applications on Internet

the live Internet to compare the influence of Proteus-S, LEDBAT,

and CUBIC on two popular applications, DASH video streaming

and webpage loading. We use a wired Xfinity downlink of about

100 Mbps. For DASH video streaming, we use the default dash.js
(version 3.0.1) and request the Big Buck Bunny sample video from

Akamai. For webpage loading, we randomly request the top 30 sites

in United States from Alexa.com in a 10-minute run, with a Poisson

rate of 1 request per 10 seconds. The Chrome browser is used for

both applications. A single scavenger flow may run simultaneously

from an AWS server in Virginia to our laptop in the background.

Fig. 11(a) presents the average video chunk bitrate with different

number of concurrent videos (started simultaneously). The results

when CUBIC runs in the background are included for reference.

We can see that although LEDBAT has smaller impact to DASH

performance than CUBIC, it still dramatically falls behind Proteus-

S. For example, with 8 videos, Proteus-S enables DASH with 2.5×
higher bitrate than LEDBAT. Then, Fig. 11(b) presents the CDF of

webpage loading time. Proteus-S has almost no impact on page load-

ing, while achieving 48.2% (median) and 33.3% (average) speed-up

compared with LEDBAT. Thus, even in a single house with a single

router, a congestion scavenger for background flows (e.g., system
update, cloud storage synchronization) can still increase compet-

ing applications’ performance. (That said, we note that Proteus-S’s

performance gains in Fig. 11 are in part due to the fact that it is

latency-aware, rather than specifically because of our scavenger

mechanisms.)

6.3 Flexibility of Hybrid Utility
Next, we evaluate our novel capability of supporting a hybrid utility

function. As an example application, we compare Proteus-H and

Proteus-P in a video streaming test using our emulated adaptive

BOLA agent. For that purpose, we generate a corpus of 10 4K and

PCC Proteus: Scavenger Transport And Beyond SIGCOMM ’20, August 10–14, 2020, Virtual Event, USA

0

10

20

30

40

 70 80 90 100 110 120

A
v
g
.
C

h
u
n
k

B
it

ra
te

 (
M

b
p
s)

Bottleneck Bandwidth (Mbps)

Proteus-H
Proteus-P

1080P
1080P

4K
4K

(a) Video Bitrate

0

0.5

1.0

1.5

2.0

 70 80 90 100 110 120

A
v
e
ra

g
e
 R

e
b

u
ff

e
r

R
a
ti

o
 (

%
)

Bottleneck Bandwidth (Mbps)

Proteus-H

Proteus-P
1080P
1080P

4K
4K

(b) Rebuffer Ratio

Figure 12: Hybrid mode in adaptive video streaming

0

5

10

15

20

25

 90 100 110 120 130 140

A
v
e
ra

g
e
 R

e
b
u
ff

e
r

R
a
ti

o
 (

%
)

Bottleneck Bandwidth (Mbps)

Proteus-H
Proteus-P

1080P
1080P

4K
4K

Figure 13: Consistently low rebuffer by hybrid mode

10 1080P videos, all composed of 3-second chunks and at least 3

minutes long, with highest bitrates of above 40 Mbps and 10 Mbps,

respectively.

We first use an Emulab bottleneck with 30ms RTT, 900 KB buffer

and varying bandwidth. For both Proteus variants, we randomly

select one 4K and three 1080P videos, start them simultaneously

and let them stream for 3 minutes. Fig. 12 presents the average

bitrates and rebuffer ratios of 4K and 1080P videos separately. Com-

pared with Proteus-P, when all flows use Proteus-H, the average

bitrate per 4K video chunk is increased by up to 3 Mbps and up

to 11%, without obviously impacting 1080P videos. With 3-second

chunk duration and 3-minute streaming period, this increment

corresponds to almost half a minute longer duration staying at

the highest 4K bitrate. Meanwhile, the 4K bitrate gain comes with

 0

 10

 20

 30

 40

 50

 0 50 100 150 200

T
h
ro

u
g

h
p

u
t

(M
b

p
s)

Time (Sec)

BBR vs. BBR-S

BBR-S
 vs.
BBR-S

CUBIC
 vs.
BBR-S

BBR
BBR-S
BBR-S
CUBIC

Figure 14: Extend RTT Deviation to BBR

significantly lower rebuffer ratios for both 4K and 1080P videos.

For example, with 110 Mbps bandwidth, the 4K and 1080P rebuffer

ratios are reduced by 68.0% and 33.5%, respectively. The only excep-

tion is under 70Mbps bandwidth, when Proteus-P does not even

try the highest 4K bitrate due to low fair share.

Considering that the above rebuffer ratios are small because of

adaptation by BOLA, we force the agent at the highest bitrates, and

repeat the above experiments. Fig. 13 shows the achieved rebuffer

ratios, which are consistent with Fig. 12(b). Specifically, under the

same 110 Mbps bandwidth, Proteus-H has 34.0% lower rebuffer

ratio for 4K video. Therefore, the support for an adaptive hybrid

mode can indeed increase utilization efficiency of restricted network

resources.

7 DISCUSSION
Wehave seen that Proteus-S has robust performance against various

primary protocols, and can help improve network-wide utility, both

on emulated networks and in the wild. Nevertheless, much remains

to explore in scavenger transport. In this section, we discuss several

important insights for practical implementation and future work.

7.1 Real-World Adoption
Proteus can be implemented at the server side without involving the

client, consistent with most existing transport designs [13, 16, 17].

Current Linux kernel mechanisms make it difficult (though, we

think, not impossible) to implement some aspects of our utility

module. But other options exist, such as the CCP platform [29], or

a fully user-space transport stack as used in QUIC [25] (there is

already a QUIC-based prototype of PCC Vivace [3], and we adopted

QUIC-compatible APIs for our implementation of Proteus). Thus,

we see several low-overhead paths to adoption for Proteus.

In more advanced deployments, client-side participation may

help, including necessary messages required by applications (as in

bitrate adaptation) and voluntary feedback by users (e.g., concrete

deadline requirements). We leave a full design to the future, but

note this feedback can be transmitted through Proteus’s APIs and

does not necessitate protocol changes like reserved header bits.

The basic idea behind utility design in Proteus, i.e., selection
of control signals, can potentially be extended to other primary

protocols. For example, any protocol can lower its priority by react-

ing to RTT deviation. For illustration, we modify the kernel BBR

implementation such that whenever the smoothed RTT deviation

is larger than 20 ms, the BBR sender is forced into its minimum

SIGCOMM ’20, August 10–14, 2020, Virtual Event, USA Tong Meng, Neta R. Schiff, Brighten Godfrey, and Michael Schapira

RTT probing phase for at least 40 ms,
7
which is a phase when BBR

effectively stops further transmission, and maintains minimum in-

flight packets to probe for clean channel RTT. We let the modified

BBR, denoted BBR-S, compete with BBR, CUBIC, and BBR-S on an

Emulab bottleneck with 50Mbps bandwidth, 30ms RTT, and 375KB

buffer. Fig. 14 shows the throughput across time. Apparently, BBR-S

is able to yield against BBR and CUBIC, while sharing the bottle-

neck fairly with BBR-S itself. This validates that our techniques

may be of interest beyond Proteus itself.

7.2 Robustness in Noise Tolerance
The current Proteus architecture (as well as the utility framework in

[16, 17]) relies on a relatively ideal model, i.e., the utility functions

and their equilibrium analysis do not formally model inherent RTT

fluctuation. Although Proteus mitigates this with noise tolerance

mechanisms, they are not perfect. According to results from the

live Internet, the relatively more aggressive protocols (BBR and CU-

BIC) still have better performance as primary flows compared with

Proteus-P. Additionally, there are high-fluctuation environments

we have not yet tested, such as LTE. Although those networks

provide better user isolation using fine-grained resource alloca-

tion [41], it is important to consider them in future work on a

full-fledged transport design. Thus, we envision designs to deal

with noise on a more fundamental level, as well as theoretical tools

to analyze these designs. That may involve quantifying confidence

in inputs to the utility function, including a specific noise term in

the utility function, or turning to alternative methods like neural

networks [30].

8 RELATEDWORK
The surge of data intensive applications such as online video stream-

ing has driven research on Internet congestion control in both indus-

try and academia. Recent work [8, 13, 17] has shown that traditional

TCP variants (e.g., [10, 21, 27], etc.) cannot consistently deliver high
performance. These variants, and various improvements such as

Remy [40], usually correlate packet losses with congestion, which

is not always the case, and thus, they cannot tolerate random packet

losses. In addition, the widely used TCPCUBIC can cause significant

inflation and bufferbloat, which harms the quality of experience

for latency-sensitive applications. To solve TCP’s inherent perfor-

mance issues, numerous protocols have been introduced. The idea

of performance-oriented congestion control (PCC) was proposed in

[16], leveraging a sending rate control logic based on an empirical

utility function constructed from observed performance metrics.

However, PCC Allegro [16], the first protocol in the PCC family,

uses a loss-based utility function, and also suffers from bufferbloat.

PCC Vivace [17] has better latency awareness and convergence

speed with its latency-aware utility function and gradient-ascent

rate control. TCP BBR [13] tries to build a network model from

recent measurements of network bandwidth and minimum RTT,

so as to maintain high sending rate and avoid excessive inflation.

COPA [8] leverages the observed minimum RTT to achieve a tar-

get rate that optimizes a natural function of throughput and delay

under a Markov packet arrival model. In addition, there are works

7
We use fixed thresholds such as 20 ms RTT deviation for illustration. That said, we

are not claiming BBR-S could be a robust scavenger in practice.

focusing on congestion control in specific Internet environments

such as LTE (e.g., [41, 43]), or for specific flow characteristics such

as short flows (e.g., [26]). However, all the above works aim at a

fair-sharing equilibrium. Some works such as BBR and COPA ex-

plicitly try to achieve fair share when competing with TCP CUBIC

for the purpose of TCP friendliness.

The most important work targeting a non-fair scavenger equi-

librium is LEDBAT [34]. It tries to control the induced extra delay

to the network within a threshold, so that it can back off when

competing with other primary flows. However, as shown in our

experiments, it often significantly reduces throughput of primary

flows – even CUBIC, but to a larger degree for protocols that include

some latency awareness – and has a known latecomer advantage

issue when competing with itself [5, 14, 32].

Minerva [37] was proposed as an end-to-end transport to im-

prove QoE fairness in video streaming. It differs from our work in

that it tries to compete fairly with TCP, but is related in its devia-

tion from fair sharing among video flows to optimize overall QoE.

We believe Proteus’s and Minerva’s ideas could be relevant to a

full-fledged cross-layer design for QoE optimization.

Our work is orthogonal to, but may utilize, platforms that ease

implementation of new transport protocols, including QUIC’s user-

space transport which modifies the traditional HTTPS stack [25],

and CCP’s universal off-datapath congestion controller design [29].

A separate category of congestion control protocols improves

performance via the combination of protocol changes and in-network

(router/switch) support, either in data centers (e.g., [36, 39]) or in

the Internet (e.g., [12, 19, 24]). While this approach can be feasible

in some data centers, adoption across the public Internet is difficult.

9 CONCLUSION
We propose PCC Proteus, an architecture for Internet congestion

control. Proteus supports interaction from application to transport

layer, to tailor congestion control to application requirements, and

in particular, to realize a congestion control scavenger. Specifically,

based on an online-learning utility framework [16], we design a

protocol that can act as either a primary protocol (Proteus-P) or as

a scavenger (Proteus-S) using a dedicated scavenger utility func-

tion. Through comprehensive experiments on emulated networks

and the live Internet, we show the robustness of Proteus-S as a

scavenger against various competing protocols. We also extend Pro-

teus to a hybrid scavenger/primary design which achieves higher

application-level utility for adaptive bitrate video delivery and web

page loading, and demonstrates the flexibility of our approach. We

believe this line of research will be increasingly important to deal

with Internet environments where constrained bandwidth must

be shared between high-priority and traffic with more elastic time

requirements.

ACKNOWLEDGEMENTS
We thank Praveen Balasubramanian for insightful discussions about

the importance of scavenger transport. We also thank our shepherd,

Mohammad Alizadeh, and SIGCOMM reviewers for their valuable

comments. This research was supported by Huawei and the Israel

Science Foundation.

PCC Proteus: Scavenger Transport And Beyond SIGCOMM ’20, August 10–14, 2020, Virtual Event, USA

REFERENCES
[1] [n.d.]. dash.js. https://github.com/Dash-Industry-Forum/dash.js.

[2] [n.d.]. `Torrent Transport Protocol library. http://github.com/bittorrent/libutp.

[3] [n.d.]. PCC QUIC Implementation. https://github.com/netarch/PCC_QUIC.

[4] [n.d.]. Proteus Implementation. https://github.com/PCCproject/PCC-Uspace.

[5] 2017. LEDBAT++: Low priority TCP Congestion Control in Win-

dows. https://datatracker.ietf .org/meeting/100/materials/slides-100-iccrg-

ledbat-low-priority-tcp-congestion-control-in-windows-01.

[6] 2018. Vivace Full Proof of Theorems. http://www.ttmeng.net/pubs/

vivace_proof .pdf.

[7] 2018. Windows Transport converges on two Congestion Providers: Cubic and

LEDBAT. https://techcommunity.microsoft.com/t5/Networking-Blog/Windows-

Transport-converges-on-two-Congestion-Providers-Cubic/ba-p/339819.

[8] Venkat Arun and Hari Balakrishnan. 2018. Copa: Practical Delay-Based Conges-

tion Control for the Internet. Proc. of NSDI (April 2018).
[9] J.C. Bansal, P.K. Singh, K. Deep, M. Pant, and A.K. Nagar. 2012. Proceed-

ings of Seventh International Conference on Bio-Inspired Computing: Theories
and Applications (BIC-TA 2012): Volume 2. Springer India. 435–436 pages.

https://books.google.co.il/books?id=97mrtf1TlK0C

[10] L. Brakmo, S. Lawrence, S. O’Malley, and L. Peterson. 1994. TCP Vegas: New

techniques for congestion detection and avoidance. Proc. of ACM SIGCOMM
(1994).

[11] Bob Briscoe. 2007. Flow rate fairness: dismantling a religion. Computer Commu-
nication Review 37, 2 (2007), 63–74. https://doi.org/10.1145/1232919.1232926

[12] M. Caesar, D. Caldwell, N. Feamster, J. Rexford, A. Shaikh, and K. van der Merwe.

2005. Design and implementation of a Routing Control Platform. Proc. of NSDI
(April 2005).

[13] N. Cardwell, Y. Cheng, C.S. Gunn, S.H. Yeganeh, and Van Jacobson. 2016. BBR:

Congestion-Based Congestion Control. Queue 14, 5 (2016), 50.
[14] Giovanna Carofiglio, Luca Muscariello, Dario Rossi, Claudio Testa, and Silvio

Valenti. 2013. Rethinking the low extra delay background transport (LEDBAT)

protocol. Computer Networks (2013).
[15] Andrey Chernov. 2019. On Some Approaches to Find Nash Equilibrium in

Concave Games. Automation and Remote Control 80 (05 2019), 964–988. https:

//doi.org/10.1134/S0005117919050138

[16] M. Dong, Qingxi Li, Doron Zarchy, Philip Brighten Godfrey, andMichael Schapira.

2015. PCC: Re-architecting Congestion Control for Consistent High Performance.

Proc. of NSDI (March 2015).

[17] MoDong, TongMeng, Doron Zarchy, Engin Arslan, Yossi Gilad, Brighten Godfrey,

and Michael Schapira. 2018. PCC Vivace: Online-Learning Congestion Control.

Proc. of NSDI (April 2018).
[18] Eyal Even-Dar, Yishay Mansour, and Uri Nadav. 2009. On the convergence

of regret minimization dynamics in concave games. In Proceedings of the 41st
Annual ACM Symposium on Theory of Computing, STOC 2009, Bethesda, MD,
USA, May 31 - June 2, 2009, Michael Mitzenmacher (Ed.). ACM, 523–532. http:

//doi.acm.org/10.1145/1536414.1536486

[19] Prateesh Goyal, Anup Agarwal, Ravi Netravali, Mohammad Alizadeh, and Hari

Balakrishnan. 2020. ABC: A Simple Explicit Congestion Controller for Wireless

Networks. Proc. of NSDI (February 2020).

[20] Yunhong Gu. 2005. UDT: a high performance data transport protocol. University
of Illinois at Chicago.

[21] S. Ha, I. Rhee, and L. Xu. 2008. CUBIC: A new TCP-friendly high-speed TCP

variant. ACM SIGOPS Operating Systems Review (2008).

[22] Sergiu Hart and Andreu Mas-Colell. 2015. Markets, correlation, and regret-

matching. Games and Economic Behavior 93 (2015), 42 – 58. https://doi.org/

10.1016/j.geb.2015.06.009

[23] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata, J. Wan-

derer, J. Zhou, andM. Zhu. 2013. B4: Experiencewith a globally-deployed software

defined WAN. ACM Computer Communication Review (September 2013).

[24] D. Katabi, M. Handley, and C. Rohrs. 2002. Congestion control for high bandwidth-

delay product networks. Proc. of ACM SIGCOMM (August 2002).

[25] Adam Langley, Alistair Riddoch, Alyssa Wilk, Antonio Vicente, Charles Krasic,

Dan Zhang, Fan Yang, Fedor Kouranov, Ian Swett, Janardhan Iyengar, et al. 2017.

The QUIC Transport Protocol: Design and Internet-Scale Deployment. In Proceed-
ings of the Conference of the ACM Special Interest Group on Data Communication.
ACM, 183–196.

[26] Q. Li, M. Dong, and P. Godfrey. 2015. Halfback: Running short flows quickly and

safely. Proc. of CoNEXT (November 2015).

[27] Shao Liu, Tamer Başar, and Ravi Srikant. 2008. TCP-Illinois: A loss-and delay-

based congestion control algorithm for high-speed networks. Performance Eval-
uation (2008).

[28] Radhika Mittal, Vinh The Lam, Nandita Dukkipati, Emily R. Blem, Hassan M. G.

Wassel, Monia Ghobadi, Amin Vahdat, Yaogong Wang, David Wetherall, and

David Zats. 2015. TIMELY: RTT-based Congestion Control for the Datacenter.

In Proceedings of the 2015 ACM Conference on Special Interest Group on Data
Communication, SIGCOMM 2015, London, United Kingdom, August 17-21, 2015,
Steve Uhlig, Olaf Maennel, Brad Karp, and Jitendra Padhye (Eds.). ACM, 537–550.

http://dl.acm.org/citation.cfm?id=2785956

[29] Akshay Narayan, Frank Cangialosi, Prateesh Goyal, Srinivas Narayana, Moham-

mad Alizadeh, and Hari Balakrishnan. 2017. The case for moving congestion

control out of the datapath. Proc. of HotNets (December 2017).

[30] P. Brighten Godfrey Michael Schapira Nathan Jay, Noga H. Rotman and Aviv

Tamar. 2019. A Deep Reinforcement Learning Perspective on Internet Congestion

Control. Proc. of ICML (2019).

[31] J. B. Rosen. 1965. Existence and Uniqueness of Equilibrium Points for Concave

N-Person Games. Econometrica 33 (July 1965), 520–534.

[32] Dario Rossi, Claudio Testa, Silvio Valenti, and Luca Muscariello. 2010. LEDBAT:

the new BitTorrent congestion control protocol. ICCCN (August 2010).

[33] S. Shalunov. 2009. Low Extra Delay Background Transport (LEDBAT). Draft.

https://tools.ietf .org/pdf/draft-ietf-ledbat-congestion-00.pdf

[34] S. Shalunov, G. Hazel, J. Iyengar, and M. Kuehlewind. 2012. Low Extra Delay Back-

ground Transport (LEDBAT). RFC 6817 (Experimental). http://www.ietf .org/

rfc/rfc6817.txt

[35] Kevin Spiteri, Rahul Urgaonkar, and Ramesh K Sitaraman. 2016. BOLA: Near-

optimal bitrate adaptation for online videos. Proc. IEEE INFOCOM (April 2016).

[36] Balajee Vamanan, Jahangir Hasan, and TN Vijaykumar. 2012. Deadline-aware

datacenter tcp (d2tcp). Proc. of ACM SIGCOMM (August 2012).

[37] Ravichandra Addanki Mehrdad Khani Prateesh Goyal Vikram Nathan, Vibhaalak-

shmi Sivaraman and Mohammad Alizadeh. 2019. End-to-end transport for video

QoE fairness. Proc. of ACM SIGCOMM (August 2019).

[38] B. White, J. Lepreau, L. Stoller, R. Ricci, G. Guruprasad, M. Newbold, M. Hibler,

C. Barb, and A. Joglekar. 2002. An integrated experimental environment for

distributed systems and networks. Proc. of OSDI (December 2002).

[39] Christo Wilson, Hitesh Ballani, Thomas Karagiannis, and Ant Rowtron. 2011.

Better never than late: Meeting deadlines in datacenter networks. Proc. of ACM
SIGCOMM (August 2011).

[40] K. Winstein and H. Balakrishnan. 2013. TCP ex Machina: Computer-Generated

Congestion Control. Proc. of ACM SIGCOMM (August 2013).

[41] K. Winstein, A. Sivaraman, and H. Balakrishnan. 2013. Stochastic Forecasts

Achieve High Throughput and Low Delay over Cellular Networks. Proc. of NSDI
(March 2013).

[42] F. Y. Yan, J. Ma, G. Hill, D. Raghavan, R. S. Wahby, P. Levis, and K. Winstein. 2018.

Pantheon: the training ground for Internet congestion-control research.

[43] Y. Zaki, T. Pötsch, J. Chen, L. Subramanian, and C. Görg. 2015. Adaptive con-

gestion control for unpredictable cellular networks. Proc. of ACM SIGCOMM
(August 2015).

APPENDIX
Appendices are supportingmaterial that has not been peer-reviewed.

A PROTEUS EQUILIBRIUM ANALYSIS
We consider a simple model of interaction between senders on

a bottleneck link. We show below that for any combination of

Proteus-P and Proteus-S senders competing over a single link the

induced equilibrium is unique. We leverage this to establish that

when only Proteus-P senders, or only Proteus-S senders, share the

link, the resulting outcome is fair. We leave the study of dynamics

of congestion control in more realistic models (e.g., that incorporate

stochastic packet arrivals), and of the impact of different parameter

configuration on equilibria when Proteus-P and Proteus-P senders

compete, to future research.

A.1 Notation
We let 𝑥𝑖 denote the sending rate of Proteus sender 𝑖 , C the bot-

tleneck capacity, and 𝑆 the total sending rate of all the senders

competing over a common bottleneck (𝑆 =
∑
𝑖 𝑥𝑖).

As in the proofs for fairness and convergence of PCC-Vivace [17]

(assuming tail drop queue), when the buffer is not empty, the RTT

gradient is captured by the expression

𝑑 (𝑅𝑇𝑇𝑖)
𝑑𝑡

=
𝑆 − C
C .

Proteus-S leverages RTT deviation as a signal for competition

with primary (Proteus-P) senders. Thus, the interesting scenario to

consider for the proof is when the buffer is deep enough for RTT

https://github.com/Dash-Industry-Forum/dash.js
http://github.com/bittorrent/libutp
https://github.com/netarch/PCC_QUIC
https://github.com/PCCproject/PCC-Uspace
https://datatracker.ietf.org/meeting/100/materials/slides-100-iccrg-ledbat-low-priority-tcp-congestion-control-in-windows-01
https://datatracker.ietf.org/meeting/100/materials/slides-100-iccrg-ledbat-low-priority-tcp-congestion-control-in-windows-01
http://www.ttmeng.net/pubs/vivace_proof.pdf
http://www.ttmeng.net/pubs/vivace_proof.pdf
https://techcommunity.microsoft.com/t5/Networking-Blog/Windows-Transport-converges-on-two-Congestion-Providers-Cubic/ba-p/339819
https://techcommunity.microsoft.com/t5/Networking-Blog/Windows-Transport-converges-on-two-Congestion-Providers-Cubic/ba-p/339819
https://books.google.co.il/books?id=97mrtf1TlK0C
https://doi.org/10.1145/1232919.1232926
https://doi.org/10.1134/S0005117919050138
https://doi.org/10.1134/S0005117919050138
http://doi.acm.org/10.1145/1536414.1536486
http://doi.acm.org/10.1145/1536414.1536486
https://doi.org/10.1016/j.geb.2015.06.009
https://doi.org/10.1016/j.geb.2015.06.009
http://dl.acm.org/citation.cfm?id=2785956
https://tools.ietf.org/pdf/draft-ietf-ledbat-congestion-00.pdf
http://www.ietf.org/rfc/rfc6817.txt
http://www.ietf.org/rfc/rfc6817.txt

SIGCOMM ’20, August 10–14, 2020, Virtual Event, USA Tong Meng, Neta R. Schiff, Brighten Godfrey, and Michael Schapira

deviations to be observed and the equilibrium resulted from the

interaction between different Proteus senders (P and/or S) does not

involve packet loss. Thus, to simplify exposition, we disregard the

loss terms in Proteus-P and Proteus-S utility functions in the analy-

sis below. Our formal arguments can be extended to incorporate

penalties for loss using the arguments in [6].

Proteus-P is hence expressed in the following form (with loss

term omitted):

𝑢𝑃 (𝑥𝑖) = 𝑥𝑡𝑖 − 𝑏 · 𝑥𝑖 ·𝑚𝑎𝑥
{
0,
𝑆 − C
C

}
.

We also derive the theoretical (simplified) representation of the

scavenger utility function. Note that in our theoretical model, RTT

deviation is induced by senders building or draining the buffer. In

that process, the difference between two consecutive RTT samples

observed by a Proteus-S sender 𝑖 (assumingMTU-sized data packets)

is

Δ𝑅𝑇𝑇 (𝑥𝑖) =
𝑀𝑇𝑈

𝑥𝑖
· 𝑑 (𝑅𝑇𝑇𝑖)

𝑑𝑡
.

Thus, RTTs exhibit arithmetic progression when the global sending

rate configuration is fixed, and sender 𝑖’s observed RTT (standard)

deviation at an MI takes the form

𝜎 (𝑅𝑇𝑇𝑖) =

√√
2 ·∑ ⌊𝑛𝑖/2⌋

𝑘=1
(𝑘 · Δ𝑅𝑇𝑇 (𝑥𝑖))2

𝑛𝑖

=

√
(𝑛𝑖 + 1) (𝑛𝑖 − 1)

12

· 𝑀𝑇𝑈
𝑥𝑖
·
����𝑑 (𝑅𝑇𝑇𝑖)𝑑𝑡

���� ,

where 𝑛𝑖 is the number of RTT samples in the corresponding MI.
8

The Proteus-S utility function (again, with the loss term omitted)

can now be expressed as

𝑢𝑆 (𝑥𝑖) = 𝑢𝑃 (𝑥𝑖) − 𝑑 · 𝑥𝑖 · 𝜎 (𝑅𝑇𝑇𝑖)

= 𝑥𝑡𝑖 − 𝑏 · 𝑥𝑖 ·max{0, 𝑆 − CC } − 𝑑 · 𝐴 · 𝑥𝑖 ·
|𝑆 − C|
C ,

where 𝐴 = 𝑀𝑇𝑈
𝑥𝑖
·
√
(𝑛𝑖 + 1) (𝑛𝑖 − 1)/12.

Since Proteus, similar to [16, 17, 30], employs an RTT-long mon-

itor interval, 𝑛𝑖 can be regarded as approximately linear in 𝑥𝑖 . Con-

sequently, 𝐴 can be regarded as a constant for the purpose of our

analysis.

A.2 Existence and Uniqueness of Equilibrium
We consider 𝑛 ≥ 0 Proteus-P senders and𝑚 ≥ 0 Proteus-S senders

competing over the same bottleneck link. We formulate the interac-

tion between these senders as a non-cooperative game 𝐺 , in which

the senders are the players, the strategy of each player is its choice

of sending rate, and the payoff for each player from a combination

of strategies (global configuration of sending rates) is as specified

by its (Proteus-P or Proteus-S) utility function. We prove below

that game 𝐺 has a unique equilibrium point. Our proof consists of

the following parts:

(1) We firstmake the simple observation that, in any equilibrium,

the total sending rate across all senders can be no less than

the capacity, i.e., 𝑆 ≥ C in all equilibria.

8
Without loss of generality, we show the expression when 𝑛𝑖 is an odd number.

(2) We then focus on the subgame 𝐺𝑆≥C , which is derived from

𝐺 by only permitting combinations of senders’ strategies for

which 𝑆 ≥ C. We prove that the global rate-configuration

is an equilibrium of 𝐺𝑆≥C if an only if it is an equilibrium

of 𝐺 . Thus, we can restrict our attention to analyzing the

equilibria of 𝐺𝑆≥C .
(3) Lastly, we prove that the restricted game 𝐺𝑆≥C falls within

the game-theoretic category of strictly socially concave games

[15, 22], for which a unique equilibrium is guaranteed to ex-

ist [17, 18, 31]. We then conclude that the original game 𝐺

is also guaranteed to have a unique equilibrium.

Observation: In any Nash equilibrium of the game 𝐺 , 𝑆 ≥ C.
To see why this is so, suppose, for point of contradiction, the

existence of an equilibrium such that 𝑆 < C. Let 𝜖 = C − 𝑆 . Since in
this equilibrium the total sending rate is strictly less than the link

capacity, any of the senders can strictly improve its utility by in-

creasing its rate by less than 𝜖 (attaining better throughput without

increasing the RTT while still satisfying 𝑆 < C)—a contradiction to

this being an equilibrium.

We next prove the following lemma.

Lemma A.1. A configuration of sending rates is an equilibrium of
𝐺 if and only if it is an equilibrium of 𝐺𝑆≥C .

Proof. Since in any equilibrium of 𝐺 , 𝑆 ≥ 𝐶 (see the above

observation), and since 𝐺 allows a strict superset of the strategies

available in 𝐺𝑆≥C , any equilibrium in 𝐺 is an equilibrium also in

𝐺𝑆≥C .
Now, consider a configuration of sending rates 𝑥∗ which is an

equilibrium in 𝐺𝑆≥C . We first handle the case that 𝑆 > C. Let
𝜖 = 𝑆 − C. Suppose, for point of contradiction, that 𝑥∗ is not an
equilibrium in𝐺 . Hence, some sender 𝑖 can increase its utility by

increasing or decreasing its rate by a certain amount 𝛿 . As 𝑥∗ is
an equilibrium in 𝐺𝑆≥C , the rate change 𝛿 must be outside the

strategy space available in 𝐺𝑆≥C , i.e., it is a rate decrease where
𝛿 > 𝜖 . However, since the Proteus (P and S) utility functions are

continuous, 𝑖 must be able to improve its utility also by decreasing

its rate by less than 𝜖 . Observe, however, that this contradicts 𝑥∗

being an equilibrium in𝐺𝑆≥C (since the rate-configuration reached

after 𝑖’s rate change is also in 𝐺𝑆≥C).
Next, consider the case that 𝑥∗ is an equilibrium in 𝐺𝑆≥C for

which 𝑆 = C. Since this is an equilibrium in 𝐺𝑆≥C , no sender can

increase its utility by increasing its rate. In addition, no sender

can increase its utility by decreasing its rate, because all terms in

its utility would decrease or remain the same: sending rate would

decrease, the latency gradient term would remain at zero since

Proteus (P and S) utility functions do not reward negative latency

gradients, and RTT deviation penalty would either remain at zero

or become negative. Therefore, no sender can improve its utility

and 𝑥∗ is also an equilibrium in 𝐺 . □

Lemma A.2. 𝐺𝑆≥C is strictly socially concave.

Proof. With 𝑆 ≥ 𝐶 , the Proteus-S and Proteus-P utility func-

tions take the following form:

𝑢𝑆 (𝑥𝑖) = 𝑥𝑡𝑖 − (𝑏 + 𝑑 · 𝐴) · 𝑥𝑖
(
𝑆 − C
C

)
,

PCC Proteus: Scavenger Transport And Beyond SIGCOMM ’20, August 10–14, 2020, Virtual Event, USA

𝑢𝑃 (𝑥𝑖) = 𝑥𝑡𝑖 − 𝑏 · 𝑥𝑖
(
𝑆 − C
C

)
.

To prove that𝐺𝑆≥𝐶 is strictly socially concave we show that the

following three conditions are satisfied. See [18] for an exposition

of (strictly) socially concave games.

(1) Each individual sender 𝑖’s utility function is strictly concave

in its sending rate 𝑥𝑖 .

(2) Each individual sender 𝑖’s utility function is convex in the

other senders’ rates 𝑥−𝑖 =
∑

𝑗≠𝑖 𝑥 𝑗 .

(3) The sum of sender utilities

∑
𝑖∈𝑃𝑆

⋃
𝑃𝑃 𝑢 (𝑥𝑖), where 𝑃𝑆 and

𝑃𝑃 are all scavenger and all primary senders, respectively, is

concave in the combination of all senders’ rates 𝑋 .

We first show that the utility function𝑢𝑆 (𝑥𝑖) of Proteus-S sender
𝑖 is concave in 𝑥𝑖 . The first derivative of 𝑢𝑆 (𝑥𝑖) is

𝜕𝑢𝑆 (𝑥𝑖)
𝜕𝑥𝑖

= 𝑡 · 𝑥𝑡−1𝑖 − (𝑏 + 𝑑 · 𝐴)
(
𝑆 − C
C + 𝑥𝑖C

)
.

Its second derivative is

𝜕2𝑢𝑆 (𝑥𝑖)
𝜕(𝑥𝑖)2

= 𝑡 (𝑡 − 1)𝑥𝑡−2𝑖 − 2

C (𝑏 + 𝑑 · 𝐴) .

Since 0 < 𝑡 < 1 this second derivative is negative, so 𝑢𝑆 (𝑥𝑖) is
concave in 𝑥𝑖 .

Then, 𝑢𝑃 (𝑥𝑖)’s concavity in 𝑥𝑖 follows from the fact that when

𝑆 ≥ 𝐶 , 𝑢𝑃 (𝑥𝑖) is identical to PCC Vivace’s utility function [17],

already shown to be concave in 𝑥𝑖 [6].

The utility function of each sender 𝑖 , whether using Proteus-P or

Proteus-S, is convex in 𝑥−𝑖 , as derived from the fact that

𝜕𝑢2

𝑆
(𝑥𝑖)

(𝜕𝑥−𝑖)2 = 0

and

𝜕𝑢2

𝑃
(𝑥𝑖)

(𝜕𝑥−𝑖)2 = 0.

Last, we show that the function 𝑔(𝑋) = ∑
𝑖∈𝑃𝑆

⋃
𝑃𝑃 𝑢 (𝑥𝑖) is con-

cave in the combination of all senders’ rates 𝑋 :

𝑔(𝑋) :=
∑
𝑖∈𝑃𝑆
((𝑥𝑖)𝑡 − (𝑏 + 𝑑 · 𝐴) · 𝑥𝑖 (

𝑆 − C
C))

+
∑
𝑖∈𝑃𝑝
((𝑥𝑖)𝑡 − 𝑏 · 𝑥𝑖 (

𝑆 − C
C))

=
∑

𝑖∈𝑃𝑆
⋃

𝑃𝑃

((𝑥𝑖)𝑡) − (𝑆 · 𝑏 +𝑇 · 𝑑 · 𝐴) (
𝑆 − C
C)) ,

where 𝑇 is the total sending rate for Proteus-S senders, i.e., 𝑇 =∑
𝑖∈𝑃𝑆 (𝑥𝑖).
On that basis, 𝑔(𝑋)’s first derivative with respect to a Proteus-S

sender 𝑖’s rate 𝑥𝑖 is

𝜕𝑔(𝑋)
𝜕𝑥𝑖

= 𝑡 · 𝑥𝑡−1𝑖 − 𝑏 (𝑆 − CC + 𝑆C) − (𝑑 · 𝐴) (
𝑆 − C
C + 𝑇C) ,

and the second derivative with respect to the same sender 𝑖 is

𝜕2𝑔(𝑋)
(𝜕𝑥𝑖)2

= 𝑡 (𝑡 − 1)𝑥𝑡−2𝑖 − 2𝑏 + 𝑑 · 𝐴C < 0 .

Besides, the second derivative with respect to another Proteus-S

sender 𝑗 is

𝜕2𝑔𝑖 (𝑋)
𝜕𝑥𝑖 𝜕𝑥 𝑗

= −2 · 𝑏 + 𝑑 · 𝐴C < 0 ,

and the second derivative with respect to a Proteus-P sender 𝑗 is

𝜕2𝑔𝑖 (𝑋)
𝜕𝑥𝑖 𝜕𝑥 𝑗

= −2𝑏 + 𝑑 · 𝐴C < 0 .

The second derivatives of 𝑔(𝑋) when the first derivatives are with

respect to Proteus-P senders can similarly be shown to be negative.

Since all second derivatives are negative, the Hessian is negative

semidefinite and so we conclude that 𝑔(𝑋) is concave in 𝑋 [9].

We have shown that the three conditions are satisfied and so

𝐺𝑆≥𝐶 is strictly socially concave. □

Strictly socially concave games have a unique equilibrium [17, 18,

31]. This, combined with Lemma A.1, implies that 𝐺 has a unique

equilibrium.

The uniqueness of equilibria immediately implies the fairness in

symmetric case as in Theorem 4.1&4.2:

Theorem 4.1 When only Proteus-P senders compete over a

bottleneck link the unique equilibrium is fair.

Theorem 4.2 When only Proteus-S senders compete over a

bottleneck link the unique equilibrium is fair.

These two theorems follow from the fact that if some sender 𝑖’s

rate in equilibrium 𝑥𝑖 is different than another sender 𝑗 ’s rate 𝑥 𝑗 ,

then the global rate configuration in which 𝑖 sends at rate 𝑥 𝑗 and

𝑗 sends at rate 𝑥𝑖 must be a different equilibrium. This, however,

contradicts the uniqueness of the equilibrium.

B TUNING TARGET EXTRA DELAY CANNOT
SAVE LEDBAT

When LEDBATwas first proposed as an IETF draft [33], it employed

an extra delay target of 25𝑚𝑠 , which is much smaller than 100𝑚𝑠

today. Based on our analysis in §4.2, using 25𝑚𝑠 extra delay as target

should be an earlier congestion signal than 100𝑚𝑠 . However, using

similar sets of experiments in §6, we demonstrate that both setups

fail to serve as robust scavenger against the evaluated primary

protocols (LEDBAT-25 and LEDBAT-100 are used to distinguish

between two setups).

B.1 Performance Goal
First, as a congestion controller itself, LEDBAT-25 also needs large

buffer to achieve high utilization. In the meanwhile, it keeps the

buffer full until the buffer is large enough to accommodate 25𝑚𝑠

additional delay.

Using the same Emulab bottleneck as in Fig. 3, we have the

following updated Fig. 15, where LEDBAT-25 and LEDBAT-100

have similar performance.

Similarly, provided 2 BDP buffer under an Emulab bottleneck of

50 Mbps bandwidth and 30 ms RTT, Fig. 16 shows that LEDBAT-25

has almost identical performance when there exists random loss.

This is because they both inherit the design of traditional TCP, i.e.,
correlating packet losses with in-network congestion.

Furthermore, since with a smaller target extra delay, LEDBAT-

25 has even worse multi-flow fairness, because a specific buffer

can now accommodate the sum of delay targets of more LEDBAT-

25 senders. To validate that, we repeat the multiflow competition

experiment as in Fig. 5 with LEDBAT-25. As expected, in Fig.17,

LEDBAT-25’s fairness index is lower than LEDBAT-100. With 𝑛 =

10, the Jain’s index of LEDBAT-25 is 38.7% smaller than Proteus-S.

SIGCOMM ’20, August 10–14, 2020, Virtual Event, USA Tong Meng, Neta R. Schiff, Brighten Godfrey, and Michael Schapira

0

10

20

30

40

50

 1 10 100 1000

T
h
ro

u
g
h
p
u
t

(M
b
p
s)

Buffer Size (KB)

Proteus-S

LEDBAT-25

LEDBAT-100

CUBIC

BBR

Proteus-P

COPA

Vivace

(a) Throughput

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700 800 900

9
5

-t
h
 I
n
fl
a
ti

o
n
 R

a
ti

o

Buffer Size

Proteus-S

LEDBAT-25

LEDBAT-100

CUBIC

BBR

Proteus-P

COPA

Vivace

(b) Latency inflation

Figure 15: Bottleneck saturation with varying buffer size

1

10

50

 0 0.01 0.02 0.03 0.04 0.05 0.06

T
h
ro

u
g

h
p

u
t

(M
b

p
s)

Random Loss Rate

Proteus-S
LEDBAT-25
LEDBAT-100
CUBIC
BBR
Proteus-P
COPA
Vivace

Figure 16: Random loss tolerance

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 3 4 5 6 7 8 9 10

Ja
in

's
 F

a
ir

n
e
ss

 I
n
d
e
x

Number of Flows

Proteus-S
LEDBAT-25
LEDBAT-100
CUBIC
BBR
Proteus-P
COPA
Vivace

Figure 17: Fairness with competing flows

To further demonstrate the issue intuitively, we show the through-

put across time with 𝑛 = 4 in Fig. 18. For LEDBAT-25, each new flow

dominates all previous flows because it observes larger “minimum”

0
20
40
60
80

0 100 200 300 400 500

 T

h
ro

u
g

h
p

u
t

(M
b
p

s)

Time (s)

LEDBAT-25

0 100 200 300 400 500

Time (s)

LEDBAT-100

20
40
60
80

Proteus-P

Proteus-S

Figure 18: 4-Flow Competition

0

20

40

60

80

100

0 20 40 60 80 100P
ri

m
a
ry

 T
h
ro

u
g

h
p

u
t

R
a
ti

o
 (

%
)

Capacity Utilization (%)

BBR
CUBIC
COPA
Proteus-P
Vivace

Buffer: 75KB 375KB

Figure 19: LEDBAT-25 as a Scavenger Competing with Pri-
mary Protocols

one-way delay. In the end, the last flowwill grab almost all the band-

width. LEDBAT-100 has better fairness than LEDBAT-25, but the

first flow still has the lowest bandwidth share. Both Proteus variants

are much more stable and fair, with Proteus-S fluctuating somewhat

more than Proteus-P because Proteus-S senders back off (and then

recover) in competition more conservatively and frequently.

B.2 Yielding Goal
Second, LEDBAT-25, though less aggressive than LEDBAT-100, is

still not robust enough as a scavenger against many primary proto-

cols, especially recently-proposed latency-sensitive protocols. To

show with, we use the same 50Mbps bandwidth, 30 ms RTT bottle-

neck with two buffer setups, and conduct the two-flow competition

experiment, letting LEDBAT-25 compete with BBR, CUBIC, COPA,

Proteus-P, and PCC.

The following is the performance summary for LEDBAT in

Fig. 19.

• LEDBAT-25 fails to yield to CUBIC with 75 KB buffer.

• Regardless of the buffer size, compared with LEDBAT-25, the

performance of Proteus-S (Fig. 6(b)) is 24% higher when the

primary protocol is COPA and 2× higher when the primary

protocol is Proteus-P.

• Similar to LEDBAT-100, LEDBAT-25 is even more aggressive

against PCC Vivace and Proteus-P.

Fig. 20 shows the impact of LEDBAT-25 on RTT of primary

protocols. Although COPA can still achieve 73.3% throughput ratio

competing with LEDBAT-25 (as in Fig. 6(d)), that comes at the cost

of 2.2× RTT.

PCC Proteus: Scavenger Transport And Beyond SIGCOMM ’20, August 10–14, 2020, Virtual Event, USA

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
u
m

u
la

ti
v
e
 F

ra
ct

io
n

Primary Flow Throughput Ratio

vs Proteus-S
vs LEDBAT-25
vs LEDBAT-100

(a) BBR as Primary

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
u
m

u
la

ti
v
e
 F

ra
ct

io
n

Primary Flow Throughput Ratio

vs Proteus-S
vs LEDBAT-25
vs LEDBAT-100

(b) CUBIC as Primary

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
u
m

u
la

ti
v
e
 F

ra
ct

io
n

Primary Flow Throughput Ratio

vs Proteus-S
vs LEDBAT-25
vs LEDBAT-100

(c) COPA as Primary

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
u
m

u
la

ti
v
e
 F

ra
ct

io
n

Primary Flow Throughput Ratio

vs Proteus-S
vs LEDBAT-25
vs LEDBAT-100

(d) Proteus-P as Primary

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
u
m

u
la

ti
v
e
 F

ra
ct

io
n

Primary Flow Throughput Ratio

vs Proteus-S
vs LEDBAT-25
vs LEDBAT-100

(e) PCC Vivace as Primary

Figure 22: Primary Throughput Ratio in Real-World WiFi

1

2

3

CUBIC BBR COPA Proteus-P PCC

9
5

-t
h
 R

T
T
 R

a
ti

o

Primary Protocol

Proteus-S
LEDBAT-25
LEDBAT-100
Proteus-P
COPA

Figure 20: Scavenger’s Impact onCongestionRTT (including
LEDBAT-25)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
u
m

u
la

ti
v
e
 F

ra
ct

io
n

Normalized Throughput

Proteus-S
LEDBAT-25
LEDBAT-100
CUBIC
BBR
Proteus-P
COPA
Vivace

Figure 21: Single Flow Throughput on WiFi (include
LEDBAT-25)

B.2.1 WiFi Performance. With a smaller target extra delay, LEDBAT-

25 unfortunately is also more sensitive to RTT noise. Fig. 21 shows

LEDBAT-25 among our tests of single-flow throughput on real-

world WiFi (our laptop to AWS servers). Its throughput CDF is

worse than LEDBAT-100 and Proteus-S.

When acting as scavenger sender on the same WiFi test configu-

rations, LEDBAT-25, as expected, is better than LEDBAT-100, but

still falls behind Proteus-S, as shown in Figure 22. Specifically, when

competing with Proteus-S, the median throughput ratios of COPA,

Proteus-P, and PCC Vivace are respectively 5.2%, 24.7%, and 38.6%

higher than what they achieve when competing with LEDBAT-25.

B.3 Summary
The key reason that LEDBAT-25 still cannot be a robust scavenger

is that LEDBAT uses a late signal for flow competition. Therefore, it

is easy for it to have much higher aggressiveness than most latency-

aware protocols, such as COPA, PCC Vivace, and Proteus-P.

	Abstract
	1 Introduction
	2 Preliminaries and Motivation
	2.1 When Does Scavenging Makes Sense?
	2.2 Signaling Scavengers to Yield
	2.3 Motivation for Flexibility

	3 Proteus Design Overview
	4 Proteus Utility Design
	4.1 Primary Utility Function
	4.2 Competition Indicator: RTT Deviation
	4.3 Scavenger Utility Function
	4.4 Proteus-H: Hybrid Mode

	5 Handling Latency Noise
	6 Evaluation
	6.1 Scavenger-Only Performance
	6.2 Yielding to Primary Flows
	6.3 Flexibility of Hybrid Utility

	7 Discussion
	7.1 Real-World Adoption
	7.2 Robustness in Noise Tolerance

	8 Related Work
	9 Conclusion
	References
	A Proteus Equilibrium Analysis
	A.1 Notation
	A.2 Existence and Uniqueness of Equilibrium

	B Tuning Target Extra Delay Cannot Save LEDBAT
	B.1 Performance Goal
	B.2 Yielding Goal
	B.3 Summary

