
Load Balancing in Dynamic Structured P2P Systems
Brighten Godfrey Karthik Lakshminarayanan Sonesh Surana Richard Karp Ion Stoica�

pbg, karthik, sonesh, karp, istoica � @cs.berkeley.edu

Abstract— Most P2P systems that provide a DHT abstraction
distribute objects randomly among “peer nodes” in a way that
results in some nodes having �������
	��� times as many objects
as the average node. Further imbalance may result due to non-
uniform distribution of objects in the identifier space and a
high degree of heterogeneity in object loads and node capacities.
Additionally, a node’s load may vary greatly over time since the
system can be expected to experience continuous insertions and
deletions of objects, skewed object arrival patterns, and continuous
arrival and departure of nodes.

In this paper, we propose an algorithm for load balancing in
such heterogeneous, dynamic P2P systems. Our simulation results
show that in the face of rapid arrivals and departures of objects
of widely varying load, our algorithm achieves load balancing
for system utilizations as high as 90% while moving only about
8% of the load that arrives into the system. Similarly, in a
dynamic system where nodes arrive and depart, our algorithm
moves less than 60% of the load the underlying DHT moves
due to node arrivals and departures. Finally, we show that
our distributed algorithm performs only negligibly worse than a
similar centralized algorithm, and that node heterogeneity helps,
not hurts, the scalability of our algorithm.

I. INTRODUCTION

The last several years have seen the emergence of a class of
structured peer-to-peer systems that provide a distributed hash
table (DHT) abstraction ([1], [2], [3], [4]). In such structured
systems, a unique identifier is associated with each data item
and each node in the system. The identifier space is partitioned
among the nodes that form the peer-to-peer (P2P) system,
and each node is responsible for storing all the items that
are mapped to an identifier in its portion of the space. Thus,
the system provides an interface consisting of two functions:�������������������
 "! , which stores an item, associating with it a given
identifier ��� ; and # �
�������$! which retrieves the item with the
identifier ��� .

Consider a system with % nodes. If node and item identifiers
are randomly chosen as assumed in [1], [2], [3], [4], there is a& ��')(+* % ! imbalance factor in the number of items stored at a
node. Furthermore, if applications associate semantics with the
item IDs, the imbalance factor can become arbitrarily bad since
IDs would no longer be uniformly distributed. For example, a
database application may wish to store all tuples (data items) of
a relation according to the primary key using the tuple keys as
IDs. This would allow the application to efficiently implement
range querying (i.e., finding all items with keys in a given
interval) and sorting operations, but would assign all the tuples
to a small region of the ID space. In addition, the fact that
in typical P2P systems, the capabilities of nodes (storage and
bandwidth) can differ by multiple orders of magnitude further
aggravates the problem of load imbalance.

Several solutions have been proposed to address the load
balancing problem [2], [5], [6]. However, these all assume that
the system is static and most assume that the IDs of both nodes
and items are uniformly distributed. In this paper, we present a
solution for a system in which these assumptions do not hold.
In particular, we consider a system in which

, data items are continuously inserted and deleted,, nodes join and depart the system continuously, and, the distribution of data item IDs and item sizes can be
skewed.

Our algorithm uses the concept of virtual servers previously
proposed in [7]. A virtual server represents a peer in the DHT;
that is, the storage of data items and routing happen at the
virtual server level rather than at the physical node level. A
physical node hosts one or more virtual servers. Load balancing
is achieved by moving virtual servers from heavily loaded
physical nodes to lightly loaded physical nodes.

In this paper we make the following contributions:

1) We propose an algorithm which to the best of our
knowledge is the first to provide dynamic load balancing
in heterogeneous, structured P2P systems.

2) We study the proposed algorithm by using extensive
simulations over a wide set of system scenarios and
algorithm parameters.

Our main results are as follows:

1) Our simulations show that in the face of object arrivals
and departures and system utilizations as high as 90%,
the algorithm achives a good load balance while moving
only about 8% of the load that arrives into the system.
Furthermore, in a dynamic system where nodes arrive and
depart, our algorithm moves less than 60% as much load
as the underlying DHT moves as a result of node arrivals
and departures.

2) Our algorithm produces a 99.9th percentile node utiliza-
tion less than 3% higher than a similar fully centralized
load balancer, showing that the price of decentralization
is negligible.

3) Heterogeneity of node capacity allows us to use fewer
virtual servers per node than in the equal-capacity case,
thus increasing the scalability of the system.

The rest of the paper is organized as follows. In Section II, we
formulate the load balancing problem more explicitly and dis-
cuss what resources we may balance effectively. In Section III,
we discuss background material, including our use of virtual

servers and our previous load balancing schemes given in [5].
In Section IV, we describe our algorithm for load balancing
in dynamic P2P systems, and we evaluate its performance
through simulation in Section V. We discuss future directions
in Section VI, related work in Section VII, and conclude in
Section VIII.

II. PROBLEM FORMULATION AND MOTIVATION

A. Definitions and goals

Each object (data item) that enters the system has an associ-
ated load, which might represent, for example, the number of
bits required to store the object, the popularity of the object,
or the amount of processor time needed to serve the object.
Thus, we do not assume a particular resource, but we assume
that there is only one bottleneck resource in the system, leaving
multi-resource balancing to future work.

Each object also has a movement cost, which we are charged
each time we move the object between nodes. We assume this
cost is the same regardless of which two nodes are involved in
the transfer. One can think of this cost as being proportional to
the object’s storage size. An object’s load may or may not be
related to its movement cost.

The load ��� of a node � at a particular time is the sum of
the loads of the objects stored on that node at that time. Each
node � has a fixed capacity � ����� , which might represent, for
example, available disk space, processor speed, or bandwidth.
A node’s utilization � � is the fraction of its capacity that is
used: � �	� � ��
 � � . The system utilization � is the fraction of the
system’s total capacity which is used:

� �

nodes � � �
nodes � � ���

When � � ��� , we say that node � is overloaded; otherwise
node � is said to be underloaded. We use light and heavy to
informally refer to nodes of low or high utilization, respectively.

A load balancing algorithm should strive to achieve the
following (often conflicting) goals:, Minimize the load imbalance. To provide the best quality

of service, every node would have the same utilization.
Furthermore, for resources with a well-defined cliff in the
load-response curve, it is of primary importance that no
node’s load is above the load at which the cliff occurs. We
can take this point to be the capacity of the node., Minimize the amount of load moved. Moving a large
amount of load uses bandwidth and may be infeasible if a
node’s load changes quickly in relation to the time needed
to move objects.

We formalize these goals in Section V.

B. Relevance of load balancing

In this subsection, we answer two natural questions with
respect to the relevance of load balancing in the context of
two particular resources: storage and bandwidth.

Is load balancing of storage feasible? This question is
raised by the huge disparity between the storage capacity
of the end-hosts and the access bandwidth in a wide area
network. Even if the end-hosts have broadband connectivity
(cable modem or DSL), it may take more than one hour to
transfer 1 GB of data, which is not a large amount of data
considering the fact that notebooks today come with 20-30 GB
disks.1 Thus in many situations the amount of data movement
necessary to significantly improve the load balance might not
be achievable quickly enough. In spite of this fact, we believe
that it is feasible to balance storage in other contexts in which
DHTs are useful, such as in data centers with thousands or tens
of thousand of machines connected by very high speed network
connections (e.g., ��� Gbps).

Why use load balancing for bandwidth? For the purposes
of relieving hot-spots, an alternative to load balancing is
replication (caching). Why not replicate a popular data item
instead of shifting sole responsibility for the popular item to
a more powerful node? Replication, though a good solution in
the case of immutable data, would require complex algorithms
to maintain data consistency in the case of mutable data. Fur-
thermore, many peer-to-peer systems are highly heterogeneous.
The uplink capacity of a home user and the uplink capacity of a
host on a university network can differ by as much as two orders
of magnitude. Thus, moving a data item to a well-connected
machine would be equivalent to generating and maintaining
as many as 100 replicas of that data item, which may add
significant overhead. Finally, we note that replication and load
balancing are orthogonal and one can combine them to improve
system performance.

III. BACKGROUND

In this section, we argue for our design decision to use virtual
servers as a fundamental unit of load balancing, and describe
our earlier load balancing schemes on which the algorithm of
this paper is based.

A. Use of virtual servers

One of the difficulties of load balancing in DHTs is that
the load balancer has little control over where the objects are
stored. Most DHTs use consistent hashing to map objects onto
nodes [8]: both objects and nodes in the system are assigned
unique IDs in the same identifier space, and an object is
stored at the node with the “closest” ID in the space. This
associates with each node a region of the ID space for which
it is responsible. More generally, if we allow the use of virtual
servers, a node may have multiple IDs and therefore owns a
set of noncontiguous regions.

Under the assumption that we preserve the use of consistent
hashing, the load balancer is restricted to moving load by either
(1) remapping objects to different points in the ID space, i.e.,

1This is actually an underestimate. One hour corresponds to a
bottleneck bandwidth of 1.2 Mbps which is much higher than the
uplink bandwidth of DSL and cable modem connections.

changing objects’ IDs,2 or (2) changing the region(s) associated
with a node, i.e., changing nodes’ IDs.

However, since items are queried by their IDs, changing the
ID of an object would make it difficult to locate that object
subsequently. Furthermore, some applications compute the ID
of an object by hashing its content [7], thus rendering its ID
static.

Thus we must change the set of regions associated with a
node. Since we wish to avoid large load movement, we need to
be able to remove a small fraction of the ID space associated
with a node. The design space here is not small and we do not
claim that our choice is the only reasonable one. However, our
choice is a simple one: we reassign an entire region from one
node to another, but ensure that the number of regions (virtual
servers) per node is large enough that a single region is likely
to represent only a small fraction of a node’s load.

One drawback of this approach is that if there are an average
of virtual servers per node, the per-node routing state
increases by a factor of since a node must maintain the
links associated with each of its virtual servers (but in Chord,
lookup path length does not increase3). However, as we will
see in Section V-D, we need a relatively modest number of
virtual servers per node (e.g., � ')(+* %) to achieve good
load balancing and substantially fewer when node capacities
are heterogeneous. We believe this overhead is acceptable in
practice.

One of the main advantages of using virtual servers for
balancing the load is that this approach does not require any
changes to the underlying DHT. Indeed, the transfer of a
virtual server can be implemented simply as a peer leaving
and another peer joining the system. The ID-to-peer (i.e., ID-
to-virtual server) and ID-to-object mappings that the underlying
DHT performs are unaffected. If a node leaves the system, its
share of identifier space is taken over by other nodes which
are present in the system just as the underlying DHT would
do. In the case of Chord [7], each virtual server � of a node
that leaves the system would be taken over by a node that is
responsible for a virtual server �

�
which immediately succeeds

� in the identifier space. Similarly, when a node joins, it picks random points in the ID space and splits the virtual servers
there, thereby acquiring virtual servers.

We assume that there are external methods to make sure that
node departures do not cause loss of data objects. In particular,
we assume that there is replication of data objects as proposed

2Another approach would be to use indirection: if a large object is
hashed onto a heavy node then store only a pointer at the heavy node,
and store the object at a light node. However, this approach does not
remap responsibility for the object pointer and so would not help when
objects are small (e.g., tuples in a database relation). Furthermore,
indirection adds complexity and is orthogonal to our solution.

3We can compensate for the fact that there are now � � peers by
using shortcut routing as proposed in [7]: a virtual server may use
the outlinks of any of its physical node’s virtual servers. To see why
this offsets the factor � increase in the number of peers, note that we
expect � virtual servers to lie between each of the � virtual servers
belonging to a particular node.

in CFS [7], and departure of a node would result in the load
being transferred to the neighbors in the identifier space.

B. Static load balancing techniques

In a previous paper, we introduced three simple load balanc-
ing schemes that use the concept of virtual servers for static
systems [5]. Since the algorithm presented in this paper is a
natural extension of those schemes, we briefly review them
here. The schemes differ primarily in the number and type of
nodes involved in the decision process of load balancing.

In the simplest scheme, called one-to-one, each lightly loaded
node � periodically contacts a random node � . If � is heavily
loaded, virtual servers are transferred from � to � such that �
becomes light without making � heavy.

The second scheme, called one-to-many, allows a heavy node
to consider more than one light node at a time. A heavy node�

examines the loads of a set of light nodes by contacting a
random directory node to which a random set of light nodes
have sent their load information. Some of

�
’s virtual servers

are then moved to one or more of the lighter nodes registered
in the directory.

Finally, in the many-to-many scheme each directory main-
tains load information for a set of both light and heavy nodes.
An algorithm run by each directory decides the reassignment
of virtual servers from heavy nodes registered in that directory
to light nodes registered in that directory. This knowledge of
nodes’ loads, which is more centralized than in the first two
schemes, can be expected to provide a better load balance.
Indeed, our results showed that the many-to-many technique
performs the best.

Our new algorithm presented in the next section combines
elements of the many-to-many scheme (for periodic load bal-
ancing of all nodes) and of the one-to-many scheme (for emer-
gency load balancing of one particularly overloaded node).

IV. LOAD BALANCING ALGORITHM

The basic idea of our load balancing algorithm is to store
load information of the peer nodes in a number of directories
which periodically schedule reassignments of virtual servers
to achieve better balance. Thus we essentially reduce the
distributed load balancing problem to a centralized problem
at each directory.

Each directory has an ID known to all nodes and is stored
at the node responsible for that ID. Each node � initially
chooses a random directory and uses the DHT lookup protocol
to report to the directory (1) the loads ����� � �����

� �	��
 of the virtual
servers for which � is responsible and (2) � ’s capacity � � . Each
directory collects load and capacity information from nodes
which contact it. Every � seconds, it computes a schedule of
virtual server transfers among those nodes with the goal of
reducing their maximum utilization to a parameterized periodic
threshold �� . After completing a set of transfers scheduled by
a directory, a node chooses a new random directory and the
process repeats.

When a node � ’s utilization � � � � �
 � � jumps above a
parameterized emergency threshold �� , it immediately reports
to the directory � which it last contacted, without waiting for � ’s
next periodic balance. The directory then schedules immediate
transfers from � to more lightly loaded nodes.

More precisely, each node � runs the following algorithm.

Node(time period � , threshold ��), Initialization: Send � � � ,
� �	��� � � ���

� �	��
�� ! to Ran-
domDirectory(), Emergency action: When � � jumps above �� :

1) Repeat up to twice while � � � � :
2) ��� RandomDirectory()
3) Send � � � ,

� �	��� , � ��� , ���
	� ! to �
4) PerformTransfer � � � � � ! for each transfer

��
 � � scheduled by �
, Periodic action: Upon receipt of list of transfers from

a directory:

1) PerformTransfer � � � � � ! for each transfer
��
 � �

2) Report � � � ,
� � � � , ��� � , � �
	� ! to RandomDirec-

tory()

In the above pseudocode, RandomDirectory() selects
two random directories and returns the one to which fewer
nodes have reported since its last periodic balance. This reduces
the imbalance in number of nodes reporting to directories.
PerformTransfer � � � � � ! transfers virtual server � to node
� � if it would not overload � � , i.e. if � ���� �	��� � ��� . Thus a
transfer may be aborted if the directory scheduled a transfer
based on outdated information (see below).

Each directory runs the following algorithm.

Directory(time period � , thresholds �� � �), Initialization: � � � �, Information receipt and emergency balancing: Upon
receipt of � � � � � � � �	��� � � ���

� �	�
	� ! from node � :

1) � � �	���
2) If � � � � :
3) � ������� � # � � � ��� ReassignVS � � � � !
4) Schedule transfers according to � ������� � # � � � �, Periodic balancing: Every � seconds:

1) � ������� � # � "� � ��� ReassignVS � � � � !
2) Schedule transfers according to � ������� � # � � � �
3) � � � �

The subroutine ReassignVS, given a threshold and
the load information � reported to a directory, computes a
reassignment of virtual servers from nodes with utilization
greater than to those with utilization less than . Since
computing an optimal such reassignment (e.g. one which min-
imizes maximum node utilization) is NP-complete, we use a
simple greedy algorithm to find an approximate solution. The

algorithm runs in � �� ' (* ! time, where is the number of
virtual servers that have reported to the directory.

ReassignVS(Load & capacity information � , threshold)

1) ��� � !"� � �
2) For each node �$#%� , while � �
 � � � , remove the

least loaded virtual server on � and move it to �&� � ! .
3) For each virtual server �'# ��� � ! , from heaviest to

lightest, assign � to the node � which minimizes� � � � � � !
 � � .
4) Return the virtual server reassignment.

We briefly discuss several important design issues.
Periodic vs. emergency balancing. We prefer to schedule

transfers in large periodic batches since this gives Reas-
signVS more flexibility, thus producing a better balance.
However, we do not have the luxury to wait when a node
is (about to be) overloaded. In these situations, we resort
to emergency load balancing. See Section V-A for a further
discussion of these issues.

Choice of parameters. We set the emergency balancing
threshold � to � so that load will be moved off a node when
load increases above its capacity. We compute the periodic
threshold � dynamically based on the average utilization (� of
the nodes reporting to a directory, setting � � � � � (� !
�) . Thus
directories do not all use the same value of � . As the names
of the parameters suggest, we use the same time period � be-
tween nodes’ load information reports and directories’ periodic
balances. These parameters control the tradeoff between low
load movement and low quality of balance: intuitively, smaller
values of � , � , and �� provide a better balance at the expense
of greater load movement.

Stale information. We do not attempt to synchronize the
times at which nodes report to directories with the times
at which directories perform periodic balancing. Indeed, in
our simulations, these times are all randomly aligned. Thus,
directories do not perform periodic balances at the same time,
and the information a directory uses to decide virtual server
reassignment may be up to � seconds old.

V. EVALUATION

We use extensive simulations to evaluate our load balancing
algorithm. We show, the basic effect of our algorithm, and the necessity of

emergency action (Section V-A);, the tradeoff between low load movement and a good
balance, for various system and algorithm parameters
(Section V-B);, the number of virtual servers necessary at various system
utilizations (Section V-C);, the effect of node capacity heterogeneity, concluding that
we can use many fewer virtual servers in a heterogeneous
system (Section V-D);, the effect of nonuniform object arrival patterns, showing
that our algorithm is robust in this case (Section V-E);

, the effect of node arrival and departure, concluding that
our load balancer never moves more than 60% as much
load as the underlying DHT moves due to node arrivals
and departures (Section V-F); and, the effect of object movement cost being unrelated to
object load, with the conclusion that this variation has little
effect on our algorithm (Section V-G).

Metrics. We evaluate our algorithm using two primary
metrics:

1) Load movement factor, defined as the total movement cost
incurred due to load balancing divided by the total cost
of moving all objects in the system once. Note that since
the DHT must move each object once to initially insert it,
a load movement factor of � � � implies that the balancer
consumes 10% as much bandwidth as is required to insert
the objects in the first place.

2) 99.9th percentile node utilization, defined as the maxi-
mum over all simulated times � of the 99.9th percentile
of the utilizations of the nodes at time � . Recall from
Section II that the utilization of node � is its load divided
by its capacity: � � � ���
 � � .

The challenge is to achieve the best possible tradeoffs
between these two conflicting metrics.

Simulation methodology. Table I lists the parameters of our
event-based simulated environment and of our algorithm, and
the values to which we set them unless otherwise specified.

We run each trial of the simulation for) � � simulated
seconds, where � is the parameterized load balance period.
To allow the system to stabilize, we measure 99.9th percentile
node utilization and load movement factor only over the time
period � � � � �) � ��� . In particular, in calculating the latter metric,
we do not count the movement cost of objects that enter the
system, or objects that the load balancer moves, before time
� � � . Finally, each data point in our plots represents the average
of these two measurements over 5 trials.

A. Basic effect of load balancing

Figure 1 captures the tradeoff between load movement
and 99.9th percentile node utilization. Each point on the
lower line corresponds to the effects of our algorithm with
a particular choice of load balance period � . For this and
in subsequent plots wherein we vary � , we use � #��� � � ��) � � ��� � �)�� � �	� � � � � � � � �) � � � . The intuitive trend is that
as � decreases (moving from left to right along the line), 99.9th
percentile node utilization decreases but load movement factor
increases. One has the flexibility of choosing � to compromise
between these two metrics in the way which is most appropriate
for the target application.

The upper line of Figure 1 shows the effect of our algorithm
with emergency load balancing turned off. Without emergency
balancing, for almost all nodes’ loads to stay below some
threshold, we must use a very small load balancing period
� so that it is unlikely that a node’s load rises significantly
between periodic balances. This causes the algorithm to move
significantly more load, and demonstrates the desirability of

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11

99
.9

th
 P

er
ce

nt
ile

 N
od

e
U

til
iz

at
io

n

Load Movement Factor

Periodic
Periodic + Emergency

Fig. 1. 99.9th percentile node utilization vs. load moved, for our
periodic+emergency algorithm and for only periodic action.

emergency load balancing. In the simulations of the rest of this
paper, emergency balancing is enabled as in the description of
our algorithm in Section IV.

B. Load movement vs. 99.9th percentile node utilization

With a basic understanding of the tradeoff between our two
metrics demonstrated in the previous section, we now explore
the effect of various environment and system parameters on this
tradeoff.

In Figure 2, each line corresponds to a particular system
utilization, and as in Figure 1, each point represents a particular
choice of � between

� � and ��) � � seconds. Even for system
utilizations as high as � �

, we are able to keep

�

�

percent of
the nodes underloaded while incurring a load movement factor
of less than � � ��� .

Figure 3 shows that the tradeoff between our two metrics
gets worse when the system contains fewer objects of com-
mensurately higher load, so that the total system utilization
is constant. Nevertheless, for at least)� � � � � � objects, which
corresponds to just

� � objects per node, we achieve good load
balance with a load movement factor of less than � � � � .

4 Note
that for � � � � � � � objects, the 99.9th percentile node utilization
extends beyond the range of the plot, to less than) �

�
. However,

only a few nodes are overloaded: the

�

� th percentile node

utilization for � � � � � � � objects (not shown) stays below � � �with a load movement factor of � �)�) . In any case, we believe
that our default choice of 1 million objects is reasonable.

Figure 4 shows that the number of directories in the system
has only a small effect on our metrics. For a particular load
movement factor, our default choice of � � directories produces
a 99.9th percentile node utilization less than 3% higher than in
the fully centralized case of � directory.

C. Number of virtual servers

Figures 5 and 6 plot our two metrics as functions of system
utilization. Each line corresponds to a different average (over

4The spike above utilization � in the ������������� -object line is due to
a single outlier among our � trials.

TABLE I
SIMULATED ENVIRONMENT AND ALGORITHM PARAMETERS.

Environment Parameter Default value
System utilization 0.8
Object arrival rate Poisson with mean inter-arrival time 0.01 sec

Object arrival location Uniform over ID space
Object lifetime Computed from arrival rate and number of objects

Average number of objects 1 million
Object load Pareto: shape � , scale ��� � a

Object movement cost Equal to object load
Number of nodes Fixed at 4096 (no arrivals or departures)

Node capacity Clipped Paretob: shape � , scale � ���
Algorithm Parameter Default value

Periodic load balance interval � 60 seconds
Emergency threshold ��� 1

Periodic threshold ��� � �
	�� ���� c

Number of virtual servers per node 12
Number of directories 16

aRescaled to obtain the specified system utilization.
bWe discard samples outside the range � � � �	��������� .
c � is the average utilization of the nodes reporting to a particular directory.

0.75

0.8

0.85

0.9

0.95

1

1.05

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

99
.9

th
 P

er
ce

nt
ile

 N
od

e
U

til
iz

at
io

n

Load Movement Factor

Sys Util = 0.9
 = 0.8
 = 0.7
 = 0.6
 = 0.5

Fig. 2. Tradeoff between 99.9th percentile node utilization and load
movement factor as controlled by load balance period � , for various
system utilizations.

all nodes) number of virtual servers per node.
We make two points. First, our algorithm achieves a good

load balance in terms of system utilization. In particular, the
99.9th percentile node utilization increases roughly linearly
with system utilization. Second, while an increased number of
virtual servers does help load balance at fairly high system
utilizations, its beneficial effect is most pronounced on load
movement.

D. Heterogeneous node capacities

Assume a system with equal capacity nodes, and let be
the number of virtual servers per node. If is a constant
independent of the number of nodes in the system, % , the
maximum node utilization is

& � ' (* % ! with high probability
(w.h.p.) even when all objects have the same size and their

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 1.01

 1.02

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

99
.9

th
 P

er
ce

nt
ile

 N
od

e
U

til
iz

at
io

n

Load Movement Factor

Num Objs = 1 million
 = 750,000

 = 500,000
 = 250,000

 = 100,000

Fig. 3. Tradeoff between 99.9th percentile node utilization and load
movement factor as controlled by load balance period � , for various
numbers of objects in the system.

IDs are uniformly distributed. To avoid this problem, we can
choose � & � ' (* % ! as suggested in [2], reducing the max
node utilization to

& � � ! w.h.p. The price to pay is a factor increase in the routing state a node needs to maintain, as
discussed in Section III.

Somewhat surprisingly, we can achieve good load balancing
with many fewer virtual servers per node when node capacities
are heterogeneous than when they are homogeneous. Intuitively,
this is because the virtual servers with very high load can
be handled by the nodes with large capacities. Figures 7
and 8 illustrate this point. Figure 7 uses equal capacity nodes
(a departure from our default) and shows growth in 99.9th
percentile node utilization roughly linear in ' (* % for a constant
number of virtual servers per node. In contrast, Figure 8 uses
our default Pareto node capacity distribution and shows a

 0.945

 0.95

 0.955

 0.96

 0.965

 0.97

 0.975

 0.98

 0.985

 0.99

 0.995

 1

 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11

99
.9

th
 P

er
ce

nt
ile

 N
od

e
U

til
iz

at
io

n

Load Movement Factor

Num Dir = 1
 = 4

 = 16
 = 64

 = 256

Fig. 4. Tradeoff between 99.9th percentile node utilization and load
movement factor as controlled by load balance period � , for various
numbers of directories.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 0.2 0.4 0.6 0.8 1

99
.9

th
 P

er
ce

nt
ile

 N
od

e
U

til
iz

at
io

n

System Utilization

Num VS = 2
 = 4

 = 8
 = 12

Fig. 5. 99.9th percentile node utilization vs. system utilization for
various numbers of virtual servers per node.

marked decrease in 99.9th percentile node utilization, as well as
a less pronounced increase in 99.9th percentile node utilization
as % grows.

E. Nonuniform object arrival patterns

In this section we consider nonuniform arrival patterns, in
both time and ID space.

We consider an “impulse” of objects whose IDs are dis-
tributed over a contiguous interval of the ID space, and whose
aggregate load represents 10% of the total load in the system.
We vary the spread of the interval between 10% and 100% of
the ID space. Thus, an impulse spread over 10% of the ID space
essentially produces a rapid doubling of load on that region of
the ID space, and hence a doubling of load on roughly 10% of
the virtual servers (but not on 10% of the nodes since nodes
have multiple virtual servers). The objects all arrive fast enough
that periodic load balancing does not have a chance to run, but
slow enough that emergency load balancing may be invoked for
each arriving object. These impulses not only create unequal
loading of objects in the ID space but also increase the overall
system utilization in the short term.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 0.2 0.4 0.6 0.8 1

Lo
ad

 M
ov

em
en

t F
ac

to
r

System Utilization

Num VS = 2
 = 4

 = 8
 = 12

Fig. 6. Load movement factor vs. system utilization for various
numbers of virtual servers per node.

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 10 100 1000 10000

99
.9

th
 P

er
ce

nt
ile

 N
od

e
U

til
iz

at
io

n

Number of nodes in the system

Num VS = 2
= 4
= 8

= 12

Fig. 7. 99.9th percentile node utilization vs. number of nodes for
various numbers of virtual servers per node, with homogeneous node
capacities.

Assuming the system state is such that our load balancer will
be able to make all nodes underloaded, the 99.9th percentile
node utilization will simply be slightly below � � � , since this
is the level of utilization to which emergency load balancing
attempts to bring all nodes. With that in mind, instead of
plotting the 99.9th percentile node utilization, we consider the
number of emergency load balance requests. Figures 9 and 10
show this metric. Note that since emergency load balancing can
be invoked after each object arrival, some nodes may require
multiple emergency load balances.

Finally, Figure 11 plots the load movement factor incurred by
emergency load balancing in this setting. Note that the amount
of load moved is much higher than the load of the impulse, but
having greater numbers of virtual servers helps significantly, in
part because it spreads the impulse over more physical nodes.

F. Node arrivals and departures

In this section, we consider the impact of the node arrival
and departure rates. The arrival rate is modeled by a Poisson
process, and the lifetime of a node is drawn from an exponential
distribution. We vary interarrival time between � � and

 �

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 10 100 1000 10000

99
.9

th
 P

er
ce

nt
ile

 N
od

e
U

til
iz

at
io

n

Number of nodes in the system

Num VS = 2
= 4
= 8

= 12

Fig. 8. 99.9th percentile node utilization vs. number of nodes for
various numbers of virtual servers per node, with heterogeneous node
capacities (default Pareto distribution).

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 0.2 0.4 0.6 0.8 1

N
um

be
r

of
 E

m
er

ge
nc

y
A

ct
io

ns

Impulse Spread

Sys Util = 0.5
 = 0.6
 = 0.7
 = 0.8

Fig. 9. Number of emergency actions taken vs. fraction of ID space
over which impulse occurs, for various initial system utilizations.

seconds. Since we fix the steady-state number of nodes in
the system to � �
 � , a node interarrival time of 10 seconds
corresponds to a node lifetime of about 11 hours.

To analyze the overhead of our load balancing algorithm
in this section we study the load moved by the algorithm as
a fraction of the load moved by the underlying DHT due to
node arrivals and departures. Figure 12 plots this metric as a
function of system utilization. The main point to take away is
that the load moved by our algorithm is considerably smaller
than the load moved by the underlying DHT especially for
small system utilizations. More precisely, with the default ��)
virtual servers per node, our load balancing algorithm never
moves more than 60% of the load that is moved by the
underlying DHT.

Figure 13 corroborates the intuition that increasing the num-
ber of virtual servers decreases significantly the fraction of load
moved by our algorithm.

G. Object movement cost

Our load balancer attempts to remove the least amount of
load from a node so that the node’s utilization falls below a

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0 5 10 15 20 25 30 35

P
ro

ba
bi

lit
y

Number of emergency actions

System Utilization = 0.8
= 0.7
= 0.6
= 0.5

Fig. 10. PDF of number of emergency actions that a node takes after
an impulse of 10% of the system utilization concentrated in 10% of
the ID space, at an initial system utilization of ��� � .

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85

Lo
ad

 M
ov

em
en

t F
ac

to
r

System Utilization

Num VS = 4
= 8

= 12

Fig. 11. Load movement factor vs. system utilization after an impulse
in 10% of the ID space.

given threshold. Under the assumption that an object’s move-
ment cost is proportional to its load, the balancer therefore
also attempts to minimize total movement cost. But while that
assumption holds if storage is the bottleneck resource, it might
not be true in the case of bandwidth: small, easily moved
objects could be extremely popular.

To study how our algorithm performs in such cases, we con-
sider two scenarios which differ in how an object’s movement
cost � and its load � � are related: (1) � � � � , and (2) � �
and � are chosen independently at random from our default
object load distribution. We use)� � � � � � objects, fewer than
our default so a virtual server will have greater variation in
total load movement cost.

Figure 14 shows that when � � and � are independent, the
load moved is only marginally higher than in the case where
they are identical. The principal cause of this is that, since the
balancer is oblivious to movement cost and movement cost is
independent of load, the amortized cost of its movements will
simply be the expected movement cost of an object, which we
have fixed to be equal in the two cases.

An algorithm which pays particular attention to movement
cost could potentially perform somewhat better than ours in

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Lo
ad

 M
ov

em
en

t F
ac

to
r

System Utilization

Node InterarrivalTime = 10s
= 30s
= 60s
= 90s

Fig. 12. Load moved by the load balancer as a fraction of the load
moved by the DHT vs. system utilization, for various node interarrival
times.

 0

 1

 2

 3

 4

 5

 6

 0 2 4 6 8 10 12

Lo
ad

 M
ov

em
en

t F
ac

to
r

Number of Virtual Servers

Node InterarrivalTime = 10s
= 30s
= 60s
= 90s

Fig. 13. Load moved by the load balancer as a fraction of the load
moved by the DHT vs. number of virtual servers, for various rates of
node arrival.

this environment by preferring to move virtual servers with
high load and low movement cost when possible.

VI. FUTURE WORK

A number of potential improvements to our algorithm and
generalizations of our model deserve further study.

Prediction of change in load. Our load balancing algorithms
consider only load on a virtual server, ignoring the volume it
is assigned in the ID space. Since volume is often closely cor-
related with rate of object arrival, we could reduce the chance
that a node’s load increases significantly between periodic load
balances by avoiding the assignment of virtual servers with light
load but large volume to nodes with little unused capacity. This
suggests a predictive scheme which balances load based on, for
example, a probabilistic upper bound on the future load of a
virtual server.

Balance of multiple resources. In this paper we have
assumed that there is only one bottleneck resource. However, a
system may be constrained, for example, in both bandwidth and
storage. This would be modeled by associating a load vector
with each object, rather than a single scalar value. The load

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Lo
ad

 m
ov

em
en

t f
ac

to
r

System utilization

Identical
Uncorrelated

Fig. 14. Load movement factor vs. system utilization for various
choices of distributions of object load and object movement cost.

balancing algorithm run at our directories would have to be
modified to handle this generalization, although our underlying
directory-based approach should remain effective.

Beneficial effect of heterogeneous capacities. As shown in
Section V-D, having nonuniform node capacities allows us to
use fewer virtual servers per node than in the equal-capacity
case. It would be interesting to more precisely quantify the
impact of the degree of heterogeneity on the number of virtual
servers needed to balance load.

VII. RELATED WORK

Most structured P2P systems ([1], [2], [3], [4]) assume that
object IDs are uniformly distributed. Under this assumption, the
number of objects per node varies within a factor of � ��')(+* % ! ,
where % is the number of nodes in the system. CAN [1]
improves this factor by considering a subset of existing nodes
(i.e., a node along with neighbors) instead of a single node
when deciding what portion of the ID space to allocate to a new
node. Chord [2] was the first to propose the notion of virtual
servers as a means of improving load balance. By allocating')(+* % virtual servers per physical node, Chord ensures that with
high probability the number of objects on any node is within a
constant factor of the average. However, these schemes assume
that nodes are homogeneous, objects have the same size, and
object IDs are uniformly distributed.

CFS [7] accounts for node heterogeneity by allocating to
each node some number of virtual servers proportional to the
node capacity. In addition, CFS proposes a simple solution
to shed the load from an overloaded node by having the
overloaded node remove some of its virtual servers. However,
this scheme may result in thrashing as removing some virtual
servers from an overloaded node may result in another node
becoming overloaded.

Byers et. al. [6] have proposed the use of the “power of two
choices” paradigm to achieve better load balance. Each object is
hashed to ���) different IDs, and is placed in the least loaded
node � of the nodes responsible for those IDs. The other nodes
are given a redirection pointer to � so that searching is not

slowed significantly. For homogeneous nodes and objects and
a static system, picking � �) achieves a load balance within
a ')(+* ')(+* % factor of optimal, and when � � & � ' (* % ! the
load balance is within a constant factor of optimal. However,
this scheme was not analyzed or simulated for the case of
heterogeneous object sizes and node capacities, and in any case
is not prepared to handle a dynamic system of the kind which
we have described. This is largely complementary to the work
presented in this paper.

Adler et al [9] present a DHT which provably ensures that,
as nodes join the system, the ratio of loads of any two nodes
is � � � ! with high probability. The system is organized as a
tree, with additional links for routing in a hypercube topology.
A joining node considers a small set of leaf nodes of the
tree and joins the system by splitting an appropriately chosen
leaf. However, no analysis of node departure was given and
the system does not deal with varying node capacity or object
distribution.

Karger and Ruhl [10] propose algorithms which dynamically
balance load among peers without using multiple virtual servers
by reassigning lightly loaded nodes to be neighbors of heavily
loaded nodes. However, they do not fully handle the case of
heterogeneous node capacities, and while they prove bounds
on maximum node utilization and load movement, it is unclear
whether their techniques would be efficient in practice.

Douceur and Wattenhofer [11] have proposed algorithms for
replica placement in a distributed filesystem which are similar
in spirit with our algorithms. However, their primary goal is to
place object replicas to maximize the availability in an untrusted
P2P system, while we consider the load balancing problem
in a cooperative system. Triantafillou et al. [12] have recently
studied the problem of load balancing in the context of content
and resource management in P2P systems. However, their work
considers an unstructured P2P system, in which meta-data is
aggregated over a two-level hierarchy.

There is a large body of theoretical work in load balancing
problems similar to ours in that they seek to minimize both
maximum load and amount of load moved. This includes
Aggarwal et al [13] in an offline setting similar to that of our
periodic load balancer, and Westbrook [14], Andrews et al [15],
and others (see Azar’s survey [16]) in an online setting. It would
be interesting to study whether these algorithms can be adapted
to our system.

VIII. SUMMARY

We propose an algorithm for load balancing in dynamic, het-
erogeneous peer-to-peer systems. Our algorithm may be applied
to balance one of several different types of resources, including
storage, bandwidth, and processor cycles. The algorithm is
designed to handle heterogeneity in the form of (1) varying
object loads and (2) varying node capacity, and it can handle
dynamism in the form of (1) continuous insertion and deletion
of objects, (2) skewed object arrival patterns, and (3) continuous
arrival and departure of nodes.

Our simulation results show that our algorithm is effective
in achieving load balancing for system utilizations as high as

90% while transferring only about 8% of the load that arrives
in the system, and performs only slightly less effectively than a
similar but fully centralized balancer. In addition, we found that
heterogeneity of the system can improve scalability by reducing
the necessary number of virtual servers per node as compared
to a system in which all nodes have the same capacity.

REFERENCES

[1] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker,
“A Scalable Content-Addressable Network,” in Proc. ACM
SIGCOMM, San Diego, 2001.

[2] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek,
and Hari Balakrishnan, “Chord: A Scalable Peer-to-peer Lookup
Service for Internet Applications,” in Proc. ACM SIGCOMM,
San Diego, 2001, pp. 149–160.

[3] Kris Hildrum, John D. Kubatowicz, Satish Rao, and Ben Y. Zhao,
“Distributed Object Location in a Dynamic Network,” in Proc.
ACM SPAA, Aug. 2002.

[4] Antony Rowstron and Peter Druschel, “Pastry: Scalable, Dis-
tributed Object Location and Routing for Large-scale Peer-to-
Peer Systems,” in Proc. Middleware, 2001.

[5] Ananth Rao, Karthik Lakshminarayanan, Sonesh Surana, Richard
Karp, and Ion Stoica, “Load Balancing in Structured P2P
Systems,” in Proc. IPTPS, Feb. 2003.

[6] John Byers, Jeffrey Considine, and Michael Mitzenmacher,
“Simple Load Balancing for Distributed Hash Tables,” in Proc.
IPTPS, Feb. 2003.

[7] Frank Dabek, Frans Kaashoek, David Karger, Robert Morris, and
Ion Stoica, “Wide-area Cooperative Storage with CFS,” in Proc.
ACM SOSP, Banff, Canada, 2001.

[8] David Karger, Eric Lehman, Tom Leighton, Matthew Levine,
Daniel Lewin, and Rina Panigrahy, “Consistent Hashing and
Random Trees: Distributed Caching Protocols for Relieving Hot
Spots on the World Wide Web,” in Proc. ACM STOC, May 1997.

[9] M. Adler, Eran Halperin, R. M. Karp, and V. Vazirani, “A
stochastic process on the hypercube with applications to peer-
to-peer networks,” in Proc. STOC, 2003.

[10] David Karger and Matthias Ruhl, “New Algorithms for Load
Balancing in Peer-to-Peer Systems,” Tech. Rep. MIT-LCS-TR-
911, MIT LCS, July 2003.

[11] J. R. Douceur and R. P. Wattenhofer, “Competitive Hill-Climbing
Strategies for Replica Placement in a Distributed File System,”
in Proc. DISC, 2001.

[12] P. Triantafillou, C. Xiruhaki, M. Koubarakis, and N. Ntarmos,
“Towards High Performance Peer-to-Peer Content and Resource
Sharing Systems,” in Proc. CIDR, 2003.

[13] G. Aggarwal, R. Motwani, and A. Zhu, “The Load Rebalancing
Problem,” in Proc. ACM SPAA, 2003.

[14] J. Westbrook, “Load balancing for response time,” in European
Symposium on Algorithms, 1995, pp. 355–368.

[15] M. Andrews, M. X. Goemans, and L. Zhang, “Improved bounds
for on-line load balancing,” in Proc. COCOON, 1996.

[16] Y. Azar, Online Algorithms - The State of the Art, chapter 8, pp.
178–195, Springer Verlag, 1998.

