
Practical Automation for Management Planes of Service
Provider Infrastructure

Bingzhe Liu
UIUC

Kuan-Yen Chou
UIUC

Pramod Jamkhedkar
AT&T

Bilal Anwer
AT&T

Rakesh K Sinha
AT&T

Kostas Oikonomou∗
AT&T

Matthew Caesar
UIUC

P. Brighten Godfrey
UIUC and VMware

ABSTRACT
Managing service provider infrastructures (SPI) is ever more chal-
lenging with increasing scale and complexity. Network and con-
tainer orchestration systems alleviate some manual tasks, but they
are generally narrow solutions, with controllers for specific subsys-
tems that do not coordinate on high-level goals, and fall far short
of automating the full range of tasks that engineers face day to day.

We seek to highlight the need for “practical automation” to man-
age SPIs. Via realistic examples, we argue that practical automa-
tion should provide cross-controller coordination, and should work
within the reality that many tasks will involve humans. We describe
a proof-of-concept system that leverages AI planning to synthesize
management steps to move the system towards a goal state. A pre-
liminary implementation shows that our approach can accurately
generate plans for complex management tasks, while scalability
and modeling diverse controllers remain as future challenges.

CCS CONCEPTS
• Networks → Network management; • Computer systems
organization → Cloud computing; Maintainability and mainte-
nance; Reliability; Availability; • Computing methodologies→
Planning and scheduling.

KEYWORDS
practical automation, service infrastructure management, planning
and synthesis, intent-based networking

ACM Reference Format:
Bingzhe Liu, Kuan-Yen Chou, Pramod Jamkhedkar, Bilal Anwer, Rakesh K
Sinha, Kostas Oikonomou, Matthew Caesar, and P. Brighten Godfrey. 2021.
Practical Automation for Management Planes of Service Provider Infrastruc-
ture. In Workshop on Flexible Networks Artificial Intelligence Supported Net-
work Flexibility and Agility (FlexNets’21), August 27, 2021, Virtual Event, USA.
ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3472735.3473391

∗Work was done while at AT&T.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
FlexNets’21, August 27, 2021, Virtual Event, USA
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8634-0/21/08. . . $15.00
https://doi.org/10.1145/3472735.3473391

1 INTRODUCTION
Managing service provider infrastructures (SPIs) is challenging.
Management tasks, including provisioning, upgrade, troubleshoot-
ing, and mitigation, are performed frequently to deal with various
events like application deployments, performance degradation and
failures. Throughout, engineers need to satisfy high-level intents
like global resource utilization, connectivity among components,
and service capacity. Furthermore, in order to serve emerging needs
like 5G and beyond, service providers are deploying small but nu-
merous “edge” data centers to serve a diverse range of network func-
tions. With such increasing scale and complexity, SPIs are seeking
to move away from manual management in favor of orchestration
systems like Kubernetes [7] in an attempt to automatically manage
their network services.

The holy grail of network management is a “self-driving” infras-
tructure that operates, optimizes, and fixes itself. However, we are
far from that goal in (at least) two respects.

First, current orchestration systems and controllers do not per-
form global automation. Generally, automated controllers are not
aware of combinations of system-wide high-level intents. Instead,
each controller has a narrowly-defined task related to a specific
subsystem and is not directly aware of other controllers. For exam-
ple, a load balancer cares about request latency and only controls
the distribution of requests, while a scheduler cares about resource
utilization across nodes and only controls the placement of the
containers. But neither of those encompasses the high-level goal
of service capacity. Though they are controlling different portions
of the system properties and elements, their local constraints may
be intertwined or even conflicting with each other in ways that
affect the high-level intents. Hidden shared dependencies among
multiple controllers could even lead to failures or potential non-
convergence [10].

Second, we argue that many specific management tasks will re-
quire humans for the foreseeable future. Automating systems takes
time and is typically incomplete; even in a well-designed infrastruc-
ture, new sub-systems are incorporated regularly which may not
be fully integrated; many tasks require human cross-checking that
all is well after a change; and when things go wrong, humans have
to troubleshoot. Hence, we expect some human actions will need
to coexist with (and interact with) automated controllers.

In this work, we call attention to the need for “practical automa-
tion” for the management plane of SPI. By practical, we mean that
the overall automation approach takes into account the two char-
acteristic limitations above: (a) the SPI management plane will be
comprised of multiple narrowly-tasked controllers that need to be
coordinated to work towards high-level management goals; and

https://doi.org/10.1145/3472735.3473391
https://doi.org/10.1145/3472735.3473391

(b) humans will be effectively playing the role of some of those
controllers.

To motivate the need for practical automation, we discuss the
typical properties of modern SPI and orchestration systems, and
introduce three representative examples that demonstrate the com-
plexity of management tasks. We then describe a proof-of-concept
system, Strategyzer, that synthesizes plans for management tasks.
The generated plan could be either a recommendation to human
operators, or could be automatically deployed by pushing instruc-
tions to controllers. Such planning is non-trivial because (1) we
need to model the complex interactions among controllers and (2)
the expected management tasks normally consist of a sequence of
steps rather than a simple change of configurations, resulting in a
large search space. To deal with these challenges, we utilize technol-
ogy from the area of AI Planning [3], which aims to automatically
synthesize a sequence of actions to achieve the given goals. We
model both human actions and controllers using a formal language,
where their interactions could be reflected by clearly defined pre-
and post-conditions. We implemented two management examples
as case studies and show that the approach can generate plans
accurately for these tasks. However, while Strategyzer is useful as
a proof-of-concept of functionality, it is far from a complete system.
We close with a discussion of scalability and other challenges for
future work to achieve practical automation for SPI.

2 BACKGROUND
In this section, we first provide an overview of service provider
infrastructure in §2.1. Then we introduce controllers in the man-
agement planes of SPI in §2.2, where we treat human as one type of
controller. We finally describe the limitations of the current systems
and summarize with goals of our systems in §2.3.

2.1 Overview of Service Provider Infrastructure
Network service providers offer a wide range of network services
including VPN, CDN, SD-WAN, and so forth [1]. The infrastructure
supporting these network services consists of several subsystems,
including the data plane which contains network equipment (e.g.
routers, switches, eNodeBs), network automation controllers which
manage various aspects of the network (e.g. handling network fail-
ures, managing traffic congestion), and container orchestration
systems (such as Kubernetes and Openshift [7, 14]) which manage
the network automation controllers and other software compo-
nents that are deployed as containers. These different subsystems
typically reside in and across multiple sites and edge data centers,
which are gaining more popularity over the years due to increased
usage of online services, growing demand for edge computing, and
rising demand for high-bandwidth services [15].

SPIs are required to meet high-level service intents such as avail-
ability, connectivity, and service capacity even facing failures and
performance degradation. To comply with these intents and handle
operational events, the management planes of SPI involve various
types of tasks, such as provisioning, upgrade, troubleshooting and
failure mitigation. These tasks can be carried out by both auto-
mated controllers and human actions which we describe in §2.2.
The tasks typically involve sequences of actions. For example, one
team first needs to manually fix the RAN equipment on-site, before

Analytics

Policy

Network
Controller

Data Store

2:1

1:5 1:1

1:1

Requests

Network
Elements

Figure 1: A simplified, repre-
sentative architecture for net-
work automation controller
(deployed as services).

S1 S2 S3

S1 S2 S3

i. An initial placement of the pods

ii. A dedicated placement by planner

Analytics Pod Policy Pod
Network
Controller Pod Data Store Pod

Figure 2: Placement of sub-
components.

a remote configuration change can be executed by another team.
In many cases, the task requires domain knowledge of networks
and RAN equipment, and cross-team collaboration. These actions
might theoretically be automated, but in reality, most SPIs are hy-
brid and require some level of human intervention. Tasks also take
into consideration the cost of an action; for example, a fast hard
reset may be acceptable for one service, but may be unacceptable
for another service with stricter requirements on availability.

2.2 Controllers in Service Provider
Infrastructure

Controllers act as control loops to watch the state of the infras-
tructure, dynamically react to system changes and maintain the
desired states. Controllers can be either automated (software) or
human (manual actions) § 2.2.3. Automated controllers can be fur-
ther divided into two types: 1) network automation controllers
in § 2.2.1 that manage network elements; and 2) controllers in con-
tainer orchestration systems in § 2.2.2. Though we describe network
automation controllers, in this paper, we mainly focus on the con-
trollers in container orchestration systems and human "controllers",
and we leave the network automation controllers as future work.

2.2.1 Network Automation Controllers. Network automation con-
trollers control network elements including routers, switches, and
RAN equipment (e.g. eNodeBs, sectors, cells). These can include
virtual network functions (VNFs) for configuring routers, firewalls,
NAT services, or even more sophisticated controllers which man-
age thousands of network devices to handle traffic congestion and
optimize network resource.

Figure 1 shows a simplified, representative architecture for net-
work automation controllers along the lines of the Open Network
Automation Platform (ONAP)1 [12]. These controllers consist of
several sub-components as represented by nodes in the graph in
Figure 1, and the edges represent the communication between
sub-components. Each sub-component is implemented as an inde-
pendent service deployment on Kubernetes, consisting of one or
more pods2 that run on nodes3 in the cluster.
1While ONAP provides a representative architecture for subsequent discussions in
the paper, the principles and results presented in the paper can be applied to generic
service provider infrastructure architectures.
2A pod is the basic execution unit that runs one or more containers and their associated
resources.
3A node is typically a virtual or a physical machine that serves pods.

Consider, for example, a load balancing network controller with
a similar structure as Figure 1, which manages traffic in RAN for
improved throughput. The Data Store (DS) collects and stores infor-
mation about RAN elements and their KPIs; Analytics then queries
the DS for these KPIs, analyzes them, and identifies the RAN ele-
ments that need to be configured; the identified RAN elements are
then passed on to Policy to determine if it is safe to reconfigure
them based on rules like maintenance status, time of day and mar-
ket; Policy then directs the Network Controller to reconfigure RAN
elements via south-bound APIs. Other controllers (e.g. handling
network congestion, resource saving) consist of similar workflows.
These network controllers change the system state in complex ways,
and we leave them for future work.
2.2.2 Container Orchestration Controllers. Container orchestration
platforms enable automated management of the network automa-
tion controllers that are deployed as services. Some representative
controllers are described below, and we define some notations of
controller configurations that we will use in the rest of the paper,
where the actual configurations can be more complex than simple
notations.

Load balancer (LB) distributes input traffic to a pool of nodes
using various mechanisms, e.g. round-robin and weighted round-
robin. In weighted round-robin, each node is dynamically assigned
a weight according to a combination of changing performance
metrics, e.g., number of active connections.

Deployment controller controls pod deployment, update, runtime
and termination in a deployment. A commonly used configuration
is to maintain a certain number 𝑘 of pods on a particular node by
configuring specs.replica = k.

Scheduler places unscheduled pods onto the best feasible nodes
according to user-defined policies. For example, specs.CPU = 0.7
specifies scheduling pods on a node only when the expected CPU
usage is less than 70% after pod placement.

Descheduler [8] evicts pods from nodes according to node re-
source usage and operator-defined strategies. For example, config-
urations specs.CPU = 0.8 and spec.MostUsed denote that the
descheduler should evict the pod with highest CPU usage when
CPU utilization is over 80% on that node.

2.2.3 Human "Controllers". More often than not, certain tasks for
infrastructure management are left to humans for many reasons.
These include legacy components which don’t have automation
support such as older network equipment which requires CLI-based
configurations. Failures at physical level require manual interven-
tion such as fixing a broken cable, replacing a dead hard drive, or
an onsite fix of network card on the interface between LTE RAN
and Evolved Packet Core. Sometimes humans may be involved
due to cost concerns in automating a wide range of equipment
management from multiple vendors. These tasks form a critical
part of troubleshooting processes and management of SPI. In our
system, we model these human actions similar to how automated
controllers are modeled. This broadens the scope of our system to
more realistic troubleshooting strategies.

2.3 Summary of Current Limitations
Management planes that currently consist of controllers described
in § 2.2 have the following limitations.

R3R2

R1

S1 S2 S3

LB

(1)

(2)

Figure 3: Case 1, (1) human
take down 𝑆2 to update, and (2)
link 𝑅1 − 𝑅2 failed. Both the
pods are unavailable.

R3R2

R1

S1 S2 S3

LB
app1
app2

Figure 4: Case 3, pod place-
ment and path choices.

Limited context. Automated controllers’ context is localized as
they do not consider system-wide high-level goals, e.g. service-level
intents. Service requirements include performance specifications
and service level agreements (SLAs) which are broader than the
scope and capabilities of individual controllers.

Limited action coverage. Due to limited context of controllers, re-
quirements of a service may not be fully expressible or executable in
terms of the controllers. For example, ensuring service availability
may require considering failures outside the domain of controllers,
such as failures of communication links between the nodes. Fixing
these failures may require human intervention, such as fixing phys-
ical wiring. Hence any realistic handling of a service failure, more
often than not, requires a collaborative effort among the controllers
including human “controllers”.

Local optimization. Since controllers operate independently and
optimize local goals, we may end up in a situation where one con-
troller’s actions negate the effect of another. These limitations are
exacerbated when multiple services are sharing a platform.

In summary, a practical automation management system should
address these limitations with following features: 1) ability to con-
sider the interactions between controllers; 2) ability to ingest high-
level goals and propose plans to persistently satisfy those goals in
case of service failures and service degradation; 3) ability to propose
efficient plans according to operational costs.

3 MOTIVATING EXAMPLES
In this section, we describe three examples that illustrate the chal-
lengesmentioned in §2.3, and show the need of practical automation
for the management plane of SPI.

3.1 Case 1: Integrating Human Actions with
Controllers and Environmental Events

SPI often requires software and security updates to pods or nodes.
Managing these updates on a live system serving applications is
a challenging task. The updates are typically planned to ensure
overall service availability, however, an unplanned environmental
event such as a link failure occurring during the process can render
the service inaccessible.

In Figure 3, three servers are connected to an LB through a
network of three routers. One application deployment with 2 pod
replicas have been placed on nodes 𝑆1 and 𝑆2. The infrastructure

team aims to update software across all the nodes. To update a node,
they need to manually take down the node, install software, and
bring it back up, during which all the pods on that node become un-
available. Only one node is updated at a time. Besides these manual
update actions, a deployment controller has set specs.replica =
2 to maintain the 2 pods, and a scheduler has set specs.CPU = 0.8.
(Other controllers are not involved.) Meanwhile, environmental
events could bring down up to 1 link at non-deterministic points of
execution. In this update process, high-level intents are (a) at least
1 replica should be up and reachable continuously, (b) all nodes
should be updated, and (c) resource usage constraints should be
respected.

It’s not trivial to plan for a safe update event. Without careful
planning, as shown in Figure 3, the following events may happen in
sequence that violate the high-level intents: (1) Humans take down
𝑆2 to start the update. (2) Link 𝑅1 − 𝑅2 goes down, and the replica
on 𝑆1 becomes unreachable. (3) None of the replicas are available
and the high-level intent (a) is violated. Note that though the de-
ployment controller aims to maintain 2 pods, it doesn’t consider
environmental events and hence fails to prepare extra pods before
link failure.

A safe plan should consider the potential environmental event
and the context of the update process, and schedule one more
pod onto a node that is independent (in terms of shared physical
network links) from other replicas. A safe plan would: (1) Instruct
the deployment controller to increase specs.replica by 1. (2)
Instruct the scheduler to place the new pod on to node 𝑆3. (3)
Humans start to update 𝑆1, 𝑆2 and 𝑆3 accordingly. In this plan, the
controllers are instructed to coordinate with each other as well as
human actions.

3.2 Case 2: Service-level Intents
Network automation controllers can be represented as a directed
acyclic graph and deployed as services as introduced in §2.2.1. In
Figure 1, each node 𝑛𝑖 represents a sub-component 𝑖 , and each edge
𝑛𝑖 → 𝑛 𝑗 represents the message flows from 𝑛𝑖 to 𝑛 𝑗 . The edge is
associated with a message ratio 𝑝 : 𝑞, which denotes that for each
𝑝 messages 𝑛𝑖 receives from its upstream components, 𝑞 messages
would be generated and sent to its downstream component 𝑛 𝑗 (for
simplicity, we think of one message requiring one unit of work).
The component lacking upstream components is the front-end to
which user requests arrive.

Service capacity capacity(S) = k is a service-level intent say-
ing that service 𝑆 should be able to process 𝑘 user requests per
second. This requirement needs to be translated into lower-level
instructions, such as to maintain a certain number of pods in each
deployment.

We use the graph in Figure 1 for this case. To translate the
capacity intent, let’s first assume that each pod could process 20
requests per second (rps) regardless of its component type, and we
expect capacity(S) = 10. In order to process 10 rps, Analytics
needs to process the 10 original service requests, and hence needs
1 pod. It then generates 5 rps to Policy and 10 rps to Data Store.
Policy only receives requests from Analytics, and hence needs to
process 5 rps and requires 1 pod. Policy then generates 25 rps to
the Network Controller and so on. The result is Network Controller

needs 25 rps and requires 2 pods, and Data Store needs 35 rps and
requires 3 pods. Figure 2 shows their initial placements.

The planning happens when two different human teams aim to
do their own tasks simultaneously. Similar to Case 1, an infrastruc-
ture team aims to update all the nodes and take down at most 1
node at one time. Meanwhile, an application team aims to increase
service capacity to 15. Here, two controllers are relevant: the de-
ployment controllers and a scheduler. The high-level intents in this
planning are to (a) change capacity(S) to 15, (b) update all the
nodes, and (c) maintain resource usage constraints.

An automated planner would first calculate the number of pods
that need to be changed to meet with the new intent. In particular,
the number of Data Store pods must be increased by 1. Then, the
planner calculates the number of extra pods and places them care-
fully to ensure service capacity during software updates. Figure 2
shows the expected placement pre-update. Finally, the planner in-
structs the deployment controllers and scheduler to place the pods
as expected, and then instructs the infrastructure team to start
updates.

Note that while past work has studied service resource manage-
ment, the new need here is to plan in the context of other moving
parts like manual software updates.

3.3 Case 3: Efficient Controller Ordering
In this case, the network topology is shown in Figure 4. The routers
use equal-cost multi-path routing (ECMP) with destination hashing.
Another two controllers participate in this example: a descheduler
with specs.CPU = 0.8 and an LB that runs a weighted round-robin
mechanism according to service response time. Service response
time depends on server-side latency and the accumulated link la-
tency along the path between the server and the LB. There are two
applications: 𝑎𝑝𝑝1 has 3 replicas and 𝑎𝑝𝑝2 has 1 replica. Figure 4
shows the placement of the replicas and the ECMP path choices for
𝑎𝑝𝑝1. The high-level intents are (a) maintaining resource usage con-
straints (80% CPU limit in this case), (b) optimizing request latency,
and (c) minimizing cost of the plan in terms of pod migration.

Everything is stable initially. Then, a surge of requests to 𝑎𝑝𝑝2
causes resource usage on 𝑆1 to exceed the threshold. Two controllers
can react to this event to reduce the load on 𝑆1: a descheduler that
evicts a pod on 𝑆1, or an LB that re-balances the 𝑎𝑝𝑝1 requests to
the replicas 𝑆2 and 𝑆3 as it sees increased request latency from 𝑆1.
Because they involve pod movement, descheduling and reschedul-
ing are more costly than re-balancing requests. As the controllers
are not coordinating with each other, a less preferred situation may
happen when the descheduler reacts first. If planning is coordinated,
a more efficient sequence would be to instruct the descheduler to
pause andwait for the LB to re-balance the 𝑎𝑝𝑝1 requests among the
replicas, and to resume after LB finishing its tasks, only if needed.

4 TOWARDS PRACTICAL AUTOMATION
We introduce a proof-of-concept system, Strategyzer, as a first step
towards practical automation for the management plane of SPI. Our
goal is not to propose a new formal technique, but to introduce an
existing planning mechanism to our domain, which brings both
opportunity and challenges.

…
Operational
Intents

Controllers

Service Provider Infrastructure

Alerts

Strategyzer
Model generator

Planner

Communicator

AgentMain Logic

High-level Intents

System states

Intent
change

Figure 5: Strategyzer workflow.

4.1 System Design
Figure 5 shows an overview of the Strategyzer workflow. The man-
agement plane of SPI consists of automated controllers and human
"controllers". The infrastructure monitors and stores various system
metrics (e.g. resource usage, node status), and may generate both
normal events (e.g. a new pod need to be scheduled) and abnormal
events as alerts (e.g. CPU usage above a threshold). The controllers
continuously monitor the underlying infrastructure and react to
metric changes or ongoing normal events. There may be different
human teams, e.g. an infrastructure team and multiple application
teams, which take care of various parts of a system.

Strategyzer may be triggered when high-level intents change,
new operational events are expected (e.g., software update), or the
infrastructure generates alerts (dashed lines in Figure 5). There are
three main components of Strategyzer: a model generator takes
current system states and high-level intents as input and generates
a formal model; a planner uses the model to generate a sequence
of management actions; and finally a communicator pushes in-
structions to automated controllers and assists human operators
according to the plan. The plan can be a suggestion to human
operators, or can be automatically deployed through the commu-
nicator. Each automated controller has an agent that continuously
listens to the communicator, and when facing an event, pauses its
automated reaction to wait for instructions from its agent via the
communicator.

In this work, we mainly focus on the modeling and planning
techniques assuming the system states have been collected. We
leave the implementation of remaining parts (including the agent
on controllers) to future work. In addition, we assume operators pro-
vide us the knowledge of human actions and automated controllers.
The potential insufficiency caused by human intervention and the
study of appropriate separation between human and automation
are out of scope of our work.

4.2 Modeling Planning Problem
We leverage the area of Artificial Intelligence (AI) planning to auto-
matically synthesize steps to achieve given goals.

We need to model two key parts of the system: (1) controllers,
both automated and human; and (2) system elements and their
states, e.g. pods and their placements, nodes and their resource
usage. The Planning Domain Definition Language (PDDL) [4] is
a formal knowledge representation language designed to express
planning model in AI planning. We leverage PDDL and model

each controller with pre- and post-conditions. For example, for
the descheduler, pre-conditions include that CPU usage is above a
threshold on a node, and post-conditions include that the pod with
highest CPU usage is removed from the node. This representation
could help us to focus on reasoning about the interactions between
controllers, rather than complex implementation details. The sys-
tem elements are defined as objects in PDDL and their states are
defined by Boolean predicates (e.g. node up/down) and a function
that maps objects onto numeric domains (e.g. number of pods on
a node). Modeling the system is not always straightforward, and
often requires special treatments, e.g. preprocessing to translate
high-level intents into appropriate constraints. We give a detailed
example in the study of Case 1 in § 4.3.

We are interested in high-level intents including both safety and
liveness properties. The safety properties denotes that something
bad will never happen, which requires certain constraints to be
satisfied all the time, e.g. the number of replicas should always be
more than 1. The liveness properties states that something good
will eventually happen, which requires the states to be transformed
to end goals, e.g. all the nodes need to be updated. PDDL provides
the definition of state trajectory constraints using linear temporal
logic such as always, and we leverage such constraints to describe
the safety properties. The liveness properties are defined as goals
in PDDL.

4.3 Case Study Implementation
We briefly describe our implementation of twomotivating examples
introduced in § 3. All the following examples are implemented in
PDDL and evaluated by a numeric planner Metric-FF [5] on an Intel
Xeon E5-2697 with 28 cores and 189GB RAM running Linux 5.11.16.

Safety+liveness: software update + environmental events.We imple-
ment Case 1 from § 3.1. This case needs to consider non-deterministic
environmental events which can apply to any link in the topology
and at anytime during the software update. Modelling such non-
determinism is non-trivial and most planning tools cannot fit our
needs. We translate the potential environmental events into addi-
tional constraints in the planning model. Each failure event can
isolate a subset of nodes (i.e., they are no longer reachable from
users and the rest of the network), which we refer to as a shared-risk
group (SRG). When considering up to 1 link failure, for the simple
topology in Figure 3, the SRGs are 𝑆1 and 𝑆3. For the high-level
intent (a) in § 3.1, the constraint can be defined as: for all the 𝑆𝑅𝐺𝑖 ,
the number of available replicas in the rest of topology (i.e. except
for the replicas in the nodes of 𝑆𝑅𝐺𝑖) should be at least 1.

Optimization: generating efficient plan. We implement Case 3
in § 3.3. To find an efficient plan, we assign a cost to each action
and add an optimization goal of minimizing total cost through the
metric keywords in PDDL. In this case, descheduling has higher
cost than balancing the load (i.e. assigning cost 1 for load balancer
and 20 for scheduler).

Evaluation and discussion on scalability. Figure 6 shows the
experimental results for the two cases, where the y-axis shows the
planning time (model generation time is negligible). The graph for
the experimental result of memory usage is similar as Figure 6. The
topology we used is as following: a core router is connecting to
edge routers that can be scaled up, and each edge router connects

 0.01

 0.1

 1

 10

 100

 1000

 10000

 3 4 5 6 7 8 9 10

Ti
m

e
(s

ec
on

ds
)

Number of nodes

Case 1
Case 3

Figure 6: Evaluation results.

to two nodes, where the two nodes form a SRG for 1 link failure. For
Case 1, we scale up the number of nodes, and the initial placement
is on two different SRGs. For Case 3, we scale up the number of
nodes and pods for 𝑎𝑝𝑝1, and place each pod replica onto a separate
node. In both cases, the rest of the setup remains unchanged.

We manually inspect the generated plans and they all accurately
result in the goal state. Case 3 has better performance than Case 1,
because it has a much shorter series of actions (around 5 steps in
all scenarios) than Case 1 (which grows linearly with number of
nodes and is 144 steps for 10 nodes).

While the plans are correct, the performance results show this
implementation does not scale well. This highlights the challenge of
this problem space. To plan an action sequence, the search space is
much larger than, say, synthesizing a static configuration. Evenwith
10 nodes and 3 pods (2 already placed and 1 to be scheduled by a
planner), there are around 80 candidate actions at each step (as there
are several possible parameterized actions applied to each object
in the system, along with “helper” actions that modify internal
system state variables). Since the final plan at this scale has 144
steps, a brute force searchwould inspect very roughly 80144 possible
plans. Also, we note the planner software package Metric-FF we
use was built for a different domain, and so we expect there are
domain-specific optimizations that can assist.

5 DISCUSSIONS AND FUTUREWORK
Customized planners/solutions for scalability and non-determinism.
Our proof-of-concept demonstrated the idea of planning, but we be-
lieve a custom domain-specific planner will be necessary to achieve
acceptable performance; among other things, it must support a nu-
meric domain, iterative operations like sum, and representing non-
determinism. With respect to the latter, we showed how to model
non-determinism for one specific application in § 4.3, by includ-
ing failures which happen at an unknown time as a continuously-
preserved resilience constraint. Other variations, e.g. randomness
in controllers, may require a customized solution.

In addition to a new planner, preprocessing methods could fur-
ther optimize the size of the model, e.g. carefully eliminating the
objects absent from a planning event. For planning in the face of
failures, use of SRGs along the lines of our prototype may be key:
for example, Amazon has only 80 availability zones, while modeling
thousands or millions of individual network links is impractical
and adds little value.

Formal modeling of controllers and human actions. Currently ex-
perts need to manually model controllers in PDDL. Although this
is one of the challenges in our system, we believe there is hope.

Controllers in container orchestration are becoming standardized,
and one controller can have a unified specification across different
orchestration systems. We believe modeling these controllers can
be a one-time effort. For network automation controllers in SPI,
one can develop a domain-specific language to provide a general-
ized understanding for different types of controllers and service
providers. For human actions, one of the future works is to leverage
the approaches from the human-computer interaction (HCI) field
to work with operators and summarize a representative lists of
management actions.

Controllers in hierarchy. As network automation controllers run
as services and are managed by orchestration system, the orches-
tration controllers become the "controllers of controllers". This may
bring new challenges that we plan to explore in the future work. The
management system needs to plan under intertwined and depen-
dent goals across different subsystems. For example, if the service
capacity goal of network automation controller can’t be met, the
performance goal in RAN may not be met since the controller may
not be able to optimize traffic in time; while the service capacity
goal is related to the resource usage goal in orchestration system.
Additionally, the orchestration controllers need to appropriately
balance the resources between multiple network controllers if they
share the same platform.

6 RELATEDWORK
Intent-based systems. Google’s Orion SDN controller [2] uses in-
tents for updating the network design and adding new features.
VISCR [11] automatically detects rogue policies, policy conflicts,
and automation bugs. Detecting policy conflicts is an interesting
future extension of our work. [6] translates intents expressed in
natural languages into a formal policy. These systems are comple-
mentary to our problem space because they do not synthesize plans
for management tasks.

Microservice management. FIRM [13] considers high-level SLO
intents when managing resources in microservices. Gandalf [9]
aims to safely deploy software rollouts to the infrastructure. These
works can automate a specific perspective of the management, but
don’t consider various high-level intents like service capacity. [10]
describes cross-controller interactions, but it focuses on verification
rather than planning.

7 CONCLUSION
Our motivating examples demonstrate the needs for a practical
automation for service provider management planes. Our proof-
of-concept system can accurately generate plans for complex task,
while scalability remains a challenge. A scalable planner that can
coordinate across a diverse range of individual controllers is an
exciting way to avoid mistakes, reduce human effort, and improve
overall service reliability in future service provider networks.

Acknowledgements.We thank Dr. Vijay Gopalakrishnan for
his valuable feedback. This material is based upon work supported
by the National Science Foundation under grant No. CNS-1513906
and the Maryland Procurement Office under Contract No. H98230-
18-D-0007.

REFERENCES
[1] AT&T. AT&T Business Service Guide. https://serviceguidenew.att.com/sg_

libraryCustom.
[2] A. D. Ferguson, S. Gribble, C. Hong, C. E. Killian, W. Mohsin, H. Mühe, J. Ong,

L. Poutievski, A. Singh, L. Vicisano, R. Alimi, S. S. Chen, M. Conley, S. Man-
dal, K. Nagaraj, K. N. Bollineni, A. Sabaa, S. Zhang, M. Zhu, and A. Vahdat.
Orion: Google’s software-defined networking control plane. In J. Mickens and
R. Teixeira, editors, 18th USENIX Symposium on Networked Systems Design and
Implementation, NSDI 2021, April 12-14, 2021, pages 83–98. USENIX Association,
2021.

[3] H. Geffner and B. Bonet. A Concise Introduction to Models and Methods for
Automated Planning. Synthesis Lectures on Artificial Intelligence and Machine
Learning. Morgan & Claypool Publishers, 2013.

[4] P. Haslum, N. Lipovetzky, D. Magazzeni, and C. Muise. An Introduction to the Plan-
ning Domain Definition Language. Synthesis Lectures on Artificial Intelligence
and Machine Learning. Morgan & Claypool Publishers, 2019.

[5] J. Hoffmann. The metric-ff planning system: Translating ”ignoring delete lists”
to numeric state variables. J. Artif. Intell. Res., 20:291–341, 2003.

[6] A. S. Jacobs, R. J. Pfitscher, R. A. Ferreira, and L. Z. Granville. Refining network
intents for self-driving networks. In Proceedings of the Afternoon Workshop on
Self-Driving Networks, SelfDN@SIGCOMM 2018, Budapest, Hungary, August 24,
2018, pages 15–21. ACM, 2018.

[7] Kubernetes. Kubernetes: Production-grade container orchestration. https://
kubernetes.io/, May 2021.

[8] Kubernetes-sigs. Descheduler. https://github.com/kubernetes-sigs/descheduler,
June 2020.

[9] Z. Li, Q. Cheng, K. Hsieh, Y. Dang, P. Huang, P. Singh, X. Yang, Q. Lin, Y. Wu,
S. Levy, and M. Chintalapati. Gandalf: An intelligent, end-to-end analytics
service for safe deployment in large-scale cloud infrastructure. In R. Bhagwan
and G. Porter, editors, 17th USENIX Symposium on Networked Systems Design and
Implementation, NSDI 2020, Santa Clara, CA, USA, February 25-27, 2020, pages
389–402. USENIX Association, 2020.

[10] B. Liu, A. Kheradmand, M. Caesar, and P. B. Godfrey. Towards verified self-driving
infrastructure. In B. Zhao, H. Zheng, H. V. Madhyastha, and V. N. Padmanabhan,
editors, HotNets ’20: The 19th ACM Workshop on Hot Topics in Networks, Virtual
Event, USA, November 4-6, 2020, pages 96–102. ACM, 2020.

[11] V. Nagendra, A. Bhattacharya, V. Yegneswaran, A. Rahmati, and S. R. Das. An
intent-based automation framework for securing dynamic consumer iot infras-
tructures. In Y. Huang, I. King, T. Liu, and M. van Steen, editors, WWW ’20: The
Web Conference 2020, Taipei, Taiwan, April 20-24, 2020, pages 1625–1636. ACM /
IW3C2, 2020.

[12] T. L. F. Projects. Open network automation platform. https://www.onap.org/,
May 2021.

[13] H. Qiu, S. S. Banerjee, S. Jha, Z. T. Kalbarczyk, and R. K. Iyer. FIRM: an intelligent
fine-grained resource management framework for slo-oriented microservices. In
14th USENIX Symposium on Operating Systems Design and Implementation, OSDI
2020, Virtual Event, November 4-6, 2020, pages 805–825. USENIX Association,
2020.

[14] RedHat. Red hat openshift. https://www.openshift.com/, May 2021.
[15] P. Wadhwani and S. Gankar. Edge data center market share 2020-2026. Global

Market Insights, September 2020.

https://serviceguidenew.att.com/sg_libraryCustom
https://serviceguidenew.att.com/sg_libraryCustom
https://kubernetes.io/
https://kubernetes.io/
https://github.com/kubernetes-sigs/descheduler
https://www.onap.org/
https://www.openshift.com/

	Abstract
	1 Introduction
	2 Background
	2.1 Overview of Service Provider Infrastructure
	2.2 Controllers in Service Provider Infrastructure
	2.3 Summary of Current Limitations

	3 Motivating Examples
	3.1 Case 1: Integrating Human Actions with Controllers and Environmental Events
	3.2 Case 2: Service-level Intents
	3.3 Case 3: Efficient Controller Ordering

	4 Towards Practical automation
	4.1 System Design
	4.2 Modeling Planning Problem
	4.3 Case Study Implementation

	5 Discussions and Future Work
	6 Related work
	7 Conclusion
	References

