Session 3: Verification

HotNets '20, November 4-6, 2020, Virtual Event, USA

Towards Verified Self-Driving Infrastructure

Bingzhe Liu*

University of Illinois at Urbana-Champaign

Matthew Caesar
University of Illinois at Urbana-Champaign

ABSTRACT

Modern “self-driving” service infrastructures consist of a diverse
collection of distributed control components providing a broad spec-
trum of application- and network-centric functions. The complex
and non-deterministic nature of these interactions leads to failures,
ranging from subtle gray failures to catastrophic service outages,
that are difficult to anticipate and repair.

Our goal is to call attention to the need for formal understanding
of dynamic service infrastructure control. We provide an overview
of several incidents reported by large service providers as well
as issues in a popular orchestration system, identifying key char-
acteristics of the systems and their failures. We then propose a
verification approach in which we treat abstract models of control
components and the environment as parametric transition systems
and leverage symbolic model checking to verify safety and liveness
properties, or propose safe configuration parameters. Our prelimi-
nary experiments show that our approach is effective in analyzing
complex failure scenarios with acceptable performance overhead.

CCS CONCEPTS

« Computer systems organization — Reliability; Availabil-
ity; Cloud computing; « Networks — Network reliability; « Soft-
ware and its engineering — Formal software verification.

KEYWORDS

Self-driving infrastructure, Service infrastructure control, Verifica-
tion, Parameter synthesis, Symbolic model checking

ACM Reference Format:

Bingzhe Liu, Ali Kheradmand, Matthew Caesar, and P. Brighten Godfrey.
2020. Towards Verified Self-Driving Infrastructure. In Proceedings of the
19th ACM Workshop on Hot Topics in Networks (HotNets °20), November
4-6, 2020, Virtual Event, USA. ACM, New York, NY, USA, 7 pages. https:
//doi.org/10.1145/3422604.3425949

1 INTRODUCTION

A modern service infrastructure typically consists of multiple auto-
mated or semi-automated dynamic control components working at

“Authors contributed equally to the paper. Order determined by a coin toss.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

HotNets °20, November 4-6, 2020, Virtual Event, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8145-1/20/11...$15.00
https://doi.org/10.1145/3422604.3425949

96

Ali Kheradmand®

University of Illinois at Urbana-Champaign

P. Brighten Godfrey

University of Illinois at Urbana-Champaign and VMware

various layers providing a broad spectrum of service- and network-
centric functions. Most of these components continuously monitor
various system metrics (e.g. end-to-end latency, server resources)
and events (e.g. failures, traffic spikes, maintenance), and then per-
form actions to manipulate the system according to configured
policies. For example, the scheduler in an orchestration system
such as Kubernetes [24] or Docker Swarm [37] controls the place-
ment of application containers according to server resources, while
an application load balancer (e.g. NGINX, HAProxy) manages the
amount of traffic sent to each application instance according to
end-to-end request latency. In the meantime, various routing and
traffic engineering mechanisms (e.g. BGP, ECMP, MPLS-TE) manage
network connectivity and performance. As the commoditization
of Internet services continues to drive down budgets, and as ma-
chine learning and other technologies continue to make automation
easier (having already been applied to fault remediation [7, 33], net-
work repair [39, 43] and database management systems [26, 30]),
future services are likely to become ever closer to the vision of
“self-driving” infrastructure.

Non-trivial effects emerge from such a diverse range of control
components interacting with each other and with the environment.
For example, a network traffic engineering component may modify
routes to optimize global bandwidth, unintentionally increasing
an application’s traffic latency. This in turn might trigger a load
balancer to re-distribute an application’s incoming traffic based on
the observed latency change that again affects bandwidth alloca-
tion. This complexity paves the way for a range of failures from
subtle performance degradation to catastrophic outages. Moreover,
these failures may only manifest under a certain combination of
non-deterministic interactions, making them hard to detect before
deployment. For instance, as in a Google incident (discussed in § 3.1),
a software rollout may cause server overload and service outage,
but only with certain configurations and if combined with network
partition at a certain point of execution.

To the best of our knowledge, existing infrastructure verification
and network verification tools are a poor fit for this emerging space.
They either solely focus on the networking layer, ignoring higher-
level control components like orchestration systems [2, 5, 15, 16,
19, 23, 31, 32, 40—-42]; only consider logical properties like network
reachability rather than quantitative ones (e.g., load, latency) [5, 31,
40, 41]; focus on static snapshots rather than dynamic control [19,
42]; target specific protocols (e.g., BGP, ECMP) [36]; or focus on
low-level system details rather than inter-component interactions
(e.g. idempotency of provisioning scripts) [34].

Given the increasing complexity of the modern service infras-
tructure, we believe it is time to call attention to the need for a
formal understanding of dynamic service infrastructure control.
As a first step, we identify several key characteristics of dynamic

https://doi.org/10.1145/3422604.3425949
https://doi.org/10.1145/3422604.3425949
https://doi.org/10.1145/3422604.3425949

Session 3: Verification

infrastructure control components that complicate pre-deployment
problem detection. We demonstrate the role of these characteristics
in real-world failures by examining incident reports from large
service providers and issues reported for Kubernetes, a popular
open-source orchestration system. We then describe a proof-of-
concept verification approach for systems of multiple dynamic
control components. Our approach treats abstract models of con-
trol components and their environment as a parametric transition
system, and employs symbolic model checking for verification of
safety and liveness properties expressed using a temporal logic such
as LTL (linear temporal logic) and CTL (computation tree logic).
In case the model checker finds a problem, it produces parameters
and concrete execution traces of the system that demonstrate the
property violation. Our approach can also be used to find config-
uration parameter values that ensure the desired properties are
never violated. We experiment with our prototype on two example
scenarios inspired by real-world incidents and problems, showing
effectiveness in finding complex failure scenarios, and promising
scalability. Finally, we discuss future challenges to achieve a formal
understanding of self-driving infrastructure.

2 BACKGROUND

Modern service infrastructures, ranging from large public cloud
providers to small enterprise private infrastructure, are composed of
multiple layers with several possible dynamic control components
at each layer. To place our work in context, we briefly overview a
few of these components.

Network layer. Service infrastructure networks leverage rout-
ing protocols (e.g. BGP, ECMP), security components (e.g. firewalls),
and traffic engineering mechanisms (e.g. MPLS-TE), working to-
gether to connect physical servers and network devices, enforce
security policies, and optimize network bandwidth and latency.
Emerging self-driving networks may go further, transparently op-
timizing traffic, self-configuring routing, and even automating re-
pairs. For example, hyper-scale cloud providers like Google have
advanced online traffic engineering (TE) [18] that monitors network
utilization of application classes and dynamically allocates routes
to deliver prioritized max-min fair allocations.

Virtualization layer. Physical resources are typically divided
into several logical slices (e.g. VMs, containers, virtual networks)
that form the virtualization layer and are managed by orchestration
systems like Kubernetes, Docker Swarm, or commercial products.
We discuss a few controllers as examples, with a focus on the Kuber-
netes ecosystem (similar concepts can be found in other systems).

Deployment controller/ReplicaSet Controller controls the pod!
configurations, update, runtime, and termination in a deployment
to meet with the operator’s expectations. A particularly interesting
functionality is that it defines and maintains a certain number of
pod replicas in the cluster for an application.

Scheduler places newly-created pods on the best nodes? accord-
ing to certain rules. For example, it filters out nodes with insufficient
resources and ranks those that remain with user-defined policies
(e.g., favoring nodes with least requested resources).

LA pod is a basic execution unit that encapsulates an application’s containers and their
associated resources.
%A node is a virtual machine or a physical machine that runs pods.

97

HotNets '20, November 4-6, 2020, Virtual Event, USA

Network
reachability

Routing/TE

Load balancer

Autoscaler

Latency

Bandwidth

Scheduler
Descheduler /
Rate limiter

Rolling update
controller

Resource
usage

Number of app
replicas

() controller

Metric

Node status Environment

O

Figure 1: Examples of the complex relation between various
controllers and environment in real world

Descheduler [25] evicts pods from a node according to user-
defined strategies and node resource usage. RemoveDuplicates, for
instance, evicts pods if there is more than one pod for an application
on the same node.

Service/application layer. Controllers at the service or appli-
cation layer manage service-level objectives related to performance
and security. Examples include:

Load balancer (e.g., NGINX, HAProxy) distributes input traffic
among application instances using various mechanisms, e.g., round-
robin, hashing, least-connection-scheduling, or least load/latency.

Rate limiter limits the number of requests each server receives
within a time period. It can be used to mitigate DDoS attacks.

Key characteristics. Summarizing the above, we identify four
key characteristics that distinguish this space:

Dynamic control. The majority of these systems run as continu-
ous loops running indefinitely (e.g. load balancer) or for a period of
time (e.g. rolling update controller) during which they dynamically
react to various system metrics and events.

Nontrivial interactions. These systems consist of multiple control
components that may be built for separate roles but interact with
each other, either through direct API calls, intertwined goals, or
shared dependencies. Figure 1 illustrates some of these interactions.

Quantitative metrics. Many of these components monitor and
react to quantitative metrics like end-to-end latency and load, rather
than just Boolean properties such as network reachability.

Cross-layer. The control components collectively manipulate sys-
tem elements at multiple logical layers. Therefore, reasoning about
their behavior during deployment requires cross-layer knowledge.

3 WHAT CAN GO WRONG?

To see how the key characteristics identified in § 2 factor into real
infrastructure failures, we study incident and issue reports from
large service providers (§ 3.1) and Kubernetes (§ 3.2). We then
describe additional hypothetical but plausible failure scenarios and
demonstrate one experimentally (§ 3.3). We conclude with a few
takeaways (§ 3.4).

3.1 Incident Report Study

We reviewed all incident reports made publicly available by Google
Cloud between 2017-2019 [13], and by Amazon AWS between 2011-
2019 [3]. Among the 242 total reports, we studied the 53 reports
that had enough documented detail (42 of 230 from Google Cloud
and 11 of 12 from AWS) to understand how they occurred.

We examine the role of each characteristic discussed in § 2 in
causing, propagating, or complicating each incident and report the

Session 3: Verification

H Characteristic ‘ Google Cloud ‘ Amazon AWS ‘ Total H
Dynamic control 30 (71%) 8 (73%) 38 (72%)
Nontrivial interactions 12 (29%) 7 (64%) 19 (36%)
Quantitative metrics 20 (48%) 7 (64%) 27 (51%)
Cross-layer 21 (50%) 9 (82%) 30 (56%)

Table 1: System features involved in cloud incidents

results in Table 1. Generally, our study shows that these charac-
terises play important roles in the incidents we studied.?> We note
that in some incidents, the root cause of the failure can be attrib-
uted to an environmental event, misconfigurations, bad component
design, or maintenance events. However, it is the combination of
these causes with the aforementioned characteristics that exacer-
bate the problem and result in a larger impact. We demonstrate the
roles of the characteristics with two representative examples.

Google ticket #19007 [28]. An internal Publish/Subscribe mes-
saging system (Pub/Sub), built using a replicated key-value store,
was used to propagate control plane messages for many user-facing
services. A routine software rollout of the key-value store restarted
part of the key-value store. During the rollout, a network parti-
tion resulted in load shifting to a small number of replicas of the
key-value store. Another issue caused a large number of clients
to generate an unexpected amount of traffic to the replicas in the
rollout region. The smaller number of replicas failed to handle these
requests. Continued failures impacted the availability of Pub/Sub
in the rollout region, which resulted in the cascading performance
degradation of many user-facing services.

This incident involves all four characteristics in Table 1: the
rollout software and load balancing are dynamic components. They
interact by affecting the number of available key-value store replicas
(a quantitative value). Moreover, the incident involves the service
layer and the network layer.

Google ticket #18037 [27]. Unusually large requests were sent
to the BigQuery “router server” (which proxies and directs requests
from clients to back-end servers). This resulted in more memory al-
located to process the requests. A garbage collector then consumed
more CPU, which triggered a load balancer (LB) to treat the situa-
tion as potential abuse and reduce the router server’s capacity. The
insufficient capacity eventually resulted in the BigQuery service
that depends on the router server rejecting user requests.

The router server, garbage collector, and LB are dynamic compo-
nents involved in this failure. It occurred due to interactions among
these components in specific, relatively complex conditions, and
the LB manipulated a quantitative threshold to overly constrain the
capacity of the router server. Thus, this incident illustrates all the
key characteristics of § 2 except cross-layer interaction.

3.2 Issues with Kubernetes

We browsed the Kubernetes issue tracker and here illustrate two
examples where the key characteristics played important roles.*
Kubernetes issue #75913 [12]. Taints allow nodes to repel a
set of pods. In this issue, a Kubernetes deployment was set to place
pods on a tainted node which did not accept the execution of such

3Non-trivial interaction is less common in Google reports. This may be because Google
reports do not contain as rich information as Amazon; in cases of uncertainty, we
conservatively marked the incident as not involving a certain characteristic.

“We did not perform a quantitative study of these issues because the database also
includes many software bugs irrelevant to our study, as it is not an incident database.

98

HotNets '20, November 4-6, 2020, Virtual Event, USA

pods. These configurations caused two components to continuously
modify the system — the deployment controller creating pods to
maintain a certain number of pod replicas, and the taint manager
terminating pods according to taint configuration — which then
caused the deployment controller to act again, creating a loop.

Kubernetes issue #90461 [11]. A rolling update controller
(RUC) was configured with maxSurge = 1, meaning that, to com-
pensate for the pods that are brought down during an update rollout,
at most one “additional” pod could be created beyond the “expected”
number of replicas defined in the deployment spec. Meanwhile, a
horizontal pod autoscaler (HPA) was deployed to dynamically ad-
just the number of pods based on pod resource usage. When the
RUC temporarily incremented the number of pods, the HPA was
triggered and falsely increased the number of “expected” pods, due
to a defect in the HPA implementation (basically returning the “ex-
pected” number of pods as the “current” number of pods) - causing
the RUC to create yet another “additional” pod, and so on. Note
that the defect in HPA only manifests in unfortunate interactions
with controllers like RUC.

3.3 What Else Could Go Wrong?

We expect the space of potential problems goes far beyond the
publicly-disclosed incidents above, especially as further automation
is adopted in enterprises. To explore what is possible, we describe
how a few common infrastructure control components could even
produce permanent oscillations (and hard-to-detect performance
degradation), and we demonstrate one of these experimentally.

Oscillation caused by descheduler. The descheduler could
cause permanent oscillation when it co-exists with a deployment
controller or a scheduler and when they are configured inappropri-
ately. The descheduler can set its strategy to RemoveDuplicates
(§ 2), which could conflict with the deployment controller that re-
quires more than one replica on the same node. In another case, the
descheduler sets its strategy to be LowNodeUtilization, which
evicts pods on a node when its CPU utilization is above a threshold.
However, the scheduler may use a different threshold, which causes
the pods to be descheduled and re-scheduled, and consequently
moved back and forth indefinitely.

We experimentally demonstrate this oscillation problem in a
Kubernetes cluster with 6 VMs consisting of 2 masters, 3 workers
and 1 load balancer. The descheduler runs as a cronjob deploy-
ment [10] every 2 minutes. We deployed an app with a single pod
that performed dummy CPU-intensive calculations. We set the
app’s requested CPU resource to 50%, and the eviction threshold
for LowNodeUtilization policy (§ 3.3) to 45%. Figure 2 shows the
oscillation in the pod placement between worker 2 and worker
3 caused by the interaction of the scheduler and the descheduler.
Thus, even the interaction of related components within the same
layer can lead to unforeseen problems. With the increase of con-
trol components developed or configured by uncoordinated teams,
similar failure scenarios are quite plausible.

Oscillation with load balancer. A load balancer (LB) may fail
to converge even under steady load for various reasons. We il-
lustrate an interesting such case resulting from unfortunate path
selection combined with a latency-based LB. In Figure 3, three
servers are connected to an LB through a network of four routers.

Session 3: Verification

Route(p,)
Route(p,)
Route(p,)
Route(p,)

®

/

AN
& @ ®
0 5 0 15 20 25 30 = Al =

Time since app start (min) S, S, S;

app,
appy

r

Worker Index

Py PPy P
Figure 2: Oscillation in Kuber-

) Figure 3: Load balancer os-
netes experiment

cillation example

The routers use ECMP with destination hashing, and the LB imple-
ments a weighted round-robin algorithm using service response
times. Service response time depends on both server-side latency
and latency of the links on the path between the server and the
LB. The latency of each server and link depends on its load. There
are two applications, each having 2 replicas. Figure 3 shows the
placement of the replicas (p1 — p4) and the ECMP path choices.
Let w; denote the percentage of app;’s traffic assigned to replica
pj by the LB. Oscillations can happen in the following situation: (1)
Initially, wi‘ > wg and WZ > wg ,and the system is stable. (2) Sudden
external traffic on link R1-Ry results in an increased response time
for p4. (3) The LB sets wg > wi’, sending more of appy’s traffic
towards p3. Latency of link R;-Ra (shared by p1 and p3) increases
due to the load increase, resulting in higher response time for p1,
which is sensitive to network latency. (4) The LB sets wj > w{,
sending more of app,’s traffic towards pa. This results in more load
on s2 (shared by pa, p3) and increased response time for p3, which
is sensitive to server latency. (5) The LB shifts app,,’s traffic from p3
back to p4 by setting wfl’ > wg . This decreases R1-Ra’s latency and
p1’s response time. (6) The LB shifts app,’s traffic from pa back
to p1 by setting w{ > w9, going to the same state as step (3) and
failing to converge. Although a real-world LB might not oscillate
infinitely, extended oscillation prior to convergence can still lead
to performance degradation. We also note that this problem may
be hard to catch as it depends on nondeterministic ECMP hashing.

3.4 Takeaway Points

The incident study presented here is not broad enough to produce
confident quantitative estimates of frequency of certain types of
failures. Instead, our goal is to show that the key characteristics that
we identified do manifest in real incidents, and that their impact
can be complicated, across multiple service providers and orchestra-
tion systems. Therefore, we believe such systems can benefit from
verification that models the key characteristics we identified in
§ 2: continuous dynamic control, interactions among components
(rather than verifying each component in isolation), quantitative
variables (rather than just functional aspects like availability of a
network path), and multiple system layers.

Existing network verification systems, e.g. [2, 4, 9, 15, 19, 23,
31, 32], do not consider one or more of the above characteristics.
None consider control components above the network layer. Few
consider quantitative properties, and then only in a limited way (§ 6).
Network configuration verifiers [1, 4, 31] perhaps come closest: they
model dynamic control, but are limited to specific routing protocols
and primarily focused on reaching a converged state rather than
continuous closed-loop control. They model interactions among

99

HotNets '20, November 4-6, 2020, Virtual Event, USA

Control
component
model

Parameter
constraints

Property
model

Transition system
Symbolic model checker

Verification Suggested
results parameters

Figure 4: The workflow of our proposed proof-of-concept

Counter-
example

routers, but limited to routing advertisements or network access
control, rather than the richer space of interactions that exist (Fig. 1).

The above four characteristics are, however, typical of modern
distributed systems software. And not surprisingly, our solution ap-
proach (§ 4) is common in verification of other distributed systems.
We apply this general technique to the novel domain of service
infrastructure control.

4 TOWARDS VERIFIED INFRASTRUCTURE

As afirst step toward alleviating the problems illustrated in the pre-
vious section, we propose a proof-of-concept verification approach
for dynamic service infrastructure control. Figure 4 illustrates the
overall workflow. We briefly describe our approach and then ex-
amine its use on two example scenarios inspired by incidents and
problems mentioned in the previous section. We also examine the
approach’s scalability. We emphasize that the goal of this section is
not to introduce a new formal technique. Rather, it is to demonstrate
the use of a standard technique, namely symbolic model checking,
in detecting and preventing the problems under consideration.

4.1 Proof of Concept Design

Symbolic model checking. Our goal is to capture failures arising
from a combination of bad design or configuration, environmental
conditions, and unfortunate interactions of control components
with each other and/or with the environment. A common technique
for verification of concurrent systems is to model the behavior
of all components as a non-deterministic transition system and
employ model checking to efficiently search the space of possible
executions. Furthermore, we may want certain parts of our models
to be parametric (configuration parameters like number of instances
to be simultaneously updated in an update rollout, or environmental
conditions like link latency). The model checker should figure out
the parameters, in addition to execution steps, that lead to failure
(or suggest safe parameters preventing it). Symbolic model checkers
are useful in such scenarios. A symbolic model checker works with
symbolic states (i.e. sets of states represented together in a logical
form) rather than enumerating individual explicit states. Beyond
efficiency benefits, this lets the user define symbolic parameters in
her models rather than concrete values.

In the current work we use NuXMV [6], a state-of-the-art sym-
bolic model checker supporting BDD/SAT/SMT-based symbolic
model checking for both finite domains and infinite domains (mod-
els containing integer or real values, useful for modeling quantita-
tive metrics such as real time, load, and latency). The tool provides
a modular but low-level modeling language for defining the tran-
sition system, and implements a collection of advanced symbolic
model checking algorithms for verification of properties encoded in

Session 3: Verification

(g) Selected {E: (®
for update
SR
O=0 O=0 = 6
© © © ©
available: 4 available: 4 available: 4 available: 1 available: 0 available: 1

Figure 5: Counter-example for case study experiment 1

various formalism including LTL and CTL. It also provides limited
parameter synthesis functionality (i.e. synthesizing parameters that
ensure a desired property holds).

Modeling. We need two general categories of models to define
our transition system: (1) Models of the various infrastructure ele-
ments, environment, metrics, events, and the rules that govern their
evolution. Examples include network topology, failure events, input
traffic, and the relation between load and latency or resource usage
for each link or device. (2) Models of control components and how
they react to the environment according to their configurations.
This includes routing protocols, load balancer, autoscaler, scheduler,
rolling update controller, etc.

We envision providing a high-level modeling language that fa-
cilitates modeling of control components and environment, accom-
panied by a library of common control system and environment
models. We would then compile the model into the lower-level
language used by the underlying model checker, possibility with
domain-specific optimizations. In our current proof of concept, we
directly model everything in NuXMV’s language.

Specification. We are interested in properties about the dy-
namic aspects of an evolving system. This includes both safety
properties stating nothing bad will ever happen (e.g. no server will
ever get overloaded under certain input load), and liveness prop-
erties stating something good will eventually happen (e.g. system
will stabilize in an stable environment). We usually encode these
properties using a temporal logic such as LTL or CTL. For exam-
ple, in LTL, G(P) (always P) where P is a proposition about the
system state (or another LTL formula) is true iff in all execution
traces of the system (starting from the current state), P holds in all
states. E(P) (eventually P) holds iff in all execution traces of the
system there is a state in which P holds. NuXMV supports multiple
specification languages including CTL and LTL.

4.2 Case Study Experiments

Here we briefly describe our case study experiments. Full imple-
mentation details are publicly available at [21].

1. Update rollout + network partition (safety). We create a
simplified scenario inspired by the root cause of the failure in the
actual Google incident discussed in § 3.1. The infrastructure consists
of a topology of several connected nodes. A service is running on
the infrastructure using a subset of the nodes as service nodes, and
one of the nodes as the service front-end that distributes incoming
requests among service nodes. We model a rollout controller that
takes service nodes down, updates them, and then brings them
back up again, in a non-deterministic order. The rollout may bring
up to p nodes down simultaneously. We also model link failures:
up to k links may fail at non-deterministic points of execution.
There is a loop that re-computes the reachability of the front-end to
each service node after any change. We want to make sure that the

100

HotNets '20, November 4-6, 2020, Virtual Event, USA

& property failure M 0 link failures 1 link failure @ 2 link failures

1000

fattree10
125,500,49

fattree12
180,864,71

fattree8
80,265,31

fattree6
45,108,17

fattree4
20,32,7

test

554
Figure 6: Performance results. Numbers below topology
name indicate the number of nodes, links, and service nodes
respectively. Numbers above 1000s line indicate timeout.

number of available (i.e up and reachable) service nodes never goes
below a threshold m, otherwise the available service nodes may fail
due to overload. We can encode this property as the LTL formula
G(converged = available >= m): always whenever the reachability
computation is converged, the number of available service nodes must
be at least m. Depending on the topology and values of p, k and m,
the property may fail. Figure 5 shows a counter-example produced
by the model checker for the parameters p =m =1,k = 2.

By choosing the values of p, k, and m, an operator can use the
system to make sure their rollout config. is safe under assumptions
about the number of failures. It can also be used to synthesize pa-
rameters that make the given property valid. Say we are interested
in finding safe non-zero values for p, given the property and k = 1,
m = 1. The system in this case suggests the values p € {1, 2}.

2.Load balancer + ECMP (liveness). Next, we check a liveness
property in a model of the load balancer example described in § 3.3.
We model the topology in Figure 3. We hard-code ECMP path
selections described in the example.> We model each application’s
input traffic as a positive real-valued parameter. We model each
w;. as an integer (only allowing 0 or 1 values). The load on each
server/link is the sum of the amount of traffic on that server/link.
We also model a non-deterministic one-time external traffic increase
on one of the links. E.g. loadg, = w?-t“+w§-tb+eR2, where ¢ is the
input traffic to app; and eg, is the external traffic on Ry. We assume
the latency of each server (for each app) has a linear relationship
with the load on that server. E.g., latencyg2 = m® - loads, +1¢
where m? and [are (positive) real-valued parameters for app,.
The latency of each link is calculated in a similar way, except that
the latency is the same for both apps. The load balancer takes turns
setting the weights for app, and appy,. For each app, it checks each
replica’s response time and sets the weights accordingly (either 0
or 1). We model a “smart” load balancer that considers the effect of
weight changes on the response times in weight calculations.

We check the LTL formula F(G(stable)): eventually the system
becomes always stable, where stable means the weight selections
do not change. Interestingly, the model checker finds a counter-
example where the system is unstable even before the sudden ex-
ternal traffic. To find a more interesting counter-example, we check
stable = F(G(stable)): if the system is initially stable, it even-
tually becomes always stable [again]. The model checker finds a
counter-example (values for input loads, latency parameters, and a
lasso-shaped execution path) where the system is stable and starts
oscillating after an external traffic increase on the link R1-R4.

5One could alternatively model ECMP’s non-deterministic path selection and let the
model checker find the unfortunate choices.

Session 3: Verification

Scalability. As a preliminary assessment of the scalability of our
approach, we repeat experiments in case study 1 (safety) with fat
tree topologies with 32 to 864 links. In each topology one leaf is the
front-end and all other leaves are service nodes. Wesetp =m =1
and use various numbers for k. We terminate the model checker if
it cannot make a decision within 1 hour. All experiments run inside
a VM on a MacBook Air, 1.6GHz Intel Core 15, 8GB RAM.

Figure 6 shows the runtime results. The horizontal axis shows
input topologies in ascending size order. The first topology (test)
corresponds to Fig. 5 and the rest are fat trees. The blue line shows
runtime for cases in which the property is not valid. This corre-
sponds to setting k equal to 2, 2, 3,4, 5, 6 along the horizontal axis.

In all of our experiments the time to find a violation is signif-
icantly shorter than the time for verification. E.g., in fattree6 it
only takes 0.5s to find a violation (k = 3), while it takes > 12,141s
to verify the property for k = 1,2 respectively. This is expected:
finding a violation usually requires few steps of execution, but the
model checker usually has to exhaust the whole state space to ver-
ify a property that holds. In addition, runtime generally increases
exponentially with the size of the input. The model checker times
out for any k on fattree12. Moreover, the runtime for the passing
cases increases exponentially with k.°

5 DISCUSSION AND FUTURE WORK

Scalability. State-space explosion is a common problem with model
checking based approaches. Still, given the size of the state space
and our deliberate omission of any domain-specific optimizations,
the observed performance in our experiment is promising. Inspired
by the successes in network verification [5, 16, 31, 41], we are hope-
ful to devise domain-specific optimizations to scale our verification
approach in future work. Future work should also evaluate and
improve scalability with regard to the complexity of system under
investigation (e.g., number of distinct types of control components).

Formal modeling of control components. This is one of the
main challenges of our approach, and we expect it to be exacer-
bated as complex control components continue to emerge. Still, we
believe there is hope. Standardization of orchestration systems like
Kubernetes and Istio [17] can provide a unified understanding of
control components. Extracting models from these system would
become a one-time effort by experts. Besides, the push towards
“infrastructure as code” provides standard languages for users to de-
fine their infrastructure (Terraform [38], AWS CloudFormation [8])
and a formal model may be derived from the code. Also, modelling
all implementation details may not be necessary: we only need
enough to verify certain classes of target properties. A future di-
rection is to define high-level modeling languages that capture the
control logic of these components at the right level of abstraction.

Beyond traditional verification. We discussed the possibility
of synthesizing safe configuration parameters for controllers. We
could also help with risk assessment by examining the blast radius of
an operational event. A more ambitious goal would be to synthesize
the entire infrastructure control from abstract models and expected
properties. It would also be interesting to take the probability of
events (e.g. link failures) into account and provide probabilistic
reasoning capabilities similar to [9, 35]. Moreover, the support for

©The apparent irregularity of test and fattree4 between k = 2 and k = 0, 1 is because
the property does not hold for k = 2 in those cases while it holds for lower k.

101

HotNets '20, November 4-6, 2020, Virtual Event, USA

infinite domains enables us to verify models and properties with
real time values (e.g., the system should converge within 5s).

Ease of use. One of our future goals is to make our approach use-
ful even for formal verification non-experts. Directions that could
help include automatic extraction of models from standardized sys-
tems and/or configuration languages; a high-level domain-specific
modeling and specification language; a library of common con-
troller models and common properties of interest; and automatic
model or property inference [20, 29].

6 RELATED WORK

Model checking in network verification. Our work is closely
related to past network verifiers (e.g. [5, 22, 23, 31, 40, 41]), many of
which effectively perform symbolic model checking for the control
or data plane. We go beyond just network controllers or data plane
elements and packet-level reachability properties. However, we be-
lieve inspiration from these systems’ domain-specific optimizations
may be relevant for scalability in our domain.

Quantitative/probabilistic network verification. [2, 19, 42]
extend data plane verification with quantitative properties such as
minimum available bandwidth. Unlike our approach, these works
focus on static snapshots rather than dynamic control or only focus
on network level components. [9, 35] allow modeling and reasoning
about probabilistic network behavior (e.g., link failure), but do not
consider dynamic control and temporal properties.

Recently, [36] checks if a control plane configuration may cause
link overloads under failures. Unlike us, [36] is tied to fixed routing
protocols (BGP, OSPF), load balancing (ECMP), events (link failure),
metrics (link load), and state (convergence).

Infrastructure automation verification. There is progress [34]
in configuration verification for provisioning tools like Puppet and
Ansible. This line of work considers low-level effects of configura-
tions on machine/VM state (e.g. determinancy, idempotency) rather
than the dynamic control properties that we consider.

Distributed systems verification. We are not focusing on ver-
ification of specific distributed protocols or of distributed system
implementations [14]. Although our approach is a common tech-
nique for distributed systems verification, we target a specific novel
domain. We focus on the reliability of infrastructure automation
rather than correctness of distributed apps running on the infras-
tructure. This may enable future domain-specific optimizations.

7 CONCLUSION

Our study of several real-world high-impact failures and problems
shows the need for formal understanding of dynamic infrastruc-
ture control components and their interaction. As a first step to-
wards verified self-driving infrastructure, we propose a verification
approach that aims to go beyond the scope of what current net-
work/infrastructure verification tools can verify. Our preliminary
experiments with our proof-of-concept yield promising results.

Acknowledgements. We thank Bilal Anwer, Pramod Jamkhed-
kar, Rakesh Sinha, and Kostas Oikonomou of AT&T for helpful early
discussions. We also thank Prof. Tianyin Xu and the anonymous
reviewers of HotNets for their valuable feedback. This material is
based upon work supported by the National Science Foundation
under grant No. CNS-1513906 and by the Maryland Procurement
Office under contract No. H98230-18-D-0007.

Session 3: Verification

REFERENCES

[1] A. Abhashkumar, A. Gember-Jacobson, and A. Akella. Tiramisu: Fast multilayer

[10
[11
[12
[13

[14

[15

[16

[17

[18

[19

[20

[21
[22

[23

)
]

]

]

]

]

network verification. In R. Bhagwan and G. Porter, editors, 17th USENIX Sympo-
sium on Networked Systems Design and Implementation, NSDI 2020, Santa Clara,
CA, USA, February 25-27, 2020, pages 201-219. USENIX Association, 2020.

A. Abhashkumar, J. Kang, S. Banerjee, A. Akella, Y. Zhang, and W. Wu. Supporting
diverse dynamic intent-based policies using janus. In Proceedings of the 13th
International Conference on emerging Networking EXperiments and Technologies,
CoNEXT 2017, Incheon, Republic of Korea, December 12 - 15, 2017, pages 296-309.
ACM, 2017.

Amazon. Aws post-event summaries.
premiumsupport/technology/pes/, June 2020.
R. Beckett, A. Gupta, R. Mahajan, and D. Walker. A general approach to network
configuration verification. In Proceedings of the Conference of the ACM Special
Interest Group on Data Communication, SSGCOMM 2017, Los Angeles, CA, USA,
August 21-25, 2017, pages 155-168. ACM, 2017.

M. Canini, D. Venzano, P. Peresini, D. Kostic, and]. Rexford. A NICE way to test
openflow applications. In S. D. Gribble and D. Katabi, editors, Proceedings of the
9th USENIX Symposium on Networked Systems Design and Implementation, NSDI
2012, San Jose, CA, USA, April 25-27, 2012, pages 127-140. USENIX Association,
2012.

R. Cavada, A. Cimatti, M. Dorigatti, A. Griggio, A. Mariotti, A. Micheli, S. Mover,
M. Roveri, and S. Tonetta. The nuxmv symbolic model checker. In A. Biere and
R. Bloem, editors, Computer Aided Verification - 26th International Conference,
CAV 2014, Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria,
Fuly 18-22, 2014. Proceedings, volume 8559 of Lecture Notes in Computer Science,
pages 334-342. Springer, 2014.

Cisco. Cisco automated fault management. https://www.cisco.com/c/dam/en/us/
services/collateral/services/bcs-afm-aag.pdf, August 2018.

CloudFormation. Aws cloud: formation model and provision all your cloud
infrastructure resources. https://aws.amazon.com/cloudformation/, June 2020.
T. Gehr, S. Misailovic, P. Tsankov, L. Vanbever, P. Wiesmann, and M. T. Vechev.
Bayonet: probabilistic inference for networks. In J. S. Foster and D. Grossman,
editors, Proceedings of the 39th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI 2018, Philadelphia, PA, USA, June 18-22,
2018, pages 586-602. ACM, 2018.

Github. Github of kubernete descheduler. https://github.com/kubernetes-sigs/
descheduler, June 2020.

Github. Hpa v2 scales up deployment during rolling updates 90461. https:
//github.com/kubernetes/kubernetes/issues/90461, June 2020.

Github. Replicaset controller bug: continuously creating pod to tainted nodes
75913. https://github.com/kubernetes/kubernetes/issues/75913, June 2020.
Google. Google cloud incident reports. https:/status.cloud.google.com/summary,
June 2020.

C. Hawblitzel, J. Howell, M. Kapritsos, J. R. Lorch, B. Parno, M. L. Roberts, S. T. V.
Setty, and B. Zill. Ironfleet: proving practical distributed systems correct. In
E. L. Miller and S. Hand, editors, Proceedings of the 25th Symposium on Operating
Systems Principles, SOSP 2015, Monterey, CA, USA, October 4-7, 2015, pages 1-17.
ACM, 2015.

A. Horn, A. Kheradmand, and M. R. Prasad. Delta-net: Real-time network verifi-
cation using atoms. In A. Akella and J. Howell, editors, 14th USENIX Symposium
on Networked Systems Design and Implementation, NSDI 2017, Boston, MA, USA,
March 27-29, 2017, pages 735-749. USENIX Association, 2017.

A. Horn, A. Kheradmand, and M. R. Prasad. A precise and expressive lattice-
theoretical framework for efficient network verification. In 27th IEEE International
Conference on Network Protocols, ICNP 2019, Chicago, IL, USA, October 8-10, 2019,
pages 1-12. IEEE, 2019.

Istio. Istio: connect, secure, control, and observe services. https://istio.io/, June
2020.

S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata, J. Wan-
derer, J. Zhou, M. Zhu, J. Zolla, U. Holzle, S. Stuart, and A. Vahdat. B4: experience
with a globally-deployed software defined wan. In D. M. Chiu, J. Wang, P. Bar-
ford, and S. Seshan, editors, ACM SIGCOMM 2013 Conference, SSGCOMM’13, Hong
Kong, China, August 12-16, 2013, pages 3-14. ACM, 2013.

G. Juniwal, N. Bjorner, R. Mahajan, S. Seshia, and G. Varghese. Quantitative
network analysis. Technical report, 2016.

A. Kheradmand. Automatic inference of high-level network intents by mining
forwarding patterns. In SOSR ’20: Symposium on SDN Research, San Jose, CA,
USA, March 3, 2020, pages 27-33. ACM, 2020.

A. Kheradmand. Case study implementation details.
kheradmand/verdict-hotnets20, 2020.

A. Kheradmand and G. Rosu. P4K: A formal semantics of P4 and applications.
CORR, abs/1804.01468, 2018.

H. Kim, J. Reich, A. Gupta, M. Shahbaz, N. Feamster, and R. J. Clark. Kinetic:
Verifiable dynamic network control. In 12th USENIX Symposium on Networked
Systems Design and Implementation, NSDI 15, Oakland, CA, USA, May 4-6, 2015,
pages 59-72. USENIX Association, 2015.

https://aws.amazon.com/cn/

https://github.com/

102

[24]
[25]

[26]

[27]
[28]

[29]

[30

(31

(32]

[33]

[34]

[35]

[36]

(37]
[38]

[39]

[40]

[41]

[42]

[43]

HotNets '20, November 4-6, 2020, Virtual Event, USA

Kubernetes. Kubernetes: Production-grade container orchestration. https://
kubernetes.io/, June 2020.

Kubernetes-sigs. Descheduler. https://github.com/kubernetes-sigs/descheduler,
June 2020.

L. Ma, D. V. Aken, A. Hefny, G. Mezerhane, A. Pavlo, and G. J. Gordon. Query-
based workload forecasting for self-driving database management systems. In
G. Das, C. M. Jermaine, and P. A. Bernstein, editors, Proceedings of the 2018 Inter-
national Conference on Management of Data, SIGMOD Conference 2018, Houston,
TX, USA, June 10-15, 2018, pages 631-645. ACM, 2018.

Google. Google bigquery incident 18037. https://status.cloud.google.com/
incident/bigquery/18037, June 2020.

Google. Google operations incident 19007. https://status.cloud.google.com/
incident/google-stackdriver/19007, June 2020.

S. Moon, J. Helt, Y. Yuan, Y. Bieri, S. Banerjee, V. Sekar, W. Wu, M. Yannakakis, and
Y. Zhang. Alembic: Automated model inference for stateful network functions.
In J. R. Lorch and M. Yu, editors, 16th USENIX Symposium on Networked Systems
Design and Implementation, NSDI 2019, Boston, MA, February 26-28, 2019, pages
699-718. USENIX Association, 2019.

A. Pavlo, G. Angulo, J. Arulraj, H. Lin, J. Lin, L. Ma, P. Menon, T. C. Mowry,
M. Perron, I. Quah, S. Santurkar, A. Tomasic, S. Toor, D. V. Aken, Z. Wang, Y. Wu,
R. Xian, and T. Zhang. Self-driving database management systems. In CIDR 2017,
8th Biennial Conference on Innovative Data Systems Research, Chaminade, CA,
USA, January 8-11, 2017, Online Proceedings. www.cidrdb.org, 2017.

S.Prabhu, K. Chou, A. Kheradmand, B. Godfrey, and M. Caesar. Plankton: Scalable
network configuration verification through model checking. In R. Bhagwan and
G. Porter, editors, 17th USENIX Symposium on Networked Systems Design and
Implementation, NSDI 2020, Santa Clara, CA, USA, February 25-27, 2020, pages
953-967. USENIX Association, 2020.

S. Prabhu, A. Kheradmand, B. Godfrey, and M. Caesar. Predicting network futures
with plankton. In K. Chen and J. Padhye, editors, Proceedings of the First Asia-
Pacific Workshop on Networking, APNet 2017, Hong Kong, China, August 3-4, 2017,
pages 92-98. ACM, 2017.

E. Research. A look at automated fault management with machine learn-
ing. https://www.ericsson.com/en/blog/2019/6/automated-fault-management-
machine-learning, June 2019.

R. Shambaugh, A. Weiss, and A. Guha. Rehearsal: a configuration verification
tool for puppet. In C. Krintz and E. Berger, editors, Proceedings of the 37th ACM
SIGPLAN Conference on Programming Language Design and Implementation, PLDI
2016, Santa Barbara, CA, USA, June 13-17, 2016, pages 416-430. ACM, 2016.

S. Smolka, P. Kumar, N. Foster, D. Kozen, and A. Silva. Cantor meets scott:
semantic foundations for probabilistic networks. In G. Castagna and A. D. Gor-
don, editors, Proceedings of the 44th ACM SIGPLAN Symposium on Principles of
Programming Languages, POPL 2017, Paris, France, January 18-20, 2017, pages
557-571. ACM, 2017.

K. Subramanian, A. Abhashkumar, L. D’Antoni, and A. Akella. Detecting network
load violations for distributed control planes. In A. F. Donaldson and E. Torlak,
editors, Proceedings of the 41st ACM SIGPLAN International Conference on Pro-
gramming Language Design and Implementation, PLDI 2020, London, UK, June
15-20, 2020, pages 974-988. ACM, 2020.

D. Swarm. Docker swarm: Swarm mode overview. https://docs.docker.com/
engine/swarm/, June 2020.

Terraform. Terraform: use infrastructure as code to provision and manage any
cloud, infrastructure, or service. https://www.terraform.io/, June 2020.

Y. Wu, A. Chen, A. Haeberlen, W. Zhou, and B. T. Loo. Automated bug removal
for software-defined networks. In A. Akella and J. Howell, editors, 14th USENIX
Symposium on Networked Systems Design and Implementation, NSDI 2017, Boston,
MA, USA, March 27-29, 2017, pages 719-733. USENIX Association, 2017.

F. Yousefi, A. Abhashkumar, K. Subramanian, K. Hans, S. Ghorbani, and A. Akella.
Liveness verification of stateful network functions. In R. Bhagwan and G. Porter,
editors, 17th USENIX Symposium on Networked Systems Design and Implemen-
tation, NSDI 2020, Santa Clara, CA, USA, February 25-27, 2020, pages 257-272.
USENIX Association, 2020.

Y. Yuan, S. Moon, S. Uppal, L. Jia, and V. Sekar. Netsmc: A custom symbolic
model checker for stateful network verification. In R. Bhagwan and G. Porter, ed-
itors, 17th USENIX Symposium on Networked Systems Design and Implementation,
NSDI 2020, Santa Clara, CA, USA, February 25-27, 2020, pages 181-200. USENIX
Association, 2020.

Y. Zhang, W. Wu, S. Banerjee, J. Kang, and M. A. Sanchez. Sla-verifier: Stateful
and quantitative verification for service chaining. In 2017 IEEE Conference on
Computer Communications, INFOCOM 2017, Atlanta, GA, USA, May 1-4, 2017,
pages 1-9. IEEE, 2017.

W. Zhou, J. Croft, B. Liu, E. Ang, and M. Caesar. Automatically correcting net-
works with NEAt. In S. Banerjee and S. Seshan, editors, 15th USENIX Symposium
on Networked Systems Design and Implementation, NSDI 2018, Renton, WA, USA,
April 9-11, 2018, pages 595-608. USENIX Association, 2018.

https://aws.amazon.com/cn/premiumsupport/technology/pes/
https://aws.amazon.com/cn/premiumsupport/technology/pes/
https://www.cisco.com/c/dam/en/us/services/collateral/services/bcs-afm-aag.pdf
https://www.cisco.com/c/dam/en/us/services/collateral/services/bcs-afm-aag.pdf
https://aws.amazon.com/cloudformation/
https://github.com/kubernetes-sigs/descheduler
https://github.com/kubernetes-sigs/descheduler
https://github.com/kubernetes/kubernetes/issues/90461
https://github.com/kubernetes/kubernetes/issues/90461
https://github.com/kubernetes/kubernetes/issues/75913
https://status.cloud.google.com/summary
https://istio.io/
https://github.com/kheradmand/verdict-hotnets20
https://github.com/kheradmand/verdict-hotnets20
https://kubernetes.io/
https://kubernetes.io/
https://github.com/kubernetes-sigs/descheduler
https://status.cloud.google.com/incident/bigquery/18037
https://status.cloud.google.com/incident/bigquery/18037
https://status.cloud.google.com/incident/google-stackdriver/19007
https://status.cloud.google.com/incident/google-stackdriver/19007
https://www.ericsson.com/en/blog/2019/6/automated-fault-management-machine-learning
https://www.ericsson.com/en/blog/2019/6/automated-fault-management-machine-learning
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://www.terraform.io/

	Abstract
	1 Introduction
	2 Background
	3 What can go wrong?
	3.1 Incident Report Study
	3.2 Issues with Kubernetes
	3.3 What Else Could Go Wrong?
	3.4 Takeaway Points

	4 Towards verified infrastructure
	4.1 Proof of Concept Design
	4.2 Case Study Experiments

	5 Discussion and Future Work
	6 Related work
	7 Conclusion
	References

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.268 x 11.693 inches / 210.0 x 297.0 mm
 Shift: move up by 3.60 points
 Normalise (advanced option): 'original'

 32

 D:20201016104519
 841.8898
 a4
 Blank
 595.2756

 Tall
 1
 0
 No
 474
 343

 Fixed
 Up
 3.6000
 0.0000

 Both
 4
 AllDoc
 4

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 0
 7
 6
 7

 1

 HistoryList_V1
 qi2base

