
Towards An Application Objective-Aware Network Interface
Sangeetha Abdu Jyothi∗

UC Irvine, VMware Research
Sayed Hadi Hashemi∗

UIUC
Roy Campbell

UIUC
Brighten Godfrey
UIUC, VMware

Abstract
The network representation used for conveying an applica-

tion’s objective in cloud environments, which we refer to as
the Application Network Interface (ANI), has steadily evolved
— from packet to flow and flowlet, and more complex abstrac-
tions such as coflow. In this paper, we argue that state-of-
the-art ANIs still fail to capture important application needs.
Using distributed deep learning as a representative applica-
tion, we show that application performance achievable using
current ANIs are up to 25% lower than optimal. We analyze
these ANIs to understand the missing pieces and put forward
CadentFlow, an ANI with per-flow metrics and an optimiza-
tion objective, to capture application requirements effectively.
We discuss the opportunity for real-world implementation of
a more expressive ANI and its implications on the design of
network controllers and scheduling algorithms.

1 Introduction

A key goal of data center networks is to enable peak applica-
tion performance. To achieve this, it is necessary to translate
the application’s high-level performance needs or application
objective to network-level requirements that are actionable
for a network controller. This objective is expressed to the
controller through a representation that we refer to as the Ap-
plication Network Interface (ANI). The expressiveness of the
ANI can affect application performance significantly.

ANIs and the flexibility they offer have evolved over
time. The earliest congestion control and traffic engineer-
ing schemes focused on simple proxies for application per-
formance at packet level — throughput, per-packet delay,
and jitter. Rate Control Protocol [14] made a step towards
application-level performance goals with flow as the ANI
and emphasis on Flow Completion Time (FCT) or the time
of arrival of the last packet. Another leap towards an ANI
that captures the requirements of cloud applications was the
coflow [8]. Inspired by cloud applications such as MapReduce,
coflow considers a set of parallel flows within an application
as a single entity where the FCT of the last flow determines
the performance. This enables scheduling schemes to borrow
bandwidth from lighter flows in the coflow to speed up the
heavier flows, thereby improving coflow completion time.

We observe that even the coflow abstraction is insufficient
to support requirements of today’s sophisticated applications.
Applications such as distributed deep learning and interactive
analytics have a complex interplay of communication and
computation at the participating nodes. In this scenario, not

∗equal contribution

all flows within a coflow are equivalent from the perspective
of the application. Depending on the nature of computation,
the application may benefit by finishing some flows sooner
than others within a coflow. For example, multiple parameters
are exchanged between the parameter servers and a worker in
distributed deep learning. These parameters are consumed at
different times based on the underlying computational model
in frameworks such as TensorFlow. Hence, the iteration time
can be improved significantly when the relative priorities of
flows (parameter transfers) are made known to the network
controller. Different applications may have other dependen-
cies that require metrics such as relative weights or deadlines.
More importantly, an application may have an explicit opti-
mization objective different from minimizing the completion
time that cannot be conveyed through current ANIs.

In this paper, we argue that it is an opportune moment for
narrowing the gap between application objective and its net-
work representation through a more expressive ANI for cloud
applications. The stringent performance needs of cloud appli-
cations coupled with the opportunity to extract fine-grained
application characteristics using sophisticated learning tech-
niques inspire us to rethink cloud ANI design. First, we ana-
lyze several cloud applications to understand communication
patterns that are not captured by current ANIs. Second, we
quantify the performance benefits achievable with a more ex-
pressive ANI in a popular application, distributed deep learn-
ing. We show that iteration time in deep learning training
can be improved by up to 25% using additional information
made available through CadentFlow. In a shared network
environment, the improvements increase further up to 46%.
Finally, we put forward an application objective-aware ANI
and discuss its implication for cloud systems design.

We propose CadentFlow, an ANI whose semantics include
component flows of an application with associated per-flow
metrics, and an optimization objective for capturing the ap-
plication objective. Finally, we discuss several research direc-
tions including (i) Extraction of CadentFlow attributes which
requires analysis of applications’ models or learning-based
inference. (ii) Redesign of network controllers with novel
scheduling algorithms that can leverage the richer seman-
tics of CadentFlow, and (iii) In-network implementation of
CadentFlow-aware scheduling using programmable switches.

2 Motivation

In this section, we demonstrate the need for rethinking ANI
in the cloud environment by (a) illustrating shortcomings of
state-of-the-art ANIs and (b) examining distributed applica-
tions that can benefit from an improved ANI.

A

B

C

(a)

f1

f2

(b)

Network

Compute

Coflow-Optimized Performance-Optimized

f1

f2

c1 c2 c3

f1 f2

c1 c2 c3

(c) (d)

0 1 1.5 2 2.5 0 0.5 1.51 2

c1

c3

f2

f1

c2

Figure 1: Importance of understanding application objective: (a) Coflow with two component flows. f1 and f2 (size 500Mb each) share a
1Gbps bottleneck link. (b) Computation model at C has 3 operations, c1, c2, and c3 with dependencies between flows and computations as
shown. Each computation operation takes 0.5s to execute. Completion times with (c) coflow completion time-optimized transfers and (d)
application objective-based optimization for transfers.

2.1 The application perspective

In large-scale cloud applications, network transfers involv-
ing multiple concurrent flows account for > 50% of the job
completion time [10]. State-of-the-art coflow abstraction [8],
which considers the correlated flows as a single entity, is prov-
ing insufficient for capturing application requirements due to
complex relationship between flows in emerging applications.

For example, consider the simple coflow in Figure 1a with
two flows of equal size: f1 and f2. The computation at node
C has 3 tasks with dependencies shown in Figure 1b. The
application completion time with coflow optimization is 2.5s
while the optimal time with f1 prioritized (based on computa-
tion in succeeding stage) is 2s. While this simple example can
be solved by splitting the single coflow into two (f1 only, f2
only) and adding dependency between them similar to multi-
stage DAG scheduling in Aalo [9], this approach cannot be
generalized to several applications such as DNN training.

Coflow ANI has several limitations. First, coflow com-
pletion time (CCT) is used as a proxy for application perfor-
mance or job completion time. However, as we show in § 4.2.1
with deep learning workloads, a lower CCT may not always
correlate with a lower job completion time and may even hurt
performance. Thus, an application may have other explicit
objectives and finer-grained preferences that cannot be cap-
tured by FCT/CCT. Second, coflow dependencies cannot be
determined apriori in certain systems (e.g., graph processing
systems operating on time-evolving graphs). Third, some ap-
plications may prefer weighting across flows instead of strict
ordering enforced by a DAG (e.g., stream processing systems).
Fourth, in multi-application environments, significant perfor-
mance benefits can be achieved with deadlines (§ 4.2.2), a
benefit not achievable with a DAG used in coflows.

While prior work has considered inter-flow relationships [3,
5, 8–11] and deadlines [19, 37] in the cloud, the set of ob-
jectives handled by the network controller has been lim-
ited. Inter-coflow scheduling schemes [9–11], even those
which are information-agnostic [3, 38], primarily focus on
a single objective, minimization of mean CCT, which may
not always be a good proxy for application performance.

Flexible packet scheduling in the network [25] is also lim-
ited to simple schemes such as FIFO and SJF. Moreover,
application-level order enforcement independently at each
edge [3,16,17,21,29] is not sufficient since flows originating
at multiple edge nodes often need to be coordinated.

2.2 Which applications will benefit?
We analyze different families of advanced data flow systems
to understand their requirements.
Distributed Deep Learning: This involves iterative compu-
tation with multiple workers and Parameter Servers (PSs).
The parameters, updated at the end of each iteration, are acted
upon by the worker nodes at different time instances deter-
mined by the underlying computational model in frameworks
such as TensorFlow [2] and PyTorch [28]. In this case, the iter-
ation time can be improved by prioritizing parameter transfers
in the order in which they are consumed [16, 17, 21, 29].
Partition-Aggregation: In online services such as Web page
delivery and search query responses, a request is partitioned
across multiple workers and the response aggregated by the
front-end server/proxy is often sent back to the user before
the complete response is available. In this scenario, the ap-
plication can benefit by prioritizing those flows which are
critical to the response. For example, a web proxy waiting
for components in a web page can choose to delay fetching a
large image. While application-level solutions exist [27, 36],
a controller with visibility into multiple such applications can
further improve performance across them (similar to § 4.2.2).
Graph Processing Systems: In graph processing systems [6,
7, 24], a graph is partitioned across multiple nodes which pro-
cess vertices in a sequence and exchange the results of compu-
tation after each iteration. This can be accelerated by prioritiz-
ing flows corresponding to vertices that need to be processed
first. In systems which handle time-evolving graphs [15, 20],
these priorities may change over time.
Interactive Analytics: Big data systems analyzing real-time
low-latency queries (e.g., Naiad [26]) incorporate explicit
application deadlines on each stage of the data flow. This
provides opportunity for accelerating/slowing down the net-

work transfers based on deadlines. In stream processing sys-
tems [4, 23, 34] with load balancing across parallel com-
ponents, the end-to-end performance may be improved by
weighting the flows according to application preferences.

Thus, in a variety of scenarios, awareness of application ob-
jective and dependencies between network flows and compu-
tation can help in prioritizing/accelerating those flows which
are critical to the application. The coflow abstraction is suf-
ficient when the application has hard barriers after each
stage [12, 33]. However, several common distributed applica-
tions have more complex workflows, inspiring us to rethink
the network interface for cloud applications.

3 Application Objective-Aware ANI

Analyzing a wide range of cloud applications, we identify
two essential features missing in state-of-art ANIs.
Missing pieces in current ANIs: The first missing piece is
a means for explicitly conveying application’s objective. In
addition to minimization of coflow completion time, appli-
cations may have other performance objectives such as max-
imizing an application-specific utility in terms of per-flow
completion time and bandwidth. Hence, we argue that the
optimization objective should be an explicit part of the ANI.

The second deficiency in state-of-the-art ANIs is the inabil-
ity to represent complex dependencies across flows (beyond
membership in a set defined by coflows). Dependencies across
coflows have been considered with inter-coflow DAGS [9,35].
However, in practice, dependencies may take several forms
(weighted splitting of bandwidth among component flows,
deadlines per flow, etc.).
Defining CadentFlow: A CadentFlow is a set of correlated
flows between a collection of machines with an application-
level optimization objective denoted by Γ and a set of tagged
flows. Each component flow, fi, has an associated list of
tags, where each tag is a tuple with metric type and met-
ric value. Ti = (ti1,mi1), ..,(tik,mik). We propose weights,
deadlines, and priorities as preliminary candidate metrics
for denoting the inter-dependencies between flows. As ap-
plications and their requirements evolve, more metrics may
be added to this set. A CadentFlow can be represented as:
CF = {{(fi,Ti),(f2,T2),,(fn,Tn)},Γ}.
CadentFlow Representation of Applications: We present
CadentFlow representations of applications discussed in § 2.2.
(i) Distributed deep learning: There are two possible represen-
tations for DNN training. (a) Frameworks such as TensorFlow
provide application-level DAG with inter-dependencies be-
tween communication and computation. This information can
be used to determine priorities of flows, and the objective
will be minimizing completion time of last flow, subject to
scheduling based on priorities. (b) Since, DNN training is
an iterative process, we can estimate the time required by
computation operations in a given system. Combining this
information with the DAG, deadlines can be estimated for in-

dividual flows. This provides additional scheduling flexibility.
The objective is minimizing maximum delay subject to dead-
lines for all flows. This representation improves flexibility by
allowing delayed scheduling of flows with flexible deadlines
(as shown in § 4(b)). (ii) Partition-Aggregation: In Web page
delivery, priorities can be set based on rendering preferences.
The objective is minimizing completion time subject to prior-
itized transfers. (iii) Graph processing systems: Weights used
as metrics for load-balancing, objective is minimize comple-
tion time subject to weighted transfers. (iv) Naiad (interactive
analytics): Deadline is the metric and minimization of sum of
delays with respect to deadline is the objective.

4 Experiments

We quantify benefits achievable with CadentFlow using dis-
tributed deep learning as a representative application.

4.1 Methodology
Workload: We test deep learning workloads using Tensor-
Flow under two scenarios: training and inference. In training,
during each iteration workers (each with an identical copy of
the model) send parameter updates to the Parameter Servers
(PS). PS aggregates the changes and returns the updated pa-
rameters to all workers. In inference, the inference agents read
the parameters from the servers and run the inference. This
captures the online inference scenario where agents (separate
from the workers and Parameter Servers) read the latest ver-
sion of parameters during reinforcement learning and serve
inference queries. We test 11 popular Neural network models
(including [18, 22, 30–32]) using [1] on TensorFlow 1.8 using
the standard batch size for each model.

Estimating metrics: The TensorFlow computational model
is a DAG with dependencies between computation and com-
munication operations/parameter transfers. Given a hardware
configuration, computation in DNN training and inference
workloads is highly predictable. In every iteration, since batch
size of input remains constant, time taken by each computa-
tion operation in the DAG can be accurately estimated. Hence,
total computation before a communication operation can be
estimated accurately with a few initial runs. Also, the model
at all workers is identical.

DNN Training has two phases: (a) forward pass (FP) where
latest parameters are read from PS and loss function is com-
puted, and (b) backpropagation (BP) where parameters are
updated and sent to PS. Thus, we have two CadentFlows (FP
and BP) in one iteration of training. In the FP CadentFlow
(PS to workers), all flows have the same estimated start time
at 0, i.e., all parameters are ready for transfer at PS at the
beginning of a new iteration. However, not all parameters are
consumed at the same time (e.g., parameters of layer 1 are
used before layer 2 during computation). Hence, the deadline
of a parameter is estimated as the total computation time be-
fore the read operation of that parameter. Thus, parameters

of initial layers have earlier deadlines. In the BP CadentFlow
(workers to PS), the estimated start time is computed as the
total computation time before the parameter is ready to be
sent to the PS. Parameters are updated in the reverse order of
layers in DNN. Thus, parameters of earlier layers in the DNN
have later start times. All flows share the same deadline de-
termined by the end of computation. The inference workload
only has forward pass and hence a single CadentFlow with
deadline estimation similar to training forward pass.

Note that the deadline estimation depends only on the DAG
and not on the available bandwidth. Thus, the deadlines rep-
resent the preferences of the application and the flexibility
available between flows from the computation perspective.

We evaluate the workloads under two scenarios: Cadent-
Flow with flow metrics as (a) priorities and (b) deadlines.
The TensorFlow computational DAG is available through an
API. We estimate priorities based on position of parameter
reads and updates in the DAG. We estimate deadlines by trac-
ing TensorFlow runs. We collect the runtime information on
Standard NC6 virtual machines (6 cores, 56 GB RAM, 1 X
Nvidia K80 GPU with 12GB RAM) in Azure. We run the
same model 10 times on a single machine to measure time
taken by an operation. We estimate the deadlines using DAG
structure and mean time taken by each computation operation.
Control Schemes: In our experiments, we test 3 schemes:
(i) TCP simulated with max-min fair sharing across flows
sharing a link, (ii) Coflow scheduling using Minimum Al-
location for Desired Duration (MADD) used in Varys [11]
where lighter flows are allocated a lower bandwidth in such a
manner that all flows in a coflow finish at the same time, (iii)
CadentFlow scheduling where flows are transferred based on
priorities/deadline estimated from the TensorFlow model. For
a fair comparison, we assume that the baseline TCP connec-
tion transfers the parameters in the best possible order from a
given node. This baseline is similar to node-level prioritiza-
tion (similar to [3]) without inter-node considerations.

Using runtime estimates in the previous step and a network
controller, we simulate the network schemes under multiple
configurations (1 to 16 PS/workers and 1/10 Gbps NIC). For
Coflow and CadentFlow scheduling, the centralized controller
can make globally optimal decisions and enforce them at the
edge. We evaluate performance benefits achievable with a
single active application as well as multiple applications.

Application Simulation: We measure two metrics on the
distributed deep learning application: the iteration time and
the CCT flexibility ratio. The iteration time is the time taken
by one complete iteration composed of computation time
(empirically estimated) and communication time (evaluated
using the three control schemes in our network simulator).
In the training workload, this includes the computation in
forward pass, backpropagation phase, and two CadentFlows
(FP and BP). In the inference workload this is composed of
one CadentFlow for fetching parameters from the servers and
the inference computation. We assume that all the workers

have identical computation time, i. e., no stragglers.
We introduce CCT flexibility ratio to measure the flexibil-

ity available in flow scheduling with deadlines as flow metrics.
CadentFlow deadlines may be higher than the best possible
completion time. This allows the network controller to delay
some flows without affecting application performance and use
the saved bandwidth for other applications with tighter dead-
lines. We measure this flexibility using CCT flexibility ratio,
defined as the ratio of the time available until the last dead-
line in a CadentFlow (max feasible CCT) to the minimum
CCT achievable for that CadentFlow in the given network.
For example, at t = 10s, a new CadentFlow arrives with last
deadline as 40s with the best possible transfer time of 15s
(ending at 10+15 = 25s), CCT flexibility ratio is 40−10

15 = 2.

4.2 Results

We present results on training and inference workloads across
the three control schemes in an environment with 10Gbps
network. The conclusions were also verified with 1Gbps.

4.2.1 Single Application

To understand the differences between control schemes, we
first conduct experiments with a single active application in
the network. The iteration time of coflow optimized scheme
(MADD) and the CadentFlow optimized scheme are com-
pared with the TCP baseline in Figures 2(a,c) and 3(a). Lower
iteration time implies better performance. The iteration time
results are the same with both priority-based and deadline-
based CadentFlow optimization, with a maximum reduction
in iteration time of 25% (ResNet-v1-200 with 8 W, 8 PS).

We note that Coflow scheduling may result in worse per-
formance than TCP in some cases. For example, the iteration
time on CifarNet is 11% higher with coflow optimization
compared to TCP in a system with 8 workers and 8 PS. This
is due to the coflow scheduling mechanism that delays smaller
transfers to accelerate large transfers. This hurts transfers of
small parameters in earlier layers of DNN. Note that the CCT
is same for both Coflow and CadentFlow optimizations in
this scenario. However, application iteration time is lower
for CadentFlow optimization. Also, CadentFlow optimization
performs at least as good as TCP in all tested scenarios.

With deadline-based Cadentflow, we can also obtain CCT
flexibility (ability to delay flows until deadline without affect-
ing iteration time) as seen in Figures 2 (b,d) and 3 (b). In
some models, we obtain both improvement in iteration time
and high CCT flexibility (e.g., Inception-v3 with 20% lower
iteration time and 9.5% of added flexibility in coflow com-
pletion times). The flexibility depends on the ratio of time
taken by computation and communication in various mod-
els. There is higher flexibility in computation-heavy models,
giving opportunity to delay transfers.

In the inference workload (Figure 3), coflow optimization
leads to significant performance degradation (up to 68.5%

increase in iteration time compared to TCP in ResNet-v1-
101). However, CadentFlow performance is comparable to
that of TCP with significant flexibility in flow scheduling
across many networks.

�
��
��

��
��
�

�
���
��

��

��
��
��
��
��
��

��
��
��
��
��
��

�
��

���
�
��
��
�

�
��
�
��
��
��
��

�

�
��
�
��
��
��
��

�

�
��
�
��
��
��
��

�
��
�
��
��
��
��

�

�
�
�
��
�

�
��
�

��
�

��
�

��
�

�

��
��
��
��
�
���
�

��
��
��
��
�
��
�
�
��

����� ���� ���������� ����

����������

��������

������������

������������

������������

�������������

�������������

������������

�������������

������

�� ���� ���� ���� ���� ��

���������������
������������������

(a) Iteration time: 8 W, 8 PS

����������

��������

������������

������������

������������

�������������

�������������

������������

�������������

������

�� ���������������� �� ��������

���������������������
����������������������������

(b) CCT flexibility: 8 W, 8 PS

����������

��������

������������

������������

������������

�������������

�������������

������������

�������������

������

�� ���� ���� ���� ���� ��

���������������
������������������

(c) Iteration time: 16 W, 16 PS

����������

��������

������������

������������

������������

�������������

�������������

������������

�������������

������

�� ���������������� �� ��������

���������������������
����������������������������

(d) CCT flexibility: 16 W, 16PS
Figure 2: (a) Coflow and CadentFlow optimizations plotted relative
to TCP. Lower iteration time is better. (b) CCT flexibility shows
the window of flexible time available for scheduling with respect to
minimum Coflow Completion Time for deadline-based CadentFlow.

4.2.2 Multiple Applications

With deadline-based CadentFlow, we demonstrate benefits
of CCT flexibility by running two applications in a shared
network (Figure 4(b)). We run two jobs corresponding to the
same DNN model across three racks, where one rack is dedi-
cated to each application (12 servers) and one rack is shared
(4 nodes each in a rack per application). The fair-share for
each application in the shared link S1-S4 is 30 Gbps while
the bandwidth requirement is 40GBps. CCT flexibility allows
us to schedule flows in a manner that maximizes 40GBps

�
��
��

��
��
�

�
���
��

��

��
��
��
��
��
��

��
��
��
��
��
��

�
��

���
�
��
��
�

�
��
�
��
��
��
��

�

�
��
�
��
��
��
��

�

�
��
�
��
��
��
��

�
��
�
��
��
��
��

�

�
�
�
��
�

�
��
�

��
�

��
�

��
�

�

��
��
��
��
�
���
�

��
��
��
��
�
��
�
�
��

����� ���� ���������� ����

����������

��������

������������

������������

������������

�������������

�������������

������������

�������������

������

�� ���� �� ���� ��

���������������
������������������

����������

��������

������������

������������

������������

�������������

�������������

������������

�������������

������

�� ���� �� ���� �� ����

���������������������
����������������������������

Figure 3: Inference workload (16 workers, 16 Parameter Servers)

S3

A1

(12)

S4

A2

(12)

A1(4)
+

A2 (4)

12 *
10Gbps

6 * 10Gbps S1

S2

(a) Network setting

��
����
����
����
����

��
����
����

��
��
��
���
�

��
���
��
�

���
��
���
��
��

���
��
���
��
��

��
���
��
��
���

��
��
��
���
��
��

��
��
��
���
��
��

��
��
��
���
��
�

��
��
��
���
��
��

��
��
��

��
��
��
��
��
���
��

�
��
��
��
��
��
��

�
��
��
��

�
�
��
��
��
��
�
� ����������

���
���������������

(b) Performance improvement

Figure 4: (a) 12 servers of rack 1 connected to switch S2 runs
application instance A1. 12 servers of rack 2 connected to switch
S3 runs instance A2. Out of 12 servers in rack 3, 4 servers belong
to A1 and 4 to A2. (b) Performance improvement achievable with
efficient overlap of multiple jobs in a shared network environment
with deadline-based CadentFlow.

allocation to each application instance. In Figure 4(b), we
compare the three control schemes in this multi-app envi-
ronment normalized with respect to the iteration time with
CadentFlow scheduling when only a single app is active. We
observe that CadentFlow scheduling has the best performance
across all models due to the flexibility provided by deadlines.
Coflow scheduling can result in up to 46.3% higher iteration
time (as in ResNet-v2-50) since deadline information is not
available for flexible allocation. Since deadline information is
necessary for accruing these benefits, even a DAG of coflows
cannot provide this performance improvement.

In summary, we make the following observations:
• Flow-level priorities/deadlines in CadentFlow allow opti-

mizing performance by up to 25% (a significant improve-
ment for long-running DNN workloads).

• Deadline-based CadentFlow can improve network-wide
performance (up to 46%) by providing increased flexibility.

• Coflow optimization can hurt application performance
when there are complex dependencies. In such cases, falling
back on TCP should be preferred.

5 Discussion

Preliminary experiments show that current ANIs are insuffi-
cient for representing requirements of emerging applications.
However, a more expressive ANI like CadentFlow raises sev-
eral challenges.
Extracting the application objective: While application
DAG is easily available for deep learning workloads, deter-
mining flow metrics and application objectives can be cum-
bersome for most applications. Do we need application de-
velopers to express their network requirements more explic-
itly? Alternatively, are machine learning-based frameworks
that learn and adapt the deadlines/priorities/weights based on
application performance more suited in this context? System-
level cues such as reads and writes to disk/memory may help
in deriving deadlines/priorities based on application behavior.
Recent advances in flow prediction [13] are encouraging for
the possibility of learning finer grained network character-
istics of applications. As application requirements become
more stringent and resource usage more heavy, how can we
express the relationship between computation and communi-
cation across multiple nodes more effectively? Is CadentFlow
a complete ANI? If not, what are the missing features that
we need to add to a comprehensive ANI? CadentFlow consid-
ers flows as the basic unit. Are there applications that need
metrics at packet level or flowlet level instead of flow level?
Application Objective-Awareness in Network Scheduling:
An ANI which captures application objectives more effec-
tively opens avenue for design of resource allocation schemes
that can handle diverse objectives and constraints. Some of the
challenges include defining fairness across applications with
varied objectives (beyond CCT) and handling coexistence of
CadentFlows with regular TCP connections. A more difficult
scenario involves coexistence of applications with conflict-
ing objectives. How can we ensure fairness when multiple
application objectives are incompatible? Scheduling under
limited information is also an interesting problem to tackle.
While our experiments focused on a single application with
explicit knowledge of flow sizes and priorities, in practice,
one or more of these factors may be unknown. How can we
extend scheduling schemes to handle probabilistic estimates
of flow metrics while also accounting for accuracy of metrics?
Application-Aware Network Control Implementation:
An enhanced API that supports multiple objectives and novel
scheduling schemes can be implemented in a wide range of
settings: in-host implementation at the edge, using traditional
network hardware with limited number of priority queues, us-
ing programmable network switches with higher flexibility, or
a combination of host and network devices. Implementation
challenges include extracting/learning application network
requirements in real-time across distributed hosts, making and
propagating decisions across network elements in a timely
fashion, determining overheads involved in delaying flows
(such as buffer overheads, location for buffering, etc.)

References

[1] TensorFlow-Slim image classification model library
. https://github.com/tensorflow/models/tree/
master/research/slim, 2019.

[2] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Geoffrey Irving, Michael Isard, et al.
TensorFlow: A System for Large-Scale Machine Learn-
ing. In OSDI, volume 16, pages 265–283, 2016.

[3] Saksham Agarwal, Shijin Rajakrishnan, Akshay
Narayan, Rachit Agarwal, David Shmoys, and Amin
Vahdat. Sincronia: Near-optimal network design for
coflows. In Proceedings of the 2018 Conference of the
ACM Special Interest Group on Data Communication,
SIGCOMM ’18, pages 16–29, New York, NY, USA,
2018. ACM.

[4] Paris Carbone, Asterios Katsifodimos, Stephan Ewen,
Volker Markl, Seif Haridi, and Kostas Tzoumas. Apache
flink: Stream and batch processing in a single engine.
Bulletin of the IEEE Computer Society Technical Com-
mittee on Data Engineering, 36(4), 2015.

[5] L. Chen, W. Cui, B. Li, and B. Li. Optimizing coflow
completion times with utility max-min fairness. In IEEE
INFOCOM 2016 - The 35th Annual IEEE International
Conference on Computer Communications, pages 1–9,
April 2016.

[6] Rong Chen, Jiaxin Shi, Yanzhe Chen, and Haibo Chen.
Powerlyra: Differentiated graph computation and parti-
tioning on skewed graphs. In Proceedings of the Tenth
European Conference on Computer Systems, page 1.
ACM, 2015.

[7] Avery Ching, Sergey Edunov, Maja Kabiljo, Dionysios
Logothetis, and Sambavi Muthukrishnan. One trillion
edges: Graph processing at facebook-scale. Proceedings
of the VLDB Endowment, 8(12):1804–1815, 2015.

[8] Mosharaf Chowdhury and Ion Stoica. Coflow: A net-
working abstraction for cluster applications. In Pro-
ceedings of the 11th ACM Workshop on Hot Topics in
Networks, HotNets-XI, pages 31–36, New York, NY,
USA, 2012. ACM.

[9] Mosharaf Chowdhury and Ion Stoica. Efficient coflow
scheduling without prior knowledge. In Proceedings of
the 2015 ACM Conference on Special Interest Group on
Data Communication, SIGCOMM ’15, pages 393–406,
New York, NY, USA, 2015. ACM.

[10] Mosharaf Chowdhury, Matei Zaharia, Justin Ma,
Michael I. Jordan, and Ion Stoica. Managing data trans-
fers in computer clusters with orchestra. In Proceedings

https://github.com/tensorflow/models/tree/master/research/slim
https://github.com/tensorflow/models/tree/master/research/slim

of the ACM SIGCOMM 2011 Conference, SIGCOMM
’11, pages 98–109, New York, NY, USA, 2011. ACM.

[11] Mosharaf Chowdhury, Yuan Zhong, and Ion Stoica. Ef-
ficient coflow scheduling with varys. In Proceedings of
the 2014 ACM Conference on SIGCOMM, SIGCOMM
’14, pages 443–454, New York, NY, USA, 2014. ACM.

[12] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Sim-
plified data processing on large clusters. In Proceedings
of the 6th Conference on Symposium on Opearting Sys-
tems Design & Implementation - Volume 6, OSDI’04,
pages 10–10, Berkeley, CA, USA, 2004. USENIX As-
sociation.

[13] Vojislav Dukic, Sangeetha Abdu Jyothi, Bojan Karlas,
Muhsen Owaida, Ce Zhang, and Ankit Singla. Is ad-
vance knowledge of flow sizes a plausible assumption?
In 16th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 19), Boston, MA, 2019.
USENIX Association.

[14] Nandita Dukkipati and Nick McKeown. Why flow-
completion time is the right metric for congestion con-
trol. SIGCOMM Comput. Commun. Rev., 36(1):59–62,
January 2006.

[15] Wentao Han, Youshan Miao, Kaiwei Li, Ming Wu, Fan
Yang, Lidong Zhou, Vijayan Prabhakaran, Wenguang
Chen, and Enhong Chen. Chronos: A graph engine for
temporal graph analysis. In Proceedings of the Ninth
European Conference on Computer Systems, EuroSys
’14, pages 1:1–1:14, New York, NY, USA, 2014. ACM.

[16] Sayed Hadi Hashemi, Sangeetha Abdu Jyothi, and
Roy H Campbell. Priority-based Parameter Propagation
for Distributed DNN Training. In The Conference of
Systems and Machine Learning, 2019.

[17] Sayed Hadi Hashemi, Sangeetha Abdu Jyothi, Brighten
Godfrey, and Roy Campbell. Caramel: Accelerating de-
centralized distributed deep learning with computation
scheduling, 2020.

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition.
CoRR, abs/1512.03385, 2015.

[19] Chi-Yao Hong, Matthew Caesar, and P. Brighten God-
frey. Finishing flows quickly with preemptive schedul-
ing. In Proceedings of the ACM SIGCOMM 2012
Conference on Applications, Technologies, Architec-
tures, and Protocols for Computer Communication, SIG-
COMM ’12, pages 127–138, New York, NY, USA, 2012.
ACM.

[20] Anand Padmanabha Iyer, Li Erran Li, Tathagata Das,
and Ion Stoica. Time-evolving graph processing at scale.
In Proceedings of the Fourth International Workshop
on Graph Data Management Experiences and Systems,
GRADES ’16, pages 5:1–5:6, New York, NY, USA,
2016. ACM.

[21] Anand Jayarajan, Jinliang Wei, Garth Gibson, Alexandra
Fedorova, and Gennady Pekhimenko. TicTac: Acceler-
ating Distributed Deep Learning with Communication
Scheduling. In The Conference of Systems and Machine
Learning, 2019.

[22] Alex Krizhevsky. One weird trick for paralleliz-
ing convolutional neural networks. arXiv preprint
arXiv:1404.5997, 2014.

[23] Sanjeev Kulkarni, Nikunj Bhagat, Maosong Fu, Vikas
Kedigehalli, Christopher Kellogg, Sailesh Mittal, Jig-
nesh M Patel, Karthik Ramasamy, and Siddarth Taneja.
Twitter heron: Stream processing at scale. In Proceed-
ings of the 2015 ACM SIGMOD International Confer-
ence on Management of Data, pages 239–250. ACM,
2015.

[24] Grzegorz Malewicz, Matthew H Austern, Aart JC Bik,
James C Dehnert, Ilan Horn, Naty Leiser, and Grzegorz
Czajkowski. Pregel: a system for large-scale graph
processing. In Proceedings of the 2010 ACM SIGMOD
International Conference on Management of data, pages
135–146. ACM, 2010.

[25] Radhika Mittal, Rachit Agarwal, Sylvia Ratnasamy, and
Scott Shenker. Universal packet scheduling. In Pro-
ceedings of the 13th Usenix Conference on Networked
Systems Design and Implementation, NSDI’16, page
501–521, USA, 2016. USENIX Association.

[26] Derek G Murray, Frank McSherry, Rebecca Isaacs,
Michael Isard, Paul Barham, and Martín Abadi. Na-
iad: a timely dataflow system. In Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems
Principles, pages 439–455. ACM, 2013.

[27] Ravi Netravali, Anirudh Sivaraman, James Mickens, and
Hari Balakrishnan. Watchtower: Fast, secure mobile
page loads using remote dependency resolution. In Pro-
ceedings of the 17th Annual International Conference
on Mobile Systems, Applications, and Services, MobiSys
’19, pages 430–443, New York, NY, USA, 2019. ACM.

[28] Adam Paszke, Sam Gross, Soumith Chintala, and Gre-
gory Chanan. PyTorch: Tensors and dynamic neural
networks in Python with strong GPU acceleration, 2017.

[29] Yanghua Peng, Yibo Zhu, Yangrui Chen, Yixin Bao,
Bairen Yi, Chang Lan, Chuan Wu, and Chuanxiong Guo.

A generic communication scheduler for distributed dnn
training acceleration. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles, SOSP ’19,
page 16–29, New York, NY, USA, 2019. Association
for Computing Machinery.

[30] Karen Simonyan and Andrew Zisserman. Very deep con-
volutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556, 2014.

[31] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Ser-
manet, Scott E. Reed, Dragomir Anguelov, Dumitru Er-
han, Vincent Vanhoucke, and Andrew Rabinovich. Go-
ing deeper with convolutions. CoRR, abs/1409.4842,
2014.

[32] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe,
Jonathon Shlens, and Zbigniew Wojna. Rethinking
the inception architecture for computer vision. CoRR,
abs/1512.00567, 2015.

[33] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng
Shao, Prasad Chakka, Suresh Anthony, Hao Liu, Pete
Wyckoff, and Raghotham Murthy. Hive: A warehousing
solution over a map-reduce framework. Proc. VLDB
Endow., 2(2):1626–1629, August 2009.

[34] Ankit Toshniwal, Siddarth Taneja, Amit Shukla, Karthik
Ramasamy, Jignesh M Patel, Sanjeev Kulkarni, Jason
Jackson, Krishna Gade, Maosong Fu, Jake Donham, et al.

Storm@ twitter. In Proceedings of the 2014 ACM SIG-
MOD international conference on Management of data,
pages 147–156. ACM, 2014.

[35] J. Wang, H. Zhou, Y. Hu, C. d. Laat, and Z. Zhao.
Deadline-aware coflow scheduling in a dag. In 2017
IEEE International Conference on Cloud Computing
Technology and Science (CloudCom), pages 341–346,
Dec 2017.

[36] Xiao Sophia Wang, Arvind Krishnamurthy, and David
Wetherall. Speeding up web page loads with shandian.
In 13th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 16), pages 109–122,
Santa Clara, CA, 2016. USENIX Association.

[37] Christo Wilson, Hitesh Ballani, Thomas Karagiannis,
and Ant Rowtron. Better never than late: Meeting dead-
lines in datacenter networks. In Proceedings of the ACM
SIGCOMM 2011 Conference, SIGCOMM ’11, pages
50–61, New York, NY, USA, 2011. ACM.

[38] Hong Zhang, Li Chen, Bairen Yi, Kai Chen, Mosharaf
Chowdhury, and Yanhui Geng. Coda: Toward automati-
cally identifying and scheduling coflows in the dark. In
Proceedings of the 2016 ACM SIGCOMM Conference,
SIGCOMM ’16, pages 160–173, New York, NY, USA,
2016. ACM.

	Introduction
	Motivation
	The application perspective
	Which applications will benefit?

	Application Objective-Aware ANI
	Experiments
	Methodology
	Results
	Single Application
	Multiple Applications

	Discussion

