Towards a Flexible Data Center Fabric with Source Routing

Sangeetha Abdu Jyothi, Mo Dong, P. Brighten Godfrey
University of Illinois at Urbana—Champaign

ABSTRACT

An emerging architecture for software-defined data centers
and WANSs is the network fabric, where complex application-
sensitive functions are factored out, leaving the network it-
self to provide a simple, robust high-performance data de-
livery abstraction. This requires performing route optimiza-
tion, in real time and across a diverse choice of paths. A
large variety of techniques have been proposed to provide
path diversity for network fabrics. But, running up against
the constraint of forwarding table size, these proposals are
topology-dependent, complex, and still only provide limited
path choice which (we show) can impact performance.

We propose a simple approach to realize the vision of a
flexible, high-performance fabric: the network should ex-
pose every possible path, allowing a controller or edge device
maximum choice. To this end, we observe that source rout-
ing can be encoded and processed compactly into a single
field, even in large networks, with OpenFlow 1.3. We show
that, in addition to the expected decrease in required for-
warding table size, source routing supports optimal through-
put performance, in some cases significantly higher than
some past proposals. We thus believe source routing offers
a clean abstraction and efficient implementation for future
network fabrics.

Categories and Subject Descriptors

C.2.1 [Network Architecture and Design]: Centralized
networks

Keywords

Source routing; data centers

1. INTRODUCTION

Data center network architecture is moving towards a net-
work fabric abstraction: the core of the network only pro-
vides simple forwarding functionality and complex functions
are delegated to the edge. This decoupling of forwarding
from other network functions provides us with the opportu-
nity to rethink the design of fabric towards a more flexible
and efficient forwarding core [1].

How does the fabric achieve high performance? The key
is traffic engineering: the network controller or distributed
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions @acm.org.

SOSR 2015, June 17-18, 2015, Santa Clara, CA, USA.
(©2015 ACM. ISBN 978-1-4503-3451-8/15/06...$15.00
DOTI: http://dx.doi.org/10.1145/2774993.2775005

agents must select paths and load-balance between them to
adapt to dynamic traffic patterns. This is a difficult tech-
nical problem due to the scale, dynamics, and high perfor-
mance requirements of modern data centers. Since modify-
ing network-wide switch forwarding entries is slow [2], the
most common approach is two-stage: first a set of paths are
proactively encoded into the data plane, and then the “edge”
of the network load-balances among these in real time. Here
the edge may be a server, a hypervisor, or a top-of-rack
(ToR) switch; and the edge may optimize its path choice
autonomously or as instructed by a central controller.

Encoding the paths into the data plane turns out to be
non-trivial. A key constraint is the limited capacity of switch
forwarding tables, ranging from roughly 2,000 (in some com-
modity OpenFlow gear) to 200,000 (for very simple exact-
match MAC tables). To encode a diverse set of paths be-
tween each source-destination pair, a range of designs have
proliferated [3—11]. These designs are (variously) topology-
dependent, utilize large numbers of forwarding table rules,
complex, and yet still limit the selection of paths. For ex-
ample, CONGA [3] allows a sender to specify the path only
up to a spine or top-level switch. Planck [4] and Shadow
MACs [12] (as we will see) severely limits throughput for cer-
tain traffic patterns and topologies. Most recently, XPath [6]
performs a complex compression to encode a large number
of paths; it can use more than 100k forwarding rules and
still is not guaranteed to provide all paths.

The goal of this paper is to make the case that the fab-
ric should provide a simple abstraction: The ability to use
any physical path. This enables flexibility in the sense that
any available resource can be used without constraints. Fur-
thermore, we argue that the right architecture to achieve a
flexible fabric is source routing: the sender at the edge spec-
ifies a switch-level path through the network, and switches
simply match on identifiers referring to their outgoing ports.
In a sense, this approach takes the fabric design to its purest
form: the switch is stripped down to the minimal function-
ality necessary for flexible high performance.

The most obvious benefit of this design is tiny forwarding
tables (so small that it opens the possibility of simpler switch
hardware). But, as we will argue later, a source-routed fab-
ric is a broader architectural win: it improves achievable
throughput, is more robust to connectivity failures, local-
izes switch forwarding table configurations so they are not
dependent on network-wide topology, and essentially elim-
inates the need for careful updates to forwarding state in
fabric switches [2]. It also may improve monitoring and se-
curity via path provenance, and ease data plane verification.

OpenFlow does not support IPv4 (loose or strict) source
routing, and this would anyway lead to large headers. An-
other method is to use a stack of MPLS labels, 4 bytes per
hop with pushing, swapping, and popping along the path.
We show an even more compact method is possible: us-

ing arbitrary bit masks in OpenFlow 1.3, paths of sufficient
length can be encoded in a single header field (with around
8-10 bits per hop). Perhaps surprisingly, we can even avoid
any packet header modification in the switching fabric.

We are not the first to suggest source routing techniques
for the data center [7,13]. In contrast to that work, our
contributions are to: (1) make the case for source routing
as an effective architecture for a flexible fabric, (2) describe
a compact method for implementing source routing within
OpenFlow, and (3) quantify the improvements in forwarding
table size and achievable throughput and how they depend
on the traffic matrix.

2. BACKGROUND

Several traffic engineering (TE) techniques have been pro-
posed to improve the performance of data centers. In this
section, we elaborate on the state-of-the-art data center for-
warding techniques and their limitations.

The majority of the schemes have been tailored to Clos
networks, commonly used in data centers. In the discussion,
we will refer to two families of topology. A leaf-spine topol-
ogy is a two-tier Clos network. The switches in the lower
tier are called leaves and those in the upper tier are called
spines or core nodes. Each leaf is connected to every spine.
A fat tree is a multi-tier Clos network. In the construction
of [14], which we assume throughout the rest of the paper,
a fat tree is a three-tier network which, when built using
switches of k ports, has %k)z switches and up to % hosts.

CONGA [3] is a traffic engineering scheme designed for
leaf-spine topologies. Each leaf keeps track of congestion on
its paths and chooses the least-congested path for a newly
arriving flowlet. Tags in the VXLAN header are used to
identify the next-hop spine node as well as to carry conges-
tion information. CONGA relies on source routing at the
first hop to allow the destination to keep track of the path
used. However, spine nodes rely on the destination leaf ad-
dress in the packet for forwarding and hence, requires a for-
warding table which can accommodate the number of leaves
in the network. The technique was evaluated on two-level
Clos networks in [3], and as the network grows to multiple
levels it would be increasingly difficult to encode all paths
as the number of possible paths would grow exponentially.

Shadow MACs [12] is a forwarding scheme for traf-
fic engineering which uses multiple spanning trees rooted
at each destination. Each spanning tree has an associated
“shadow” MAC address which allows shifting between the
trees through MAC rewriting. Thus, for each destination
address, only a limited number of paths are available. For
example, Planck [4] uses a shadow MAC scheme with four
spanning trees per destination. In addition to the overhead
in MAC address rewriting, the limited path availability can
impact throughput performance.

XPath [6] relies on compression to fit a large number of
paths into switches’ forwarding tables. It uses a two-step
process involving aggregation of paths into path sets and
assignment of IDs to each path set. Several optimizations
reduce the computation for structured networks, but com-
putation time for random networks is still very high (several
hours to days). Hence, this is a computationally intensive
and complex technique for achieving explicit path control in
data centers. [15] also attempts to assign IDs to paths to fa-
cilitate concise representation. MAC addresses are assigned

as IDs to paths such that multiple paths with that share a
link can be aggregated.

A few data center TE schemes have used or proposed
the use of source routing before. FastPass [5] is a novel
traffic engineering scheme where a centralized controller de-
cides the path as well as the time slot of transmission for
each packet in the network. This TE scheme is restricted to
tiered networks which are rearrangeably non-blocking. The
successful implementation of this scheme would require an
efficient source routing scheme. The paper suggests the use
of VLANSs, IP-in-IP tunnelling or ECMP spoofing for the
implementation of source routing. In SlickFlow [7], packet
headers contain a source route for a primary path and an
alternate path. Since the packet contains next hop informa-
tion for both paths, packet headers are larger. Moreover,
the technique requires changes in the core of the network to
handle the new SlickFlow header. SecondNet [13] is a data
center virtualization architecture which uses port-switching
based source routing (PSSR) as the forwarding method, im-
plemented using MPLS. MPLS is one of the implementation
options we discuss later.

Although source routing has been proposed for data center
networks in the above papers, an analysis of impact of source
routing has been absent. While [16] makes an attempt in
this direction, the objective of the design was to reduce the
controller load and optimize its placement. Our paper con-
tributes a performance analysis of the impact of source rout-
ing, proposes compact implementations in OpenFlow, and
makes the broad architectural case for source routing as a
fabric substrate.

3. SOURCE ROUTING BASED FABRIC

In this section, we first discuss why a source-routed fabric
is an architectural win over a traditional IP-based forward-
ing fabric. Then we discuss possible ways of implementing
source routing and route selection in data centers.

3.1 The Case for a Source Routed Fabric

Smaller forwarding tables: In basic source routing,
each switch only needs to store one rule for each outgoing
port. For ease of implementation, we will propose schemes
which need slightly more: one rule per (hop number, outgo-
ing port) pair. But even in that case, the forwarding table
grows linearly with the diameter of the network and is oth-
erwise independent of the number of switches. Thus, source
routing can support all possible paths to all destinations in
the network while reducing the number of forwarding en-
tries by several orders of magnitude. In the future, this may
enable simpler and cheaper switch hardware.

Higher throughput: Unlike IP-based forwarding fabric
which encounters path constraints due to forwarding table
size restrictions, source routing can support any valid path in
the network. This allows us to utilize the full path diversity
of the network to achieve higher throughput.

Nearly-static forwarding tables: In source routing, a
forwarding table entry at a node is updated only during ad-
dition or deletion of a link directly connected to it. Thus, for-
warding table entries have only local dependencies. Hence,
forwarding tables are unaffected by failures or addition of
nodes in the broader network, leading to reduced error and
complexity. In contrast, traditional forwarding has global
dependenices.

Faster response to failures: Consider a leaf-spine topol-

ogy with two spines (S1,52) and three leaves (L1, L2, L3). A
standard forwarding scheme would enable forwarding along
all shortest paths. Now suppose links (L1, S2) and (S, L3)
fail. At this point, even though the network is still physi-
cally connected, L; cannot reach L3 since non-shortest paths
are not available in the forwarding table. Connection is
re-established only after re-convergence of the control-plane
routing protocol.’ On the other hand, source routing would
easily circumvent the failure by forwarding along the path
Li - S1 — L2 — S2 — L3 without waiting for control
plane re-convergence. This provides a win under the as-
sumption (which we believe will be often true) that edge-
based reaction using source routing can happen more quickly
than global routing protocol re-convergence or reaction by
a central controller.

Architectural solution for consistent update: Since
source routing supports all feasible paths in the network,
switching paths is just a matter of changing a header field
at the sender. This essentially solves the consistent update
problem of IP forwarding fabrics [2,17] where special care
is needed because switching paths requires state changes at
multiple switches in the network.

Path provenance: Source routing provides better mon-
itoring and diagnostic capabilities since each link traversed
by the packet can be retrieved from the header. This can be
applied to congestion monitoring, and also potentially secu-
rity. Just as in a traditional IP-based fabric, if a single hard-
ware or software edge switch is compromised, it can send
packets anywhere in the network and potentially compro-
mise segmentation between tenants. But in a source-routed
fabric, the receiving switch can sanity-check the paths of in-
coming packets to filter some kinds of attacks. (Denial of
service attacks, however, would still be possible.)

Ease of verification: Formal data plane verification [18—-
22] of network policies is an important aspect of operation
in modern data center networks. For IP-based forwarding,
continuous modeling of all rules on all switches are needed
because they run distributed routing protocols that change
over time. However, with source routing, the fabric’s packet
forwarding is stable and predictable. Hence, verification of
encapsulation at edge routers is sufficient.

In this paper, we provide the broad vision of possible ben-
efits of a source-routing fabric but will focus on quantitative
evaluation of first two points listed above.

3.2 Possible implementations

We propose several possible implementations of source
routing that are feasible in current data centers. We do as-
sume a centralized controller which has a global view of the
network and is capable of sending necessary information to
the edge (edge router or hypervisor). The implementation
involves two major stages—how routes are selected at the
edge, and the encoding of the source route. We enumerate
multiple techniques for each stage, which have varying impli-
cations for switch hardware and traffic engineering scheme.

3.2.1 Source route encoding

In source routing, the entire path is inserted in the packet
header. We need a mechanism that allows each intermediate
router to read its next hop from the encoding. Depending

!This can be patched by installing detours around the failed
link, as adopted in MPLS Fast-Reroute and CONGA [3], but
that may generally produce a sub-optimal route.

on the capabilities of switches in the network, one of the
following methods can be chosen for source routing in the
core of the network. The methods are listed in increasing
order of packet overhead.

(a) Bit mask and TTL: OpenFlow 1.3 allows arbitrary
bit masks which can match any bits in a given field. These
bits need not be adjacent or at the beginning of the field.
This feature can be used to reduce the overhead associated
with path information in the packet header. If the maximum
degree (number of ports) of any switch in the network is
256, 8 bits are sufficient to uniquely identify a next hop.
In such a network, a 32-bit field can hold path information
for 4-hop paths. If the largest switch has 64 ports, using
a single IPv6 address field, we could accommodate 21-hop
paths (|128/6]). This allows a very compact representation
of the route in the packet header.

At each switch, we need to identify the correct set of
bits to be read. We propose to rely on an existing hid-
den pointer in the packet. Time-To-Live (T'TL) is an 8-bit
field in IP/MPLS headers that keeps track of the lifespan
of a packet in the network. If we know the TTL set by the
source, the number of hops traversed by the packet can be
easily deduced. Thus, TTL can be used as a pointer which
gives the location of the path corresponding to the current
hop. As a simple example, if the TTL is set to 255 at the
source, the maximum degree in the network is 16 (4 bits)
and 3 hop paths are supported, a mask of xxxx111lxxxx
can be used when the current TTL is 253. Note that this
technique can be used only if every router in the network is
guaranteed to perform TTL operations correctly.

(b) Bit mask and pointer: In networks where TTL
functions are unavailable, an additional pointer field can be
used to locate the correct next-hop information. The pointer
field is initialized to 1 and incremented at each hop. In addi-
tion to bit-mask match rule, each packet has to be matched
against an additional rule which increments the value of the
pointer. This can be implemented in OpenFlow with appro-
priate matching on the combination of the pointer and route
fields, with a rewrite action applied to the pointer.

(c) Bit mask on switch IDs: In contrast to all other
schemes presented here, it is actually possible to implement
source routing without any header field rewrites. To accom-
plish this, we specify the path as a list of globally-unique
switch IDs. A path that passes through a specific switch
contains its own ID followed by the next-hop neighbor’s ID.
Hence the forwarding table contains match rules for each
pair of adjacent locations in the path with the first entry
being the switch’s own ID and the second entry as any of its
neighbors’ ID. This technique does not require a pointer to
the current location because it is implicit in the position of
a switch’s own ID in the path. Unlike the previous schemes,
the number of bits required per tag is not dependent on the
largest degree, but on the number of switches in the network.

(d) MPLS-based source routing: In networks that do
not support OpenFlow 1.3 features, Multi Protocol Label
Switching [23] can be used instead of compact representa-
tion and arbitrary bit masks. However, the default stack
size of MPLS labels in most routers is three. Although it
can be increased to four or five, this also increases header
overhead since each label requires 4 bytes, so MPLS is more
appropriate in networks with small diameter.

Now let us compare these four schemes in a 4096 switch
network with maximum switch degree 256 and network di-

ameter of 5. Consider that an IPv6 address of size 128 bits
can used for encoding the path. With bit mask and TTL,
we need 8 - 5 = 40 bits since each of the 256 outgoing ports
can be uniquely identified with an 8 bit identifier. Rout-
ing table size is 256 - 5 = 1280, since we have to match
each combination of the 5 fields and 256 ports. With an
additional pointer field of optimal length (3 bits), the uti-
lized header bits increases to 43 while the forwarding table
size remains the same (1280 entries). With switch-ID based
routing, 12 bits are required to represent each of the 4096
switches. Hence, we will use 12-5 = 60 header bits and rout-
ing table size is again 1280. With MPLS, a stack of 5 labels
requires 24 -5 = 120 bits. The routing table size is 256 since
the outermost label can map to one of the outgoing links.

3.2.2 Route selection at the edge

In a data center with virtual machines running client ap-

plications, security concerns preclude insertion of source routes

at the client VM. Hence, the route can be injected either at
the hypervisor or at the edge router.

(a) Hypervisor: The hypervisor can be programmed to
encapsulate packets received from the attached VMs with
the appropriate source route as well as decapsulate packets
received from the network. The relevant source route can
either be directly obtained from the centralized controller
or computed at the hypervisor based on network conditions.
The network state could be directly obtained from the con-
troller or could be learned through any distributed algorithm
that runs across hypervisors in the network. A suitable path
computation technique can be adopted depending on the
traffic engineering scheme.

(b) Edge router: The source routes may also be inserted
at the edge routers in the network. The path computation
needs to be done at the centralized controller, which pushes
instructions to the edge routers. The routing table at edge
routers will be much larger compared to the rest of the net-
work, as they need to accommodate rules for source path
header encapsulation and decapsulation.

Note that our proposal in this paper is essentially agnostic
to the traffic engineering scheme. We expect that source
routing will benefit traffic engineering schemes broadly, by
providing more choice in paths—as we will see in the next
section.

4. ANALYSIS

In this section, we analyze the impact of source routing
and several past traffic engineering schemes with respect to
two main metrics: (a) forwarding table size and (b) through-
put performance.

4.1 Methodology

The evaluation focuses on two commonly used data center
topologies — leaf-spine and fat trees. In order to compare the
performance of various schemes, it is imperative to under-
stand the characteristics of the topology.

Understanding the topologies: Leaf-spine topology
with L leaves and S spine switches has L * (L — 1) source-
destination leaf pairs, each of which can use any of the S
(shortest) spine paths, leading to a total of L * (L — 1) % S
paths. The spine switch only has to save information on
each of the destination leaves leading to L entries. However,
each leaf switch has (L — 1)S entries for S paths to each
of the other leaves in the traditional shortest paths-based

Topology Total Forwarding table entries in a leaf switch

paths

Traditional [CONGA [PLANCKT Source
routing

Leaf-spine |L(L —1)S| (L—1)S [(L—1)S| 4(L—1) 8S
(L leaves,
S spines)

Fat trees Kb%/16 K1/8 - 2K? 8K
(degree K)

Leaf-spine | 2088960 8160 8160 1020 256
(256 leaves,
32 spines)

Fat trees 4 % 10° 2% 10% - 800 160
(degree 20)

Table 1: Forwarding table size comparison

routing scheme.

In a fat tree constructed with degree K switches, there
are K?/2 leaves in the lower layer. The number of leaf
pairs is K* /4. Connecting each pair of leaves, we can have
K?/4 paths (considering K /2 next-hops between each adja-
cent layers). Hence, the total number of valid paths in the
network is K°/16. At each leaf, we can have K?/2 outgoing
flows to other leaves each of which can use at most K2/4
paths. Hence, the total number of forwarding table entries
will be K*/8.

Traffic matrix for throughput comparison: We use
Topobench [24] to evaluate throughput performance of var-
ious schemes. Throughput is computed as a solution to a
linear program whose objective is to maximize the mini-
mum flow across all demands. We extend the framework to
accommodate a constrained set of paths according to each
forwarding scheme. We evaluate three realistic traffic ma-
trices (TMs): (a) All-to-all (A2A) TM with a flow between
every pair of switches, (b) Random Matching TM with one
outgoing and one incoming flow per switch, chosen uniform-
randomly and (c) Random matching with non-uniform traf-
fic where the matching between servers is uniform-random,
but 10% of the flows have a demand 10x bigger than the rest
of the flows. A flow is defined per leaf pair and is considered
to be the aggregate traffic between hosts in these leaves.

A traffic pattern similar to all-to-all is generated by certain
real-world applications (such as the shuffle phase in MapRe-
duce). Random matching is a more demanding traffic pat-
tern [24] since it has a single large flow exiting each leaf.
This is somewhat similar to a situation that could occur if
an application is allocated all the machines in two racks and
performs large transfers between the two halves of the appli-
cation (e.g. a shuffle). Non-uniform random matching is a
representative of the realistic scenario where a small fraction
of flows dominate in size, alongside other smaller demands
spread throughout the network.

We compare the performance of traditional routing (all
shortest paths through a router saved in its routing table),
CONGA, Planck and source routing. For source routing, we
assume that IPv6 address is used to carry the source route
in a network with switch degree at most 256. Hence, the
source routing design used for evaluation supports paths of
length up to 16.

4.2 Forwarding table size

Forwarding table size in switches is limited due to high
cost and power consumption. A typical size of forwarding
tables in high-end data center switches today is 144K en-

le+07 g
E All paths
le+06 | PLANCK
E Source routing
FL44K
100000
10000

1000 |

100 k

Forwarding table entries at leaf

1o L i i i i i i
10 20 30 40 50 60

Fat tree degree

Figure 1: Forwarding table size for fat trees

tries [25], which may not be sufficient to accommodate all
paths. The problem is aggravated in low end switches with
forwarding table size less than 7K [26]. We compare the
requirements of various data center forwarding schemes.

A leaf in the leaf-spine topology uses L - S entries under
CONGA. Since Planck limits the number of paths to 4 for
each destination, the number of forwarding table entries at
each leaf is 4L in Planck. With source routing, we have a
constant number of entries — 85. Although we have paths
of length 16, a leaf can appear only at an odd position and
a spine can appear only at an even position in the path.
Hence each switch has to check only half of the locations.
This property holds for all “level-based” networks with links
only between adjacent levels. A switch at an odd level can
appear only at an odd hop in a path.

In a fat tree topology with degree K, a leaf switch in
Planck has 2K paths. On the other hand, source routing re-
quires only 8K forwarding table entries to support paths up
to length 16 in fat tree with shortest path length 5. CONGA
does not scale to accommodate three level topologies. Note
that it is possible to do hierarchical routing in fat trees with
small forwarding tables if control over the chosen path is not
required. However, this can lead to congestion and uneven
utilization of the network. As we will see, for better uti-
lization of the network and efficient traffic engineering, it is
necessary to have information on all paths at the leaves.

A summary of the comparison is given in Table 1. The
general trend in the growth of forwarding table size in fat
trees with increase in degree is given in Figure 1. We can see
that, without any optimizations, forwarding table require-
ments of traditional routing with all shortest paths cannot
be accommodated even in high-end switches for fat trees
with degree as small as 34. Planck, with a 4-path limit
per destination, cannot support fat trees of degree more
than 60, built from low-end switches with 7K routing ta-
ble size. On the other hand, forwarding table requirements
of source routing uses only a fraction of the memory in low-
end switches. Also, note that the source routing scheme
used here can support any paths of length up to 16. Tra-
ditional scheme and Planck require forwarding tables which
are much larger, while only supporting shortest paths (as
shown in the Figure).

4.3 Throughput analysis

Due to the limited forwarding table size, data center switches

can accommodate only a limited number of paths at any
point in time. This can affect the throughput performance
of applications. In this section, we analyze the impact of
reducing the number of available paths on maximum achiev-

able throughput. Although several factors can contribute to
reduction in throughput, particularly transport mechanisms,
this evaluation focuses solely on the limitation imposed by
constraints on the available forwarding paths.

We evaluate three realistic traffic matrices (TMs): (a) All-
to-all (A2A) (b) Random matching and (c) Random match-
ing with non-uniform traffic. Throughput is normalized with
respect to the maximum throughput achievable in the topol-
ogy using the same TM with no path constraints.

Leaf-spine: We denote a leaf spine topology as (L, S)
where L is the number of leaves and S is the number of
spine switches. In a leaf-spine topology, a shortest path be-
tween leaf switches can be completely specified by a spine
switch. We increase the number of paths from 1 to the
number of spine switches. For all routing schemes, forward-
ing table entries increase linearly with the number of paths
used. In Figure 2, we plot normalized throughput in the leaf
spine topology with 32 spine switches and varying number of
leaves under all-to-all TM. We observe that source routing,
which can support 16 hop paths, requires the same number
of forwarding table entries as traditional routing with only
shortest paths (4 hop paths).

Under random matching on the same topology (Figure 3),
each new path improves throughput significantly. In other
words, limiting the number of paths can impact the through-
put significantly when the demand matrix is sparse (unlike
the more heavily loaded all-to-all case of the previous plot).
Moreover, the number of forwarding table entries required
by source routing to achieve maximal throughput is an order
of magnitude smaller than that of traditional routing.

Under random matching with non-uniform TM, the plot
remains linear. When a fraction of flows have 10x demand,
the absolute value of maximum throughput is reduced, but
the overall behavior is similar to uniform random matching.

Fat trees: Next, we evaluate the TMs on fat trees, where
the number of possible paths grows exponentially with the
degree of switches. A fat tree built from degree K switches is
denoted by FT-K. Figure 4 shows the variation of normalized
throughput in fat trees with all-to-all TM as a function of
the number of forwarding table entries at each leaf switch.
Under the dense (A2A) TM, 2-3 paths per flow is sufficient
for good performance. However, the forwarding table entries
grow exponentially with size of the fat tree network.

Figure 5 shows normalized throughput in fat trees under
the uniform random matching TM. Limited paths are cho-
sen randomly with additional constraints to use a diverse set
of links. In order to minimize overlap between paths, two
feasible next hops are picked randomly at each level and the
one with fewer paths through it is chosen during the path
assignment phase. We observe that the number of forward-
ing table entries required to maintain the same throughput
performance increases dramatically compared to the A2A
TM. We also note that performance of Planck with 4 paths
per destination degrades as the swich degree (and network
size) increases.

Normalized throughput in fat trees with random matching
TM and 10% of the flows with 10x bandwidth demand is
given in Figure 6. While each flow has equal priority with the
uniform traffic matrix, large demand flows are more signifi-
cant with non-uniform traffic matrix. With minimal overlap
between the larger flows, the non-uniform TM can achieve
maximal throughput with slightly fewer paths. However, the
basic trend remains consistent across the uniform and non-

(3232) —o—
(6432) —=—
(12832) —»—
(25632) ——
(25632) Source routing @

Normalized throughput achieved
Normalized throughput achieved
o
i
T

(3232) ——
(6432) —=—
08 [(12832) —*—
07 F (25632) ——
(256,32) Source routing @

0.8 -

FT-6 ——
04 e
FT-10 ——
02 F FT-16 —a—
FT-20 —=—

FT-20 Source routing (@
h

Normalized throughput achieved

i i i 0 i

400 600 800 1000 0 200

Forwarding table entries at leaf

Figure 2: Leaf-spine topology with 32
spine - A2A TM

| -
09
0.8 -
0.7 -
0.6 -
0.5
04
03
02
0.1 |- 0.1 |

09
08 |
0.7
0.6
05 |
04 |
03
0.2

Planck

FT-6 —+—
FT-8 ——
FT-12 —%—
FT-16 —e—
FT-20 —»—
FT-20 Source routing @

Normalized throughput achieved

Normalized throughput achieved

Forwarding table entries at leaf

Figure 3: Leaf-spine topology with 32
spine - Random matching

600 800 1000 10 100 1000 10000

Forwarding table entries at leaf

Figure 4: Fat trees A2A TM

Uniform TM ———
Non-Uniform TM

FT-6 ——
FT-8 ——
FT-12 —%— 03
FT-16 —&—
FT-20 —#—
FT-20 Source routing @ 0.1

Probability
o

) i i 0 i
10 100 1000 10000 10 100

Forwarding table entries in leaf

Figure 5: Fat trees Random Matching

uniform random matching TMs since the bottleneck under
path constraints is the number of paths itself.

Although the mean throughput exhibits similar trends
under uniform and non-uniform TM, the variance proper-
ties differ as shown in Figure 7. We conduct 1000 trials on
the fat tree constructed from switches of degree 12 with 10
paths allowed per flow, using both uniform and non-uniform
random matching TMs. We observe that the uniform TM
has a consistent value with very high probability, whereas
the non-uniform TM is bimodal. The high variance un-
der non-uniform TMs is due to the randomness in whether
the large flows collide. In our experiments, a limited set
of paths are pre-assigned to each leaf pair before the flows
are assigned. This path assignment has constraints that
spread the paths as much as possible. Hence, the paths are
nearly uniformly spread for the uniform TM. On the other
hand, the distributed path assignment across the network
does not guarantee that the large flows are well spread out
(since large flows are randomly chosen after all paths are
assigned). When the large flows do not collide, the through-
put is higher. If the large flows share some links, then the
throughput is lower.

We close the evaluation with two take-away points:

Limited forwarding table size will affect through-
put performance under worst-case TMs. To achieve
high throughput with large rack-to-rack flow groups (i.e.
random matching), flows need to have nearly all the possible
paths (K?/4) available for forwarding, as seen in Figure 5;
and this requirement exceeds the largest forwarding table
capacity at switch size of 34 (Figure 1). This illustrates the
value of source routing to achieve high throughput in large
networks.

A large number of paths between racks can be
used effectively. Generally, splitting a flow into a large
number of components can affect its performance; K2/4
paths for a flow might seem hard to handle. However, here
we are considering aggregate rack-to-rack traffic which is
composed of traffic from (K/2)? host pairs. When a large
number of hosts contribute towards the aggregate flow, the

Forwarding table entries at leaf

Figure 6: Fat trees Random Matching
™ TM with 10% of flows with 10x demand

J
0L SN S S s— — 1 1 1 1 i
1000 10000 05 055 06 065 07 075 08 085 09 095 |

Normalized throughput

Figure 7: Fat trees Random Matching
TM with 10% of flows with 10x demand

number of paths assigned to each host-based flow can be
limited. Hence, the paths made available by source routing
can be effectively used to improve throughput. Moreover,
source routing also allows non-shortest paths which is useful
in failure scenarios.

5. CONCLUSION

As data centers move towards network fabric-based archi-
tecture, there is an increasing need for a flexible and scalable
routing scheme at the core. Under our preliminary investi-
gation, source routing appears to be a technique that fits
the bill. With source routing, the forwarding table can eas-
ily fit within the available memory of even low-end switches
due to its linear dependence on node degree and network
diameter. Moreover, throughput performance of the fabric
will not be negatively impacted by limited availability in
network paths, when source routing allows the edges to pick
any feasible path in the network. Due to its flexibility and
scalability, source routing is a suitable candidate for network
fabric architecture.

In order to strengthen this routing scheme further, we
need to tackle a few issues. First, this paper has not dealt
with response to switch and link failures. It is essential to
build an auxiliary mechanism to route around failures, either
with additional information in the header or through a net-
work response mechanism. Second, in order to efficiently uti-
lize the multitude of paths made available by source routing,
it is essential to have an efficient traffic engineering scheme.
Although a few of the existing schemes rely on several varia-
tions of source routing, they are tightly coupled with certain
topologies and the performance is far from optimal. With
source routing at the core of the design, it will be possible to
use any valid path in any topology leading to greater flexi-
bility in the design and implementation of traffic engineering
schemes.

We gratefully acknowledge the generous support of Na-
tional Science Foundation grant CNS 1423452, and Cisco
Research Council Grant 580729.

6.
1]

[11]

REFERENCES

Barath Raghavan, Martin Casado, Teemu Koponen,
Sylvia Ratnasamy, Ali Ghodsi, and Scott Shenker.
Software-defined internet architecture: Decoupling
architecture from infrastructure. In Proceedings of the
11th ACM Workshop on Hot Topics in Networks,
HotNets-XI, pages 43-48, 2012.

Xin Jin, Honggiang Harry Liu, Rohan Gandhi,
Srikanth Kandula, Ratul Mahajan, Ming Zhang,
Jennifer Rexford, and Roger Wattenhofer. Dynamic
scheduling of network updates. In Proceedings of the
2014 ACM Conference on SIGCOMM, SIGCOMM
’14, pages 539-550, 2014.

Mohammad Alizadeh, Tom Edsall, Sarang
Dharmapurikar, Ramanan Vaidyanathan, Kevin Chu,
Andy Fingerhut, Vinh The Lam, Francis Matus, Rong
Pan, Navindra Yadav, and George Varghese. Conga:
Distributed congestion-aware load balancing for
datacenters. In Proceedings of the 2014 ACM
Conference on SIGCOMM, SIGCOMM 14, pages
503-514, 2014.

Jeff Rasley, Brent Stephens, Colin Dixon, Eric Rozner,
Wes Felter, Kanak Agarwal, John Carter, and Rodrigo
Fonseca. Planck: Millisecond-scale monitoring and
control for commodity networks. In Proceedings of the
2014 ACM Conference on SIGCOMM, SIGCOMM
14, pages 407-418, 2014.

Jonathan Perry, Amy Ousterhout, Hari Balakrishnan,
Devavrat Shah, and Hans Fugal. Fastpass: A
centralized "zero-queue” datacenter network. In
Proceedings of the 2014 ACM Conference on
SIGCOMM, SIGCOMM ’14, pages 307-318, 2014.
Shuihai Hu, Kai Chen, Haitao Wu, Wei Bai, Chang
Lan, Hao Wang, Hongze Zhao, and Chuanxiong Guo.
Explicit path control in commodity data centers:
Design and applications. In 12th USENIX Symposium
on Networked Systems Design and Implementation
(NSDI 15), May 2015.

R.M. Ramos, M. Martinello, and

C. Esteve Rothenberg. Slickflow: Resilient source
routing in data center networks unlocked by openflow.
In Local Computer Networks (LCN), 2013 IEEE 38th
Conference on, pages 606-613, Oct 2013.

Radhika Niranjan Mysore, Andreas Pamboris, Nathan
Farrington, Nelson Huang, Pardis Miri, Sivasankar
Radhakrishnan, Vikram Subramanya, and Amin
Vahdat. Portland: A scalable fault-tolerant layer 2
data center network fabric. SIGCOMM Comput.
Commun. Rev., 39(4):39-50, August 2009.
Changhoon Kim, Matthew Caesar, and Jennifer
Rexford. Seattle: A scalable ethernet architecture for
large enterprises. ACM Trans. Comput. Syst., 29(1),
February 2011.

Albert Greenberg, James R. Hamilton, Navendu Jain,
Srikanth Kandula, Changhoon Kim, Parantap Lahiri,
David A. Maltz, Parveen Patel, and Sudipta
Sengupta. V12: A scalable and flexible data center
network. In Proceedings of the ACM SIGCOMM 2009
Conference on Data Communication, 2009.

Minlan Yu, Alex Fabrikant, and Jennifer Rexford.
Buffalo: Bloom filter forwarding architecture for large
organizations. In Proceedings of the 5th International

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

23]

(24]

(25]

Conference on Emerging Networking Ezperiments and
Technologies, CONEXT ’09, pages 313—-324, 2009.
Kanak Agarwal, Colin Dixon, Eric Rozner, and John
Carter. Shadow MACs: Scalable Label-switching for
Commodity Ethernet. In Proceedings of the Third
Workshop on Hot Topics in Software Defined
Networking, HotSDN ’14, pages 157-162, 2014.
Chuanxiong Guo, Guohan Lu, Helen J. Wang, Shuang
Yang, Chao Kong, Peng Sun, Wenfei Wu, and
Yongguang Zhang. Secondnet: A data center network
virtualization architecture with bandwidth guarantees.
In Proceedings of the 6th International COnference,
Co-NEXT ’10. ACM, 2010.

Mohammad Al-Fares, Alexander Loukissas, and Amin
Vahdat. A scalable, commodity data center network
architecture. In Proceedings of the ACM SIGCOMM
2008 Conference on Data Communication, SIGCOMM
'08, pages 63—74, 2008.

Arne Schwabe and Holger Karl. Using MAC Addresses
As Efficient Routing Labels in Data Centers. In
Proceedings of the Third Workshop on Hot Topics in
Software Defined Networking, HotSDN ’14, pages
115-120, 2014.

Mourad Soliman, Biswajit Nandy, loannis
Lambadaris, and Peter Ashwood-Smith. Source routed
forwarding with software defined control,
considerations and implications. In Proceedings of the
2012 ACM Conference on CoNEXT Student
Workshop, CONEXT Student 12, pages 43—-44, 2012.
Mark Reitblatt, Nate Foster, Jennifer Rexford, Cole
Schlesinger, and David Walker. Abstractions for
network update. In ACM SIGCOMM. ACM, 2012.
Ehab Al-Shaer and Saeed Al-Haj. FlowChecker:
Configuration analysis and verification of federated
OpenFlow infrastructures. In Proceedings of the 3rd
ACM workshop on Assurable and usable security
configuration. ACM, 2010.

Haohui Mai, Ahmed Khurshid, Rachit Agarwal,
Matthew Caesar, P. Brighten Godfrey, and Samuel T.
King. Debugging the data plane with Anteater. In
ACM SIGCOMM, August 2011.

Peyman Kazemian, George Varghese, and Nick
McKeown. Header Space Analysis: Static checking for
networks. In USENIX NSDI, 2012.

Ahmed Khurshid, Xuan Zou, Wenxuan Zhou,
Matthew Caesar, and P. Brighten Godfrey. Veriflow:
Verifying network-wide invariants in real time. In
Proceedings of the 10th USENIX Conference on
Networked Systems Design and Implementation, pages
15-28, 2013.

Peyman Kazemian, Michael Chan, Hongyi Zeng,
George Varghese, Nick McKeown, and Scott Whyte.
Real time network policy checking using header space
analysis. In USENIX NSDI, 2013.

Framework for Multi-Protocol Label Switching
(MPLS)-based recovery, 2003.

Sangeetha Abdu Jyothi, Ankit Singla, Brighten
Godfrey, and Alexandra Kolla. Measuring and
understanding throughput of network topologies.
CoRR, abs/1402.2531, 2014.

Arista 7250QX data sheet.
http://www.arista.com/assets/data/pdf/

Datasheets/7250QX-64_Datasheet.pdf.
[26] Cisco nexus 3000 series data sheet. http:

//www.cisco.com/c/en/us/products/collateral/
switches/nexus-3000-series-switches/white_
paper_c11-713535.html.

