
[Photo: Kevin Raskoff]

Jellyfish
networking
data centers
randomly

Brighten Godfrey • UIUC
Cisco Systems, September 12, 2013

Ask me about...

Low latency networked systems

Data plane verification (Veriflow)

Ankit Singla
UIUC

Chi-Yao
Hong
UIUC

Kyle Jao
UIUC

Sangeetha Abdu Jyothi
UIUC

Ankit Singla
UIUC Chi-Yao

Hong
UIUC

Kyle Jao
UIUC

Lucian Popa
HP Labs

Alexandra
Kolla
UIUC

Sangeetha
Abdu Jyothi
UIUC

The need for throughput

March
2011

May
2012[Facebook, via Wired]

Difficult goals

High throughput
with minimal cost

Support big data analytics
Agile placement of VMs

Flexible incremental
expandability

Easily add/replace
servers & switches

Incremental expansion

Facebook “adding capacity on a daily basis”

Reduces up-front capital expenditure

Commercial products expand servers but not the net

• SGI Ice Cube (“Expandable Modular Data Center”)
• HP EcoPod (“Pay-as-you-grow”)

2007 1008 09

Today’s structured networks

3. AGILITY
We define agility inside a single data center to mean that any

server can be dynamically assigned to any service anywhere in
the data center, while maintaining proper security and performance
isolation between services. Unfortunately, conventional data center
network designs work against agility - by their nature fragmenting
both network and server capacity, and limiting the dynamic grow-
ing and shrinking of server pools. In this section, we first look at
the network within the data center as it exists today and then dis-
cuss some desirable properties for a better solution.

3.1 Networking in Current Data Centers
Multiple applications run inside a single data center, typically

with each application hosted on its own set of (potentially virtual)
server machines. A single data center network supports two types
of traffic: (a) traffic flowing between external end systems and inter-
nal servers, and (b) traffic flowing between internal servers. A given
application typically involves both of these traffic types. In Search
applications, for example, internal traffic dominates – building and
synchronizing instances of the index. In Video download applica-
tions, external traffic dominates.

To support external requests from the Internet, an application
is associated with one or more publicly visible and routable IP
addresses to which clients in the Internet send their requests and
from which they receive replies. Inside the data center, requests are
spread among a pool of front-end servers that process the requests.
This spreading is typically performed by a specialized hardware
load balancer [23]. Using conventional load-balancer terminology,
the IP address to which requests are sent is called a virtual IP ad-
dress (VIP) and the IP addresses of the servers over which the re-
quests are spread are known as direct IP addresses (DIPs).

and Design
Figure 2: The conventional network architecture for data cen-
ters (adapted from figure by Cisco [15]).

Figure 2 shows the conventional architecture for a data center,
taken from a recommended source [15]. Requests arriving from the
Internet are IP (layer 3) routed through border and access routers
to a layer 2 domain based on the destination VIP address. The
VIP is configured onto the two load balancers connected to the top
switches, and complex mechanisms are used to ensure that if one
load balancer fails, the other picks up the traffic [24]. For each VIP,
the load balancers are configured with a list of DIPs, internal IP
addresses over which they spread incoming requests.

As shown in the figure, all the servers that connect into a pair
of access routers comprise a single layer 2 domain. With conven-
tional network architectures and protocols, a single layer-2 domain
is limited in size to about 4,000 servers in practice, driven by the
need for rapid reconvergence upon failure. Since the overhead of
broadcast traffic (e.g., ARP) limits the size of an IP subnet to a few

hundred servers, the layer 2 domain is divided up into subnets using
VLANs configured on the Layer 2 switches, one subnet per VLAN.

The conventional approach has the following problems that
inhibit agility:

Static Network Assignment: To support internal traffic within
the data center, individual applications are mapped to specific phys-
ical switches and routers, relying heavily on VLANs and layer-3
based VLAN spanning [19] to cover the servers dedicated to the
application. While the extensive use of VLANs and direct phys-
ical mapping of services to switches and routers provides a de-
gree of performance and security isolation, these practices lead to
two problems that ossify the assignment and work against agility:
(a) VLANs are often policy-overloaded, integrating traffic manage-
ment, security, and performance isolation, and (b) VLAN spanning,
and use of large server pools in general, concentrates traffic on links
high in the tree, where links and routers are highly overbooked.

Fragmentation of resources: Popular load balancing tech-
niques, such as destination NAT (or half-NAT) and direct server
return, require that all DIPs in a VIP’s pool be in the same layer
2 domain [23]. This constraint means that if an application grows
and requires more front-end servers, it cannot use available servers
in other layer 2 domains - ultimately resulting in fragmentation and
under-utilization of resources. Load balancing via Source NAT (or
full-NAT) does allow servers to be spread across layer 2 domains,
but then the servers never see the client IP, which is often unac-
ceptable because servers use the client IP for everything from data
mining and response customization to regulatory compliance.

Poor server to server connectivity: The hierarchical nature
of the network means that communication between servers in dif-
ferent layer 2 domains must go through the layer 3 portion of the
network. Layer 3 ports are significantly more expensive than layer
2 ports, owing in part to the cost of supporting large buffers, and
in part to marketplace factors. As a result, these links are typically
oversubscribed by factors of 10:1 to 80:1 (i.e., the capacity of the
links between access routers and border routers is significantly less
than the sum of the output capacity of the servers connected to the
access routers). The result is that the bandwidth available between
servers in different parts of the DC can be quite limited. Manag-
ing the scarce bandwidth could be viewed as a global optimization
problem – servers from all applications must be placed with great
care to ensure the sum of their traffic does not saturate any of the
network links. Unfortunately, achieving this level of coordination
between (changing) applications is untenable in practice.

Proprietary hardware that scales up, not out: Conventional
load balancers are used in pairs in a 1+1 resiliency configuration.
When the load becomes too great for the load balancers, operators
replace the existing load balancers with a new pair having more
capacity, which is an unscalable and expensive strategy.

3.2 Design Objectives
In order to achieve agility within a data center, we argue the

network should have the following properties:
Location-independent Addressing: Services should use loca-

tion-independent addresses that decouple the server’s location in
the DC from its address. This enables any server to become part of
any server pool while simplifying configuration management.

UniformBandwidth and Latency: If the available bandwidth
between two servers is not dependent on where they are located,
then the servers for a given service can be distributed arbitrarily in
the data center without fear of running into bandwidth choke points.
Uniform bandwidth, combined with uniform latency between any
two servers would allow services to achieve same performance re-
gardless of the location of their servers.

[Greenberg et al, CCR Jan. 2009]

Today’s structured networks

3. AGILITY
We define agility inside a single data center to mean that any

server can be dynamically assigned to any service anywhere in
the data center, while maintaining proper security and performance
isolation between services. Unfortunately, conventional data center
network designs work against agility - by their nature fragmenting
both network and server capacity, and limiting the dynamic grow-
ing and shrinking of server pools. In this section, we first look at
the network within the data center as it exists today and then dis-
cuss some desirable properties for a better solution.

3.1 Networking in Current Data Centers
Multiple applications run inside a single data center, typically

with each application hosted on its own set of (potentially virtual)
server machines. A single data center network supports two types
of traffic: (a) traffic flowing between external end systems and inter-
nal servers, and (b) traffic flowing between internal servers. A given
application typically involves both of these traffic types. In Search
applications, for example, internal traffic dominates – building and
synchronizing instances of the index. In Video download applica-
tions, external traffic dominates.

To support external requests from the Internet, an application
is associated with one or more publicly visible and routable IP
addresses to which clients in the Internet send their requests and
from which they receive replies. Inside the data center, requests are
spread among a pool of front-end servers that process the requests.
This spreading is typically performed by a specialized hardware
load balancer [23]. Using conventional load-balancer terminology,
the IP address to which requests are sent is called a virtual IP ad-
dress (VIP) and the IP addresses of the servers over which the re-
quests are spread are known as direct IP addresses (DIPs).

and Design
Figure 2: The conventional network architecture for data cen-
ters (adapted from figure by Cisco [15]).

Figure 2 shows the conventional architecture for a data center,
taken from a recommended source [15]. Requests arriving from the
Internet are IP (layer 3) routed through border and access routers
to a layer 2 domain based on the destination VIP address. The
VIP is configured onto the two load balancers connected to the top
switches, and complex mechanisms are used to ensure that if one
load balancer fails, the other picks up the traffic [24]. For each VIP,
the load balancers are configured with a list of DIPs, internal IP
addresses over which they spread incoming requests.

As shown in the figure, all the servers that connect into a pair
of access routers comprise a single layer 2 domain. With conven-
tional network architectures and protocols, a single layer-2 domain
is limited in size to about 4,000 servers in practice, driven by the
need for rapid reconvergence upon failure. Since the overhead of
broadcast traffic (e.g., ARP) limits the size of an IP subnet to a few

hundred servers, the layer 2 domain is divided up into subnets using
VLANs configured on the Layer 2 switches, one subnet per VLAN.

The conventional approach has the following problems that
inhibit agility:

Static Network Assignment: To support internal traffic within
the data center, individual applications are mapped to specific phys-
ical switches and routers, relying heavily on VLANs and layer-3
based VLAN spanning [19] to cover the servers dedicated to the
application. While the extensive use of VLANs and direct phys-
ical mapping of services to switches and routers provides a de-
gree of performance and security isolation, these practices lead to
two problems that ossify the assignment and work against agility:
(a) VLANs are often policy-overloaded, integrating traffic manage-
ment, security, and performance isolation, and (b) VLAN spanning,
and use of large server pools in general, concentrates traffic on links
high in the tree, where links and routers are highly overbooked.

Fragmentation of resources: Popular load balancing tech-
niques, such as destination NAT (or half-NAT) and direct server
return, require that all DIPs in a VIP’s pool be in the same layer
2 domain [23]. This constraint means that if an application grows
and requires more front-end servers, it cannot use available servers
in other layer 2 domains - ultimately resulting in fragmentation and
under-utilization of resources. Load balancing via Source NAT (or
full-NAT) does allow servers to be spread across layer 2 domains,
but then the servers never see the client IP, which is often unac-
ceptable because servers use the client IP for everything from data
mining and response customization to regulatory compliance.

Poor server to server connectivity: The hierarchical nature
of the network means that communication between servers in dif-
ferent layer 2 domains must go through the layer 3 portion of the
network. Layer 3 ports are significantly more expensive than layer
2 ports, owing in part to the cost of supporting large buffers, and
in part to marketplace factors. As a result, these links are typically
oversubscribed by factors of 10:1 to 80:1 (i.e., the capacity of the
links between access routers and border routers is significantly less
than the sum of the output capacity of the servers connected to the
access routers). The result is that the bandwidth available between
servers in different parts of the DC can be quite limited. Manag-
ing the scarce bandwidth could be viewed as a global optimization
problem – servers from all applications must be placed with great
care to ensure the sum of their traffic does not saturate any of the
network links. Unfortunately, achieving this level of coordination
between (changing) applications is untenable in practice.

Proprietary hardware that scales up, not out: Conventional
load balancers are used in pairs in a 1+1 resiliency configuration.
When the load becomes too great for the load balancers, operators
replace the existing load balancers with a new pair having more
capacity, which is an unscalable and expensive strategy.

3.2 Design Objectives
In order to achieve agility within a data center, we argue the

network should have the following properties:
Location-independent Addressing: Services should use loca-

tion-independent addresses that decouple the server’s location in
the DC from its address. This enables any server to become part of
any server pool while simplifying configuration management.

UniformBandwidth and Latency: If the available bandwidth
between two servers is not dependent on where they are located,
then the servers for a given service can be distributed arbitrarily in
the data center without fear of running into bandwidth choke points.
Uniform bandwidth, combined with uniform latency between any
two servers would allow services to achieve same performance re-
gardless of the location of their servers.

[Greenberg et al, CCR Jan. 2009]

Today’s structured networks
Fat tree

[Al-Fares,
Loukissas, Vahdat,
SIGCOMM ’08]

Today’s structured networks
Fat tree

[Al-Fares,
Loukissas, Vahdat,
SIGCOMM ’08]

Pod 0

10.0.2.1

10.0.1.1

Pod 1 Pod 3Pod 2
10.2.0.2 10.2.0.3

10.2.0.1

10.4.1.1 10.4.1.2 10.4.2.1 10.4.2.2
Core

10.2.2.1

10.0.1.2

Edge

Aggregation

Figure 3: Simple fat-tree topology. Using the two-level routing tables described in Section 3.3, packets from source 10.0.1.2 to
destination 10.2.0.3 would take the dashed path.

Prefix
10.2.0.0/24
10.2.1.0/24
0.0.0.0/0

Output port
0
1

Suffix
0.0.0.2/8
0.0.0.3/8

Output port
2
3

Figure 4: Two-level table example. This is the table at switch
10.2.2.1. An incoming packet with destination IP address
10.2.1.2 is forwarded on port 1, whereas a packet with desti-
nation IP address 10.3.0.3 is forwarded on port 3.

than one first-level prefix. Whereas entries in the primary table are
left-handed (i.e., /m prefix masks of the form 1m032−m), entries
in the secondary tables are right-handed (i.e. /m suffix masks of
the form 032−m1m). If the longest-matching prefix search yields
a non-terminating prefix, then the longest-matching suffix in the
secondary table is found and used.

This two-level structure will slightly increase the routing table
lookup latency, but the parallel nature of prefix search in hardware
should ensure only a marginal penalty (see below). This is helped
by the fact that these tables are meant to be very small. As shown
below, the routing table of any pod switch will contain no more
than k/2 prefixes and k/2 suffixes.

3.4 Two-Level Lookup Implementation
We now describe how the two-level lookup can be implemented

in hardware using Content-Addressable Memory (CAM) [9].
CAMs are used in search-intensive applications and are faster
than algorithmic approaches [15, 29] for finding a match against
a bit pattern. A CAM can perform parallel searches among all
its entries in a single clock cycle. Lookup engines use a special
kind of CAM, called Ternary CAM (TCAM). A TCAM can store
don’t care bits in addition to matching 0’s and 1’s in particular
positions, making it suitable for storing variable length prefixes,
such as the ones found in routing tables. On the downside, CAMs
have rather low storage density, they are very power hungry, and

Next hop
10.2.0.1
10.2.1.1
10.4.1.1
10.4.1.2

Address
00
01
10
11

Output port
0
1
2
3

RAM

Encoder

10.2.0.X
10.2.1.X
X.X.X.2
X.X.X.3

TCAM

Figure 5: TCAM two-level routing table implementation.

expensive per bit. However, in our architecture, routing tables can
be implemented in a TCAM of a relatively modest size (k entries
each 32 bits wide).

Figure 5 shows our proposed implementation of the two-level
lookup engine. A TCAM stores address prefixes and suffixes,
which in turn indexes a RAM that stores the IP address of the next
hop and the output port. We store left-handed (prefix) entries in
numerically smaller addresses and right-handed (suffix) entries in
larger addresses. We encode the output of the CAM so that the
entry with the numerically smallest matching address is output.
This satisfies the semantics of our specific application of two-level
lookup: when the destination IP address of a packet matches both a
left-handed and a right-handed entry, then the left-handed entry is
chosen. For example, using the routing table in Figure 5, a packet
with destination IP address 10.2.0.3 matches the left-handed entry
10.2.0.X and the right-handed entry X.X.X.3. The packet is
correctly forwarded on port 0. However, a packet with destination
IP address 10.3.1.2 matches only the right-handed entry X.X.X.2
and is forwarded on port 2.

3.5 Routing Algorithm
The first two levels of switches in a fat-tree act as filtering traf-

fic diffusers; the lower- and upper-layer switches in any given pod
have terminating prefixes to the subnets in that pod. Hence, if a
host sends a packet to another host in the same pod but on a dif-
ferent subnet, then all upper-level switches in that pod will have a
terminating prefix pointing to the destination subnet’s switch.

For all other outgoing inter-pod traffic, the pod switches have
a default /0 prefix with a secondary table matching host IDs (the

67

Today’s structured networks
Fat tree

Structure constrains expansion

Coarse design points

• Hypercube: 2k switches
• de Bruijn-like: 3k switches
• 3-level fat tree: 5k2/4 switches

Fat trees by the numbers:

• (3-level, with commodity 24, 32, 48, ... port switches)
• 3456 servers, 8192 servers, 27648 servers, ...

Unclear how to maintain structure incrementally

• Overutilize switches? Uneven / constrained bandwidth
• Leave ports free for later? Wasted investment

Our Solution

Forget about structure –
let’s have no structure at all!

Jellyfish:
The Topology

Jellyfish: The Topology

Servers connected to top-of-rack switch

Switches form uniform-random interconnections

Capacity as a fluid

Jellyfish random graph
432 servers, 180 switches, degree 12

Capacity as a fluid

Jellyfish random graph
432 servers, 180 switches, degree 12

Jellyfish
Crossota norvegica
Photo: Kevin Raskoff

Construction & Expansion

Building Jellyfish

Building Jellyfish

X

Building Jellyfish

X

X

Same procedure for initial construction
and incremental expansion

Can flexibly incorporate any type of equipment

Building Jellyfish

60% cheaper incremental expansion
compared with past technique for

traditional networks

LEGUP: [Curtis, Keshav, Lopez-Ortiz, CoNEXT’10]

Throughput

By giving up on structure,
do we take a hit on throughput?

Throughput: Jellyfish vs. fat tree

















       
























 } +25%

more
servers

The VL2 topology

. . .

. . .

!"#

$%&

. . .

. . . .

'(()

DA/2 x 10G

DA/2 x 10G

DI x10G

2 x10G DADI/4 x ToR Switches

DI x Aggregate Switches

20(DADI/4) x Servers

InternetLink-state network
carrying only LAs

(e.g., 10/8) DA/2 x Intermediate Switches

Fungible pool of
servers owning AAs

(e.g., 20/8)

Figure : An exampleClos network betweenAggregation and In-
termediate switches provides a richly-connected backbone well-
suited for VLB. "e network is built with two separate address
families— topologically signi#cant LocatorAddresses (LAs) and
$at Application Addresses (AAs).

dundancy to improve reliability at higher layers of the hierarchical
tree. Despite these techniques, we !nd that in . of failures all
redundant components in a network device group became unavail-
able (e.g., the pair of switches that comprise each node in the con-
ventional network (Figure ) or both the uplinks from a switch). In
one incident, the failure of a core switch (due to a faulty supervi-
sor card) a&ected ten million users for about four hours. We found
the main causes of these downtimes are networkmiscon!gurations,
!rmware bugs, and faulty components (e.g., ports). With no obvi-
ous way to eliminate all failures from the top of the hierarchy, VL’s
approach is to broaden the topmost levels of the network so that the
impact of failures is muted and performance degrades gracefully,
moving from : redundancy to n:m redundancy.

4. VIRTUAL LAYER TWO NETWORKING
Before detailing our solution, we brie(ydiscuss our design prin-

ciples and preview how they will be used in the VL design.
Randomizing to Cope with Volatility: VL copes with

the high divergence and unpredictability of data-center tra)c
matrices by using Valiant Load Balancing to do destination-
independent (e.g., random) tra)c spreading across multiple inter-
mediate nodes. We introduce our network topology suited for VLB
in §., and the corresponding (ow spreading mechanism in §..

VLB, in theory, ensures a non-interfering packet switched net-
work [], the counterpart of a non-blocking circuit switched net-
work, as long as (a) tra)c spreading ratios are uniform, and (b) the
o&ered tra)c patterns do not violate edge constraints (i.e., line card
speeds). To meet the latter condition, we rely on TCP’s end-to-end
congestion control mechanism. While our mechanisms to realize
VLB do not perfectly meet either of these conditions, we show in
§. that our scheme’s performance is close to the optimum.

Building on proven networking technology: VL is based on
IP routing and forwarding technologies that are already available
in commodity switches: link-state routing, equal-cost multi-path
(ECMP) forwarding, IP anycasting, and IP multicasting. VL uses
a link-state routing protocol to maintain the switch-level topology,
but not to disseminate endhosts’ information.-is strategyprotects
switches from needing to learn voluminous, frequently-changing
host information. Furthermore, the routing design uses ECMP for-
warding along with anycast addresses to enable VLB with minimal
control plane messaging or churn.

Separating names from locators: -e data center network
must support agility, whichmeans, in particular, support for hosting
any service on any server, for rapid growing and shrinking of server
pools, and for rapid virtual machine migration. In turn, this calls
for separating names from locations. VL’s addressing scheme sep-
arates server names, termed application-speci!c addresses (AAs),
from their locations, termed location-speci!c addresses (LAs). VL
uses a scalable, reliable directory system to maintain the mappings
between names and locators. A shim layer running in the network
stack on every server, called the VL agent, invokes the directory
system’s resolution service. We evaluate the performance of the di-
rectory system in §..

Embracing End Systems: -e rich and homogeneous pro-
grammability available at data-center hosts provides a mechanism
to rapidly realize new functionality. For example, the VL agent en-
ables !ne-grained path control by adjusting the randomization used
in VLB. -e agent also replaces Ethernet’s ARP functionality with
queries to the VL directory system. -e directory system itself is
also realized on servers, rather than switches, and thus o&ers (exi-
bility, such as !ne-grained, context-aware server access control and
dynamic service re-provisioning.

We next describe each aspect of the VL system and how they
work together to implement a virtual layer- network.-ese aspects
include the network topology, the addressing and routing design,
and the directory that manages name-locator mappings.

4.1 Scale-out Topologies
As described in §., conventional hierarchical data-center

topologies have poor bisection bandwidth and are also suscepti-
ble to major disruptions due to device failures at the highest levels.
Rather than scale up individual network devices with more capac-
ity and features, we scale out the devices — build a broad network
o&ering huge aggregate capacity using a large number of simple, in-
expensive devices, as shown in Figure . -is is an example of a
folded Clos network [] where the links between the Intermedi-
ate switches and the Aggregation switches form a complete bipar-
tite graph. As in the conventional topology, ToRs connect to two
Aggregation switches, but the large number of paths between ev-
ery two Aggregation switches means that if there are n Intermedi-
ate switches, the failure of any one of them reduces the bisection
bandwidth by only 1/n–a desirable graceful degradation of band-
width that we evaluate in §.. Further, it is easy and less expen-
sive to build a Clos network for which there is no over-subscription
(further discussion on cost is in §). For example, in Figure , we
use DA-port Aggregation and DI -port Intermediate switches, and
connect these switches such that the capacity between each layer is
DIDA/2 times the link capacity.

-e Clos topology is exceptionally well suited for VLB in that by
indirectly forwarding tra)c through an Intermediate switch at the
top tier or “spine” of the network, the network can provide band-
width guarantees for any tra)c matrices subject to the hose model.
Meanwhile, routing is extremely simple and resilient on this topol-
ogy — take a random path up to a random intermediate switch and
a random path down to a destination ToR switch.

VL leverages the fact that at every generation of technol-
ogy, switch-to-switch links are typically faster than server-to-switch
links, and trends suggest that this gap will remain. Our current de-
sign uses G server links and G switch links, and the next design
point will probably be G server links with G switch links. By
leveraging this gap, we reduce the number of cables required to im-
plement the Clos (as compared with a fat-tree []), and we simplify
the task of spreading load over the links (§.).

55

[Greenburg, Hamilton, Jain, Kandula, Kim, Lahiri, Maltz, Patel, Sengupta,
SIGCOMM’09]

Rewiring VL2

. . .

. . .

!"#

$%&

. . .

. . . .

'(()

DA/2 x 10G

DA/2 x 10G

DI x10G

2 x10G DADI/4 x ToR Switches

DI x Aggregate Switches

20(DADI/4) x Servers

InternetLink-state network
carrying only LAs

(e.g., 10/8) DA/2 x Intermediate Switches

Fungible pool of
servers owning AAs

(e.g., 20/8)

Figure : An exampleClos network betweenAggregation and In-
termediate switches provides a richly-connected backbone well-
suited for VLB. "e network is built with two separate address
families— topologically signi#cant LocatorAddresses (LAs) and
$at Application Addresses (AAs).

dundancy to improve reliability at higher layers of the hierarchical
tree. Despite these techniques, we !nd that in . of failures all
redundant components in a network device group became unavail-
able (e.g., the pair of switches that comprise each node in the con-
ventional network (Figure ) or both the uplinks from a switch). In
one incident, the failure of a core switch (due to a faulty supervi-
sor card) a&ected ten million users for about four hours. We found
the main causes of these downtimes are networkmiscon!gurations,
!rmware bugs, and faulty components (e.g., ports). With no obvi-
ous way to eliminate all failures from the top of the hierarchy, VL’s
approach is to broaden the topmost levels of the network so that the
impact of failures is muted and performance degrades gracefully,
moving from : redundancy to n:m redundancy.

4. VIRTUAL LAYER TWO NETWORKING
Before detailing our solution, we brie(ydiscuss our design prin-

ciples and preview how they will be used in the VL design.
Randomizing to Cope with Volatility: VL copes with

the high divergence and unpredictability of data-center tra)c
matrices by using Valiant Load Balancing to do destination-
independent (e.g., random) tra)c spreading across multiple inter-
mediate nodes. We introduce our network topology suited for VLB
in §., and the corresponding (ow spreading mechanism in §..

VLB, in theory, ensures a non-interfering packet switched net-
work [], the counterpart of a non-blocking circuit switched net-
work, as long as (a) tra)c spreading ratios are uniform, and (b) the
o&ered tra)c patterns do not violate edge constraints (i.e., line card
speeds). To meet the latter condition, we rely on TCP’s end-to-end
congestion control mechanism. While our mechanisms to realize
VLB do not perfectly meet either of these conditions, we show in
§. that our scheme’s performance is close to the optimum.

Building on proven networking technology: VL is based on
IP routing and forwarding technologies that are already available
in commodity switches: link-state routing, equal-cost multi-path
(ECMP) forwarding, IP anycasting, and IP multicasting. VL uses
a link-state routing protocol to maintain the switch-level topology,
but not to disseminate endhosts’ information.-is strategyprotects
switches from needing to learn voluminous, frequently-changing
host information. Furthermore, the routing design uses ECMP for-
warding along with anycast addresses to enable VLB with minimal
control plane messaging or churn.

Separating names from locators: -e data center network
must support agility, whichmeans, in particular, support for hosting
any service on any server, for rapid growing and shrinking of server
pools, and for rapid virtual machine migration. In turn, this calls
for separating names from locations. VL’s addressing scheme sep-
arates server names, termed application-speci!c addresses (AAs),
from their locations, termed location-speci!c addresses (LAs). VL
uses a scalable, reliable directory system to maintain the mappings
between names and locators. A shim layer running in the network
stack on every server, called the VL agent, invokes the directory
system’s resolution service. We evaluate the performance of the di-
rectory system in §..

Embracing End Systems: -e rich and homogeneous pro-
grammability available at data-center hosts provides a mechanism
to rapidly realize new functionality. For example, the VL agent en-
ables !ne-grained path control by adjusting the randomization used
in VLB. -e agent also replaces Ethernet’s ARP functionality with
queries to the VL directory system. -e directory system itself is
also realized on servers, rather than switches, and thus o&ers (exi-
bility, such as !ne-grained, context-aware server access control and
dynamic service re-provisioning.

We next describe each aspect of the VL system and how they
work together to implement a virtual layer- network.-ese aspects
include the network topology, the addressing and routing design,
and the directory that manages name-locator mappings.

4.1 Scale-out Topologies
As described in §., conventional hierarchical data-center

topologies have poor bisection bandwidth and are also suscepti-
ble to major disruptions due to device failures at the highest levels.
Rather than scale up individual network devices with more capac-
ity and features, we scale out the devices — build a broad network
o&ering huge aggregate capacity using a large number of simple, in-
expensive devices, as shown in Figure . -is is an example of a
folded Clos network [] where the links between the Intermedi-
ate switches and the Aggregation switches form a complete bipar-
tite graph. As in the conventional topology, ToRs connect to two
Aggregation switches, but the large number of paths between ev-
ery two Aggregation switches means that if there are n Intermedi-
ate switches, the failure of any one of them reduces the bisection
bandwidth by only 1/n–a desirable graceful degradation of band-
width that we evaluate in §.. Further, it is easy and less expen-
sive to build a Clos network for which there is no over-subscription
(further discussion on cost is in §). For example, in Figure , we
use DA-port Aggregation and DI -port Intermediate switches, and
connect these switches such that the capacity between each layer is
DIDA/2 times the link capacity.

-e Clos topology is exceptionally well suited for VLB in that by
indirectly forwarding tra)c through an Intermediate switch at the
top tier or “spine” of the network, the network can provide band-
width guarantees for any tra)c matrices subject to the hose model.
Meanwhile, routing is extremely simple and resilient on this topol-
ogy — take a random path up to a random intermediate switch and
a random path down to a destination ToR switch.

VL leverages the fact that at every generation of technol-
ogy, switch-to-switch links are typically faster than server-to-switch
links, and trends suggest that this gap will remain. Our current de-
sign uses G server links and G switch links, and the next design
point will probably be G server links with G switch links. By
leveraging this gap, we reduce the number of cables required to im-
plement the Clos (as compared with a fat-tree []), and we simplify
the task of spreading load over the links (§.).

55

Uniform-random
interconnection}
Connect ToRs proportional
to Intermediate/Agg degree

Servers unchanged
(only ToRs have 1 Gbps
ports)

Rewiring VL2

 0.95
 1

 1.05
 1.1

 1.15
 1.2

 1.25
 1.3

 1.35
 1.4

 6 8 10 12 14 16 18 20

Se
rv

er
s

at
 F

ul
l T

hr
ou

gh
pu

t
(R

at
io

 O
ve

r
V

L2
)

Aggregation Switch Degree

40% more
servers
with server-to-server
random permutation
traffic

Rewiring VL2

 0.95
 1

 1.05
 1.1

 1.15
 1.2

 1.25
 1.3

 1.35
 1.4

 6 8 10 12 14 16 18 20

Se
rv

er
s

at
 F

ul
l T

hr
ou

gh
pu

t
(R

at
io

 O
ve

r
V

L2
)

Aggregation Switch Degree

rack-to-rack

40% more
servers
with server-to-server
random permutation
traffic

Rewiring VL2

 0.95
 1

 1.05
 1.1

 1.15
 1.2

 1.25
 1.3

 1.35
 1.4

 6 8 10 12 14 16 18 20

Se
rv

er
s

at
 F

ul
l T

hr
ou

gh
pu

t
(R

at
io

 O
ve

r
V

L2
)

Aggregation Switch Degree

all-to-all

rack-to-rack

40% more
servers
with server-to-server
random permutation
traffic

Just the beginning

Just the beginning

Topology design

• How close are random graphs to optimal?
• What if switches are heterogeneous?

System design (or: “But what about...”)

• Performance consistency?
• Cabling spaghetti?
• Routing and congestion control without structure?

Just the beginning

Topology design

• How close are random graphs to optimal?
• What if switches are heterogeneous?

System design (or: “But what about...”)

• Performance consistency?
• Cabling spaghetti?
• Routing and congestion control without structure?

Topology Design in Context

“

”

It is anticipated that the
whole of the populous
parts of the United States
will, within two or three
years, be covered with net-
work like a spider's web.

–– The London Anecdotes,
1848

“

”

It is anticipated that the
whole of the populous
parts of the United States
will, within two or three
years, be covered with net-
work like a spider's web.

Western Electric crossbar switch
[Photo: Wikipedia user Yeatesh]

[Benes network: Wikipedia user Piggly]

What’s different about data centers

Flexible forwarding
(compared with supercomputers)

Flexible routing & congestion control
(especially with software-defined networking)

Understanding Throughput

Throughput: Jellyfish vs. fat tree

















       
























 } +25%

more
servers

Intuition

1 Gbps flows
total capacity

used capacity per flow
=

if we fully utilize all available capacity ...

Intuition

1 Gbps flows
∑links capacity(link)

used capacity per flow
=

if we fully utilize all available capacity ...

Intuition

1 Gbps flows
∑links capacity(link)

1 Gbps • mean path length
=

if we fully utilize all available capacity ...

Intuition

1 Gbps flows
∑links capacity(link)

1 Gbps • mean path length
=

if we fully utilize all available capacity ...

Mission:
minimize average path length

Example

Fat tree
432 servers, 180 switches, degree 12

Jellyfish random graph
432 servers, 180 switches, degree 12

Example

Fat tree
16 servers, 20 switches, degree 4

Jellyfish random graph
16 servers, 20 switches, degree 4

Example

Fat tree
16 servers, 20 switches, degree 4

Jellyfish random graph
16 servers, 20 switches, degree 4

origin

origin

Example

Fat tree
16 servers, 20 switches, degree 4

Jellyfish random graph
16 servers, 20 switches, degree 4

origin

origin

Example

Fat tree
16 servers, 20 switches, degree 4

Jellyfish random graph
16 servers, 20 switches, degree 4

origin

origin

Example

Fat tree
16 servers, 20 switches, degree 4

Jellyfish random graph
16 servers, 20 switches, degree 4

origin

origin

Example

Fat tree
16 servers, 20 switches, degree 4

Jellyfish random graph
16 servers, 20 switches, degree 4

origin

origin

Example

Fat tree
16 servers, 20 switches, degree 4

Jellyfish random graph
16 servers, 20 switches, degree 4

origin

origin

Example

Fat tree
16 servers, 20 switches, degree 4

Jellyfish random graph
16 servers, 20 switches, degree 4

origin

origin4 of 16
reachable

in ≤ 5 hops

12 of 16
reachable in
≤ 5 hops

(good expander)

Example

Fat tree
16 servers, 20 switches, degree 4

Jellyfish random graph
16 servers, 20 switches, degree 4

origin

origin

12 of 16
reachable in
≤ 5 hops

(good expander)

Example

Fat tree
16 servers, 20 switches, degree 4

Jellyfish random graph
16 servers, 20 switches, degree 4

origin

origin

12 of 16
reachable in
≤ 5 hops

(good expander)

Example

Fat tree
16 servers, 20 switches, degree 4

Jellyfish random graph
16 servers, 20 switches, degree 4

origin

origin

12 of 16
reachable in
≤ 5 hops

(good expander)

Jellyfish has short paths













    


















Fat-tree with 686 servers

Jellyfish has short paths














    




















 

Jellyfish, same equipment

System Design:

Performance Consistency

Is performance more variable?

Performance depends on choice of random graph

• if you expand the network, would performance change
dramatically?

Extreme case: graph could be disconnected!

• never happens, with high probability

Little variation if size is moderate



















       

























{min, avg, max} of 20 trials shown

System Design:

Routing

Routing

Intuition

1 Gbps flows

total capacity

used capacity per flow
=

if we fully utilize all available capacity ...

if

How do we effectively utilize
capacity without structure?

Routing without structure

In theory, just a multicommodity flow (MCF) problem

Potential issues:

• Solve MCF using a distributed protocol?
• Optimal solution could have too many small subflows

Routing

Does ECMP work?

• No

• ECMP doesn’t use Jellyfish’s path diversity





















      






















Figure 9: ECMP does not provide path diversity for Jelly-
fish: Inter-switch link’s path count in ECMP and k-shortest-
path routing for random permutation traffic at the server-level
on a typical Jellyfish of 686 servers (built using the same equip-
ment as a fat-tree supports 686 servers). For each link, we
count the number of distinct paths it is on. Each network cable
is considered as two links, one for each direction.

Congestion Fat-tree (686 svrs) Jellyfish (780 svrs)
control ECMP ECMP 8-shortest paths

TCP 1 flow 48.0% 57.9% 48.3%
TCP 8 flows 92.2% 73.9% 92.3%

MPTCP 8 subflows 93.6% 76.4% 95.1%

Table 1: Packet simulation results for different routing and
congestion control protocols for Jellyfish (780 servers) and
a same-equipment fat-tree (686 servers). Results show the
normalized per server average throughput as a percentage of
servers’ NIC rate over 5 runs. We did not simulate the fat-tree
with 8-shortest paths because ECMP is strictly better, and eas-
ier to implement in practice for the fat-tree.

Figure 10: Simple k-shortest path forwarding with MPTCP
exploits Jellyfish’s high capacity well: We compare the
throughput using the same Jellyfish topology with both opti-
mal routing, and our simple routing mechanism using MPTCP,
which results in throughput between 86%�90% of the optimal
routing in each case. Results are averaged over 10 runs.

tion we measure the efficiency of k-shortest path routing
with MPTCP congestion control against the optimal per-
formance (presented in §4), and later make comparisons
against fat-trees at various sizes.

Figure 11: Jellyfish supports a larger number of servers
(>25% at the largest scale shown, with an increasing trend)
than the same-equipment fat-tree at the same (or higher)
throughput, even with inefficiencies of routing and congestion
control accounted for. Results are averages over 20 runs for
topologies smaller than 1,400 servers, and averages over 10
runs for larger topologies.

Routing and Congestion Control Efficiency: The re-
sult in Fig. 10 shows the gap between the optimum per-
formance, and the performance realized with routing
and congestion control inefficiencies. At each size, we
use the same slightly oversubscribed10 Jellyfish topol-
ogy for both setups. In the worst of these comparisons,
Jellyfish’s packet-level throughput is at ⇠86% of the
CPLEX optimal throughput. (In comparison, the fat-
tree’s throughput under MPTCP/ECMP is 93-95% of
its optimum.) There is a possibility that this gap can
be closed using smarter routing schemes, but neverthe-
less, as we discuss below, Jellyfish maintains most of
its advantage over the fat-tree in terms of the number of
servers supported at the the same throughput.
Fat-tree Throughput Comparison: To compare Jel-
lyfish’s performance against the fat-tree, we first find
the average per-server throughput a fat-tree yields in the
packet simulation. We then find (using binary search)
the number of servers for which the average per-server
throughput for the comparable Jellyfish topology is ei-
ther the same, or higher than the fat-tree; this is the same
methodology applied for Table 1. We repeat this exercise
for several fat-tree sizes. The results (Fig. 11) are similar
to those in Fig. 2(c), although the gains of Jellyfish are
reduced marginally due to routing and congestion con-
trol inefficiencies. Even so, at the maximum scale of our
experiment, Jellyfish supports 25% more servers than the
fat-tree (3,330 in Jellyfish, versus 2,662 for the fat-tree).
We note however, that even at smaller scale (for instance,
496 servers in Jellyfish, to 432 servers in the fat-tree) the
improvement can be as large as ⇠15%.

10An undersubscribed network may simply show 100% throughput,
masking some of the routing and transport inefficiency.

10

Routing: a simple solution
Find k shortest paths

Let Multipath TCP do the rest

• [Wischik, Raiciu, Greenhalgh, Handley, NSDI’10]

86-90% of
optimal

(TCP is within 3 percentage points of MPTCP)
 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 0.05 0.1 0.15 0.2 0.25

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Fraction of Links Failed Randomly

Jellyfish (544 Servers)
Fat-tree (432 Servers)

(a)

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 0 500 1000 1500 2000 2500 3000 3500

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Equipment Cost [Total #Ports] Using Identical Equipment

Jellyfish
Fat-tree

(b)

Figure 7: Jellyfish is highly resilient to failures: a) Normalized
throughput per server decreases more gracefully for Jellyfish
than for a same-equipment fat-tree as the percentage of failed
links increases. Note that the y-axis starts at 60% throughput;
both topologies are highly resilient to failures. b) With a fixed
link failure rate (9%), across increasing topology size, Jellyfish
maintains the resilience advantage over the fat-tree. We note
that the particular topology used for the experiment in a) is the
one with equipment cost 2,160, i.e. the last-to-second point in
the plot in b). Results are averaged over 5 runs.

to simple and efficient routing schemes. In this section,
we test whether the high ideal capacity made available by
the Jellyfish topology can be exploited by simple routing
and congestion control. Through early experiments, we
discovered that Jellyfish (as well as the fat-tree) did not
perform well with single-path routing. Hence, we use
the recently proposed multipath TCP (MPTCP) [40]. It
turns out that a simple routing scheme, when coupled
with MPTCP, is able to reach >86%

7 of the optimal net-
work throughput as measured using CPLEX. (A 5-7%
loss of capacity also occurs for the fat-tree when using
MPTCP.)
Routing: We use a simple, standard, k-shortest paths

7A gap of <14% of the optimal throughput is reasonable; prior
work has shown that using currently deployed network protcols (TCP;
VLB over ECMP), this gap is 23% for the fat-tree [6].

 0

 0.2

 0.4

 0.6

 0.8

 1

70 165 335 600 960

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

#Servers

Jellyfish (Packet-level)
Jellyfish (CPLEX)

Figure 8: Simple routing with MPTCP exploits Jellyfish’s high
capacity well: We compare the throughput using the same Jel-
lyfish topology with both optimal routing, and our simple rout-
ing mechanism using MPTCP, which results in throughput be-
tween 86%� 90% of the optimal routing in each case. Results
are averaged over 10 runs.

algorithm (Yen’s Loopless-Path Ranking algorithm [1,
42]) to determine routes. Throughout our experiments,
k = 8 shortest paths are used. Thus, each switch main-
tains a routing table containing for each other switch, k
shortest paths. Note that a few thousand switches can
support several tens of thousands of servers, so routing
table sizes are unlikely to be a problem. In any case, our
evaluation is primarily a proof-of-concept for routing and
congestion control to be able to use the network capac-
ity. There are certainly other routing methods available
for use (e.g., source routing, MPLS, or methods based on
centralized management by an OpenFlow controller).
Evaluation methodology: We use the packet simulator
developed by the MPTCP authors, also using their rec-
ommended value of 8 MPTCP subflows throughout our
experiments. Our comparisons with the fat-tree use the
same number of MPTCP subflows i.e. 8 for both topolo-
gies. The traffic model used continues to be random per-
mutation at the server-level, and as before, for the fat-
tree comparisons, we use the same switching equipment
as the fat-tree.
Routing and Congestion Control Efficiency: First, we
set out to measure how well our simplistic routing works
with MPTCP, as compared to the optimal performance
discussed in §4. Using both the packet-level simulator,
and the optimizer, we compute the throughput obtained
with and without routing and congestion control ineffi-
ciencies. At each size, we use the same slightly oversub-
scribed (to make the comparison clear) Jellyfish topology
for both setups. The results are shown in Fig. 8. Even in
the worst of these comparisons, the packet level through-
put is at ⇠86% of the CPLEX optimal throughput for
Jellyfish. For the fat-tree, this throughput is 93-95% of

9

Optimal

Packet level simulation

Throughput: Jellyfish vs. fat tree

8-shortest paths + MPTCP

















       
























 } +25%

more
servers

Deploying k-shortest paths

Multiple options:

• SPAIN [Mudigonda, Yalagandula, Al-Fares, Mogul, NSDI’ 10]

• Equal-cost MPLS tunnels

• IBM Research’s SPARTA [CoNEXT 2012]

• SDN controller based methods

System Design:

Cabling

Cabling

Cabling

[Photo: Javier Lastras / Wikimedia]

Cluster of switches
Rack of servers
Aggregate cable

new rack X
cluster A

cluster B

Aggregate
bundles

Cabling solutions

Fewer
cables

for same #
servers as
fat tree

Generic optimization: Place all switches centrally

Interconnecting clusters

How many “long” cables do we need?

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 0.5 1 1.5 2

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Cross-cluster Links
(Ratio to Expected Under Random Connection)

Interconnecting clusters

?

Interconnecting clusters

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 0.5 1 1.5 2

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Cross-cluster Links
(Ratio to Expected Under Random Connection)

Intuition

Intuition

Intuition

Still need one crossing!

⇥

✓
1

APL

◆
Throughput should
drop when less than

of total capacity
crosses the cut!

Explaining throughput

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Cross-cluster Links
(Ratio to Expected Under Random Connection)

Explaining throughput

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Cross-cluster Links
(Ratio to Expected Under Random Connection)

Upper bounds...

And constant-factor matching lower bounds in special case.

Two regimes of throughput

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Cross-cluster Links
(Ratio to Expected Under Random Connection)

sparsest cut
“plateau”:

(total cap) / APL

Two regimes of throughput

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Cross-cluster Links
(Ratio to Expected Under Random Connection)

Bisection bandwidth
is poor predictor of
performance!

sparsest cut
“plateau”:

(total cap) / APL

Cables can be
localized

High-capacity switches
needn’t be clustered

What’s Next

Research agenda

Prototype in the lab

• High throughput routing even in unstructured networks
• New techniques for near-optimal TE applicable generally
• SDN-based implementation

Topology-aware application & VM placement

Tech transfer

“Networking Data Centers Randomly”
A. Singla, C. Hong, L. Popa, P. B. Godfrey
NSDI 2012

For more...

“High throughput data center topology design”
A. Singla, P. B. Godfrey, A. Kolla
Manuscript (check arxiv soon!)

Conclusion

High throughput Expandability

[Photo: Kevin Raskoff]

Backup Slides

Hypercube vs. Random Graph

Is Jellyfish’s advantage just that it’s a
“direct” network?

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 1 2 3 4 5 6 7 8

R
el

at
iv

e
Th

ro
ug

hp
ut

Hypercube-n

Hypercube_1serv

Answer:
No

256
switches

8
switches

64

128

Are There Even
Better Topologies?

A simple upper bound

Throughput per flow
∑links capacity(link)

flows • mean path length

Lower bound this!

≤

Lower bound on mean path length

Distance # Nodes

1

2

6

62 - 6

Ugliness omitted!

[Cerf et al., “A lower bound on the average shortest path length in regular graphs”, 1974]

Random graphs vs. upper bound

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

T
hr

ou
gh

pu
t

(R
at

io
 t

o
U

pp
er

-b
ou

nd
)

Network Size

Random graphs vs. upper bound

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

T
hr

ou
gh

pu
t

(R
at

io
 t

o
U

pp
er

-b
ou

nd
)

Network Size

5 servers per switch,
random permutation
traffic

Random graphs vs. upper bound

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

T
hr

ou
gh

pu
t

(R
at

io
 t

o
U

pp
er

-b
ou

nd
)

Network Size

10 servers

5 servers per switch,
random permutation
traffic

Random graphs vs. upper bound

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

T
hr

ou
gh

pu
t

(R
at

io
 t

o
U

pp
er

-b
ou

nd
)

Network Size

(Aside: is any topology
closer to the bound?)

10 servers

5 servers per switch,
random permutation
traffic

all-to-all

Random graphs within a few percent of optimal!

Random graphs vs. upper bound

 1
 1.02
 1.04
 1.06
 1.08
 1.1

 1.12
 1.14
 1.16
 1.18

 0 50 100 150 200

Pa
th

 L
en

gt
h

(R
at

io
 t

o
Lo

w
er

-B
ou

nd
)

Network Size

Random graphs vs. upper bound

 1
 1.02
 1.04
 1.06
 1.08
 1.1

 1.12
 1.14
 1.16
 1.18

 0 50 100 150 200

Pa
th

 L
en

gt
h

(R
at

io
 t

o
Lo

w
er

-B
ou

nd
)

Network Size

Designing Heterogeneous Networks

Random graphs as a building block

Low-degree
switches

High-degree
switches

Servers

?

?

?

1 How should we
distribute servers?

2 How should we
interconnect switches?

What would
you do?

Distributing servers

(The switch interconnect being vanilla random)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Number of Servers at Large Switches
(Ratio to Expected Under Random Distribution)

Distributing servers

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Number of Servers at Large Switches
(Ratio to Expected Under Random Distribution)

Distributing servers in proportion
to switch port-counts

(The switch interconnect being vanilla random)

Distributing servers

 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1
 1.2
 1.3

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

�

Distributing servers in proportion
to switch port-counts

#Servers on switch i (port-count of i)β∝

Random graphs as a building block

Low-degree
switches

High-degree
switches

Servers

?

?

?

1 How should we
distribute servers?

2 How should we
interconnect switches?

What would
you do?

Interconnecting switches

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 0.5 1 1.5 2

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Cross-cluster Links
(Ratio to Expected Under Random Connection)

Interconnecting switches

?

Interconnecting switches

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 0.5 1 1.5 2

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Cross-cluster Links
(Ratio to Expected Under Random Connection)

Intuition

Intuition

Intuition

Still need one crossing!

⇥

✓
1

APL

◆
Throughput should
drop when less than

of total capacity
crosses the cut!

Explaining throughput

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Cross-cluster Links
(Ratio to Expected Under Random Connection)

Explaining throughput

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Cross-cluster Links
(Ratio to Expected Under Random Connection)

Upper bounds...

And constant-factor matching lower bounds in special case.

Two regimes of throughput

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Cross-cluster Links
(Ratio to Expected Under Random Connection)

sparsest cut
“plateau”:

(total cap) / APL

Two regimes of throughput

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Cross-cluster Links
(Ratio to Expected Under Random Connection)

Bisection bandwidth
is poor predictor of
performance!

sparsest cut
“plateau”:

(total cap) / APL

Cables can be
localized

High-capacity switches
needn’t be clustered

Quantifying Expandability

Quantifying expandability

LEGUP: [Curtis, Keshav, Lopez-Ortiz, CoNEXT’10]













        























LEGUP

Quantifying expandability

60% cheaper













        























LEGUP

Jellyfish

LEGUP: [Curtis, Keshav, Lopez-Ortiz, CoNEXT’10]

Failure Resilience

Throughput under link failures



















     






















Throughput under link failures



















     






















Turritopsis Nutricula?

Beyond Random Graphs

Can we do even better?

What is the maximum number of nodes
in any graph with degree ∂ and diameter d?

Can we do even better?

What is the maximum number of nodes
in any graph with degree 3 and diameter 2?

Peterson graph

A LaTeX dvi table and dvi legend are available from Charles Delorme, Laboratoire de Recherche en
Informatique, Orsay, France.
Please, send new results to:
cd@lri.fr (Charles Delorme , LRI , who keeps the LaTeX table)
comellas@ma4.upc.edu (Francesc Comellas , DMAT/combgraph , who updates this WWW table).

Link to a Java applet that computes the degree and diameter of a graph in a file, local or accessible by HTTP,
and formatted as a list of adjacencies. Click here.

LARGEST KNOWN (Δ,D)-GRAPHS. June 2010.

D \ D 2 3 4 5 6 7 8 9 10
3 10 20 38 70 132 196 336 600 1 250
4 15 41 98 364 740 1 320 3 243 7 575 17 703
5 24 72 212 624 2 772 5 516 17 030 53 352 164 720
6 32 111 390 1 404 7 917 19 282 75 157 295 025 1 212 117
7 50 168 672 2 756 11 988 52 768 233 700 1 124 990 5 311 572
8 57 253 1 100 5 060 39 672 130 017 714 010 4 039 704 17 823 532
9 74 585 1 550 8 200 75 893 270 192 1 485 498 10 423 212 31 466 244
10 91 650 2 223 13 140 134 690 561 957 4 019 736 17 304 400 104 058 822
11 104 715 3 200 18 700 156 864 971 028 5 941 864 62 932 488 250 108 668
12 133 786 4 680 29 470 359 772 1 900 464 10 423 212 104 058 822 600 105 100
13 162 851 6 560 39 576 531 440 2 901 404 17 823 532 180 002 472 1 050 104 118
14 183 916 8 200 56 790 816 294 6 200 460 41 894 424 450 103 771 2 050 103 984
15 186 1 215 11 712 74 298 1 417 248 8 079 298 90 001 236 900 207 542 4 149 702 144
16 198 1 600 14 640 132 496 1 771 560 14 882 658 104 518 518 1 400 103 920 7 394 669 856

References

[BeDeQu92] J.-C. Bermond, C. Delorme and J.J. Quisquater; Table of large (Δ,D)-graphs. Discrete
Applied Mathematics, 37/38 (1992), 575-577.
[Bi74] N. Biggs; Algebraic Graph Theory, Cambridge Math. Library ISBN 0-521-45897-8 pbk, (1974,
1993 2nd edition).
[Co06] Marston Conder http://www.math.auckland.ac.nz/~conder/symmcubic2048list.txt
[CoGo92] F. Comellas and J. Gómez, New large graphs with given degree and diameter. , Graph
Theory, Combinatorics and Algorithms, vol 1, Yousef Alavi and Allen Schwenk (Eds.), John Wiley &
Sons, Inc.; New York (1995) pp. 221-233. ISBN 0-471-30437-9. (Proc. of the Seventh Quadrennial
International Conference on the Theory and Applications of Graphs, Kalamazoo, MI, USA, June
1992.)
[DeGo02] C. Delorme, J. Gómez. Some new large compound graphs. European Journal of
Combinatorics, 23 (2002), pp. 547.
[DiHa94] M.J. Dinneen & P. Hafner. New results for the degree/diameter problem. Networks, 24
(1994) 359-367.

[Delorme & Comellas: http://www-mat.upc.es/grup_de_grafs/table_g.html/]

Diameter

D
eg

re
e

Degree-diameter problem

http://www-mat.upc.es/grup_de_grafs/table_g.html/
http://www-mat.upc.es/grup_de_grafs/table_g.html/

Degree-diameter problem

Do the best known degree-diameter graphs
also work well for high throughput?

Degree-diameter vs. Jellyfish

D-D graphs do have
high throughput Jellyfish within 9%!










































Switches:
Total ports:

Net-ports:

Random graphs vs. upper bound
for fixed size and increasing degree

Random graphs vs. upper bound

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35

T
hr

ou
gh

pu
t

(R
at

io
 t

o
U

pp
er

-b
ou

nd
)

Network Degree

Random graphs vs. upper bound

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35

T
hr

ou
gh

pu
t

(R
at

io
 t

o
U

pp
er

-b
ou

nd
)

Network Degree

Random graphs vs. upper bound

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35

T
hr

ou
gh

pu
t

(R
at

io
 t

o
U

pp
er

-b
ou

nd
)

Network Degree

Random graphs vs. upper bound

 1
 1.02
 1.04
 1.06
 1.08
 1.1

 1.12
 1.14
 1.16

 0 5 10 15 20 25 30 35

Pa
th

-le
ng

th
(R

at
io

 t
o

Lo
w

er
-b

ou
nd

)

Network Degree

Random graphs vs. upper bound

 1
 1.02
 1.04
 1.06
 1.08
 1.1

 1.12
 1.14
 1.16

 0 5 10 15 20 25 30 35

Pa
th

-le
ng

th
(R

at
io

 t
o

Lo
w

er
-b

ou
nd

)

Network Degree

