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Background & Motivation: Datacenters are increas-
ingly expected to provide vital support for modern, data-
intensive applications such as data-intensive distributed
computing, large graph/matrix computation, and online
services. The large variety of cloud applications have
demanded a diverse range of service requirements such
as optimizing completion times [1], meeting task dead-
lines [6], and satisfying fairness constraints across ten-
ants. However, legacy transport protocols used today,
such as TCP, are known to be ill-suited for meeting mod-
ern application requirements [6].

To bridge the gap, recent work has focused on optimiz-
ing transport protocols for improving flow performance
(e.g., D? [6], pFabric [1]). Although these protocols offer
substantial gains, they have two key problems:

o [Inflexibility. These protocols have limited flexibil-
ity, as each has its own subset of transport policies
that it supports (e.g., prioritizing flows or satisfying
flow deadlines). It’s likely in practice a network op-
erator would like to use particular policies that these
systems do not support, such as explicit rate alloca-
tion for certain tenants with a mix of prioritization
and fair sharing for other flows. !

e Limited deployability. These protocols have suf-
fered from limited deployability, as most of them re-
quire custom modifications to switches, end-hosts,
or even both. Consequently, these protocols have
seen little practical use, arguably due to their diffi-
culty of deployment.

Software Defined Transport: In this abstract, we pro-
pose a software defined transport (SDT) architecture for
data center transport, in which a central controller com-
putes flow rates and sends instructions to end-hosts. By
providing a programmable centralized platform to define
transport mechanisms in software, SDT provides greater
flexibility. By assigning rates directly to flows at end-
hosts, it is substantially more deployable than in-network
approaches.

IExisting commodity switches typically support only 4 — 8 egress
QoS classes [6], while a datacenter switch can have several thousand
active flows in a one-second time bin [2].

SDT lies in the family of fabric architectures [3] which
use central control to send instructions to edge devices
(in our case, end-hosts or hypervisors), allowing the core
of the network to provide only basic packet forwarding
functions. But the fabric architecture seems infeasible
for fine-grained flow-rate control: given the sub-second
timescales needed by rate control, centralized schedul-
ing of thousands of servers’ flows would raise a serious
latency and scalability concern.

Our goal is to revisit this assumption. How far can we
push a fabric architecture towards real-time, fine-grained
rate control? To answer this question, we give a prelim-
inary design and evaluation of an optimized SDT archi-
tecture. Abstractly, SDT works as follows:

e When an end-host starts a flow, it begins sending
using TCP or any other existing transport protocol,
and in parallel it sends a demand request to a central
transport controller.

e The central transport controller recomputes rates for
all the flows in the network and sends new rates to
end-hosts periodically.

o End-hosts adjust their rates accordingly.

SDT requires no modifications to today’s commod-
ity switches and makes innovation possible as adding a
new feature to network simply requires a software update
at the transport controller. With the global information
about the network traffic and routing, implementing new
transport policies in central controller is fairly simple and
intuitive. To demonstrate its flexibility, we have imple-
mented a nontrival prototype that supports a rich vari-
ety of transport policies such as strict priority scheduling,
weighted max-min fairness, or a combination thereof.

Scaling SDT Architecture: Intuitively, only flows that
last much longer than the control interval of the transport
controller would benefit from this architecture. To make
this architecture practical, rate computation has to be fast
enough to optimize flow rates in real time at a reason-
ably large scale. Computing max-min fair rates on one
link is trivial, but network-wide, it involves effectively a
fluid-flow simulation that has to converge over multiple
rounds.



We address the latency issue with two techniques.
First, we designed a multi-threaded rate allocation al-
gorithm that emulates link-level queueing disciplines.
We found such a multi-threaded design greatly reduces
computational time by allowing parallel processing of
several links. Second, we handle short, transient flows
without the central controller. These flows consume lit-
tle network resource yet typically require timely deliv-
ery. Based upon proper packet header marking (e.g., via
DSCP bits) at end-hosts, short flows are initiated with
highest queueing priority and do not need to be sched-
uled by the transport controller until they send more than
a certain number of bytes.
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Figure 1: (a,b) Controller scalability test: SDT handles
> 95% of the bytes in a datacenter/cluster of several thou-
sands servers with a control interval of a few hundreds of

milliseconds. Our multithreading shows ~ 4Xx speedup
with 4 threads.
Implementation: We have built a testbed with 112

Linux VMs running on top of VMware vSphere Hyper-
visor (ESXi), and each VM is equipped with a physical
1-Gbps Ethernet NIC. We have 13 48-port Pronto Switch
3290s running OpenFlow v1.0. Switches are sliced to
emulate several smaller switches, so that we can run the
testbed as a two-level tree topology: a core switch is
connected to 20 top-of-rack switches, each of which has
further connected to 4-6 VMs. The transport controller
runs on a Dell PC (OptiPlex 9010) with an Intel Core
17-3770K quad-core processor.

We have implemented SDT controller in C++11 using
Boost Asio library and Libcurl APIs for control message
communication, the host agent in Python with Twisted
library. For routing, we use Floodlight OpenFlow con-
troller. The control messages are all sent over TCP. We
implement per-flow rate limiting using tC rate-limiter and

implement packet marking using iptables in the Linux
kernel. A final implementation could be in the hypervi-
sor rather than the OS.

Results: The preliminary results show that our proto-
type implementation can already scale this architecture
reasonably well—a single central server can schedule
and dynamically re-schedule flow-rates of 95% of bytes
in a cluster with several thousand servers within hun-
dreds of milliseconds (Figure 1). If most bytes belong
to short flows, SDT will be ineffective. However, mea-
surements show that, e.g., 95% of bytes belong to flows
with duration longer than 10 seconds in a production data
center [5], and a similar traffic distribution is observed in
many other data centers [2]. For data centers with such
traffic, scheduling these flows with a much smaller con-
trol interval of hundreds of milliseconds is feasible. This
suggests that the centralized rate control architecture is
promising for many small and mid-size cloud datacen-
ters or clusters.

Related Work: SDT is close to OpenTCP [4], a SDN-
based control layer that dynamically adjusts TCP param-
eters and variants based on the network traffic measure-
ments. SDT differs from OpenTCP in at least two ways.
First, SDT offers greater flexibility than TCP-based con-
gestion control, because the ability to control flow send-
ing rates explicitly allows network operators to imple-
ment a wider range of transport policies with SDT. Sec-
ond, OpenTCP did not show that explicit centralized rate
control is feasible. With ~ 4,000 hosts, OpenTCP cen-
trally controlled TCP parameters and variants with a con-
trol interval of 60 seconds. In SDT, we show that the
more challenging task of explicit network-wide rate con-
trol is feasible at a single server with a control interval
that is 100x faster than OpenTCP at the same scale.
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