On the Price of Heterogeneity in Parallel Systems

P. Brighten Godfrey and Richard M. Karp SPAA'06 - July 31, 2006

Introduction

 Consider a parallel system in which each node has a capacity processing speed, Bottleneck bandwidth to Internet, memory, ...

• Does increasing heterogeneity of the capacity distribution help or hurt?

Introduction

System A

All nodes have equal capacity

System B

Same *total* capacity; higher variance

Does A or B perform better?

...can do either, depending on what system we're talking about AND the conditions under which we're running the system

Example

Minimum Makespan Scheduling

- Set of jobs, each with a *length*
- *n* processors, each with speed c_i
- Assign jobs to processors to minimize makespan: time until last processor completes its jobs
- Completion time of processor *i*: sum of job lengths given to it, divided by *c_i*

Completion time 4 sec

Completion time $2 \sec$

Example 2

Completion time 1 sec

 $\begin{array}{l} \text{Completion time} \\ \approx 2 \, \, \mathrm{sec} \end{array}$

So increasing heterogeneity can help or hurt.

Can we make any generalizations?

In This Paper

a general framework to quantify the worst-case effect of increasing heterogeneity

Contents

- Model
- Results
- Conclusion

Model

Defining Heterogeneity

 Capacity vectors (sorted decreasing)

$$C = (c_1, \dots, c_n)$$
$$C' = (c'_1, \dots, c'_n)$$

•
$$C' \succeq C$$
 when

$$\forall k \ \sum_{i=1}^{k} c'_i \ge \sum_{i=1}^{k} c_i \quad \text{and} \quad \sum_{i=1}^{n} c'_i = \sum_{i=1}^{n} c_i$$

Majorization partial order

$$C' \succeq C \implies \begin{cases} \operatorname{var}(C') \ge \operatorname{var}(C) \\ -H(C') \ge -H(C) \end{cases}$$

So majorization is consistent with both variance and negative entropy.

Majorization example

So Price of Heterogeneity also bounds the the Value of Parallelism!

Using the Price of Heterogeneity

Justified generalizations

(Constant vs. unbounded PoH)

- Comparison across systems
- Worst cases for testing

What characteristics place a cost function in one or the other category?

Contents

- Model
- Results
- Conclusion

Results

Problem	PoH
Minimum makespan scheduling	2-1/n
Scheduling on related machines	O(I)
PCS, unit length jobs	≤ 6
Precedence Constrained Sched.	O(log n)
Sched. with release times	Unbounded
Minimum network diameter	≤ 2

One way to bound PoH

 Goal: show C' is as good as more homogeneous capacities C

 Total capacity "simulated" by each C node must be not much more than its own capacity

Simulation Lemma

- A *B*-simulation is a mapping from *C* to *C*' such that no *C*'-node gets more than *B* times its capacity.
- Lemma: a (2-1/n)-simulation always exists for any C and more heterogeneous C'

Lay of the land

 Minimum Makespan Scheduling & a class of generalizations: O(I) PoH

- Precedence Constrained Scheduling (PCS):
 O(log n) PoH
- Scheduling with release times: unbounded PoH

PCS

- Like Min. Makespan Scheduling, except...
- Given set of precedence constraints:
 "Job *i* must finish before job *k* starts"

PCS

• Simulation technique cannot succeed

C-machines Time

Design capacity distributions such that some
 C'-machines simulate multiple C-machines

• Factor n/4 increase in schedule length!

PCS

- Instead, use LP relaxation of PCS due to Chudak and Shmoys
- Can apply Simulation Lemma to optimal values of the LP
 - Key relaxed constraint: machine can only execute one job at a time
- LP is within O(log n) of optimal => PoH of PCS is O(log n)

Contents

- Model
- Results
- Conclusion

Conclusion

- Introduced a framework to characterize worst-case effect of increasing heterogeneity
- "Batch" scheduling problems have low PoH
 - Even PCS has O(log n) PoH, while release times cause unbounded PoH
- Does PCS have O(I) PoH?