
Flock: Accurate network fault localization at scale
Vipul Harsh, Tong Meng, Kapil Agrawal, P. Brighten Godfrey

University of Illinois at Urbana-Champaign

Abstract
Inferring the root cause of failures among thousands of

components in a data center network is challenging, especially
for “gray” failures that are not reported directly by switches.
Faults can be localized through end-to-end measurements, but
past localization schemes are either too slow for large-scale
networks or sacrifice accuracy. We describe Flock, a network
fault localization algorithm and system that achieves both
high accuracy and speed at datacenter scale. Flock uses a
probabilistic graphical model (PGM) to achieve high accu-
racy, coupled with new techniques to dramatically accelerate
inference in discrete-valued Bayesian PGMs. Large-scale sim-
ulations and experiments in a hardware testbed show Flock
speeds up inference by >104x compared to past PGM meth-
ods, and improves accuracy over the best previous datacenter
fault localization approaches, reducing inference error by
1.19 − 11× on the same input telemetry, and by 1.2 − 55×
after incorporating passive telemetry. We also prove Flock’s
inference is optimal in restricted settings.

1 Introduction
Datacenters often comprise of tens of thousands of net-

work components. Failures in such large networks are com-
mon, arising due to software bugs, misconfiguration, and
faulty hardware, among other reasons [33]. In many cases,
a device will directly report a failure, e.g., a switch may re-
port that one of its line cards is non-responsive or that an
interface has a certain packet loss rate. Network operators
utilize monitoring software to collect these metrics and raise
alerts. However, datacenters also experience significant net-
work downtime and SLO violations from gray failures whose
root cause is obscure [33, 63]. For example, the reason for
poor performance of a distributed service could be a link
silently dropping a small fraction of packets without updating
switch counters [54], or a driver bug in a virtualized firewall.
Diagnosing such performance anomalies is very hard for
network operators [11]. With programmable switches, more
advanced monitoring is possible [34, 62], but these meth-
ods either do not eliminate gray failures [45] or come at a
high cost in switch resources [62], and require deployment of
programmable switches which is not generally available.

An alternate approach, which is the domain of this paper,
is to infer the root cause via end-to-end measurements, which
we refer to as fault localization [4, 11, 27, 29, 32, 54]. Fault
localization has been deployed by large cloud providers [12,
29]. At the heart of fault localization is an inference model
and algorithm that uses end-to-end observations (e.g., packet

loss rate or latency of TCP connections) to infer a set of faulty
components (links or switches). The key challenge is to do
this both accurately and quickly.

The most powerful class of inference techniques builds a
probabilistic graphical model (PGM) and performs a form
of maximum likelihood estimation (MLE): finding the set of
components that, if they failed, maximizes the probability of
having produced the given end-to-end observations. An early
such system was Sherlock [12], whose primary context was
inferring faults among dependent services. However, deriving
the MLE for a PGM can be computationally intensive. With
≤ 𝑘 failures among 𝑛 components, the solution space is ex-
ponentially large in 𝑘 (𝑂 (𝑛𝑘)). In a datacenter with millions
of TCP flows, switches, links, etc. and multiple simultaneous
failures, Sherlock’s MLE can require several hours.

Therefore, fault localization schemes intended for datacen-
ter networks move away from PGMs to other techniques – us-
ing scores to rank links [11, 32] or solving for drop rates via a
system of equations [54]. As we will show, these compromise
accuracy and flexibility of PGMs in favor of performance.

In this paper, we present Flock, a fault localization system
for datacenter networks that seeks to maximize accuracy, with
sufficiently high speed (i.e., seconds). Flock’s core innovation
is a novel MLE inference algorithm for PGMs that offers
substantial acceleration for the kind of models encountered in
fault localization, leveraging two key acceleration approaches:
(i) a technique we call joint likelihood exploration maintains
an array of hypotheses that it can update en masse to find
the likelihood of a set of new but similar hypotheses, more
quickly than computing their likelihoods individually from
scratch and (ii) we use a greedy algorithm which builds its
solution link by link; this part of the algorithm is simple, of
course, but importantly, we prove a sufficient condition for
optimality and verify through experiments that it does find the
MLE in practice. These two optimizations each individually
provide asymptotic speedups, and together allow Flock to use
a PGM at scale. The result is that Flock is several orders of
magnitude faster than past PGM-based fault localization [12],
and is substantially more accurate than past non-PGM-based
fault localization [11, 54], on the same input data.

Moreover, the PGM-based approach allows Flock to use
different types of input telemetry. Recent datacenter fault lo-
calization schemes [11, 54] use observations of active probes
of the network (which can be constructed to have known paths
and uniform distribution) but do not incorporate passive flow
monitoring, i.e., observations of all ongoing traffic, obtained

ar
X

iv
:2

30
5.

03
34

8v
1

 [
cs

.N
I]

 5
 M

ay
 2

02
3

PACMNET, June 2023, To appear Vipul Harsh, Tong Meng, Kapil Agrawal, P. Brighten Godfrey

via NetFlow, IPFIX, or INT. 1 The large volume of passive
data makes it potentially informative. But including passive
monitoring would be hard for non-PGM methods because it
requires more discerning modeling and inference to handle
skew in traffic patterns and path uncertainty.2 Although PGMs
are generally more flexible in incorporating data of different
types, it would be hard for past PGM approaches because of
computational difficulty, due to the immense number of flows
and because a flow with 10 possible paths is roughly 10×
costlier to model than a flow with a known path. Flock’s com-
bination of flexible PGM-based modeling and speed enables
it to utilize passive information.

In summary, this paper’s key contributions are as follows:
• Inference algorithm. We develop Flock, a new fast PGM

MLE inference algorithm for the type of PGM necessary for
fault localization, namely discrete-valued Bayesian PGMs
(§ 3.3). We analyze a sufficient condition for this algorithm’s
accuracy on Flock’s model, providing intuition for why
Flock works well in practice (§ 4.2).
• System implementation. We implement the Flock system

(§ 3), a new end-to-end fault localization system. The Flock
algorithm forms the heart of the Flock system, allowing it
to employ a PGM and naturally incorporate various kinds
of dependence and uncertainty such as unknown paths.
• Evaluation suite. We create an open evaluation suite [1]

for fault localization, which includes (a) implementations of
algorithms from NetBouncer [54], 007 [11], Sherlock [12],
and Flock, (b) an implementation of end-host telemetry
agents and a collector, (c) telemetry data for six different
fault scenarios from a simulated data center and a hardware
testbed, and (d) scaling tests. We believe this suite is of
independent interest, as it is the first such open data set and
expands on the fault scenarios evaluated by past work.
• Performance evaluation. For a Clos network with 88K

links and 9.5M flows, Flock is empirically > 104× faster
than Sherlock’s PGM-based method [12], scanning ~3.5M
hypotheses in 17 sec, while achieving the same or better
inference results (§ 7.8). In fact, Flock is ≈ 4.5× faster than
the non-PGM approach of NetBouncer [54] on the same
input. 007 [11] is the fastest of the lot, but its time savings
(<1 sec) is not a good tradeoff with accuracy.
• Accuracy evaluation. With the same (active probe) input

measurements as past work, Flock reduced inference error
by 1.8 − 8× compared to 007 and by 1.19 − 11× compared
to NetBouncer.
• The value of passive information/INT. Incorporating pas-

sive monitoring reduced error even further, by up to 5.3×
1[11] incorporates only a limited amount of passive monitoring; §2.3.
2Most data centers use non-deterministic ECMP multipath routing, so that
only a set of possible paths is known when flows are monitored with Net-
Flow/IPFIX. Paths can be known with INT-based monitoring, but INT is not
generally deployed.

compared to Flock with only active monitoring. We also
evaluate the value of INT telemetry input.

2 Background and Motivation
2.1 When fault localization is useful

Ideally, network faults are directly reported by the faulty
component; e.g., switches typically track interface utiliza-
tion, packet drops, up/down status, queue length, etc. These
metrics are commonly collected from network switches via
SNMP [15], polling [17, 52], or streaming telemetry [10, 23].

Fault localization becomes useful when such direct mon-
itoring is not enough. Problems that are not directly re-
ported by the faulty components are known as gray fail-
ures [33]. For example, silent inter-switch or inter-card
drops [11, 50, 54, 62, 63] are extremely challenging to detect,
constituting 50% of faults that took >3 hours to diagnose in
[62]. Other examples of gray failures include corruption in
TCAM-based forwarding tables causing black holes [40, 63]
or loss [18], and a misconfigured switch causing high la-
tency [63] (see [62] for more cases). gray failures also oc-
cur in the numerous software packet processing components
present in modern data centers. Software bugs can silently
drop or corrupt packets in host virtualization [55, 56], server
software [63], and virtualized network functions like software
firewalls [47]. All the above faults can be “silent” (the device
does not realize the error occurred). Further, the symptoms
could manifest at a different location than the problem, e.g.
packet data could be corrupted by an intermediate switch but
the corruption is discovered only at the receiver. End-to-end
observations are well suited to detect such problems (§ 6.4).

Another alternative is to use programmable switches to
obtain more information, as in Omnimon [34], FANcY [43]
(for ISPs), or NetSeer [62] which runs a packet sequencing
protocol across neighboring hops to find silent drops. This
can be quite accurate, though it comes at the cost of signifi-
cant switch resources (~100% overall PHV usage and 40%
ALU usage [62]). But more importantly, although use of
programmable switches is growing, they still have very lim-
ited deployment (13% estimated market share for 2023 [31]).
Both programmable and traditional switching environments
are valuable use cases, but the latter is the target of this paper;
schemes like [34, 43, 62] are out of the scope of our work. As
an exception, we will consider the use of data collected with
In-band Network Telemetry (INT) [13, 45], which does not
directly report gray failures, but does record packets’ paths.
INT can be implemented with programmable switches, but
similar path data can be obtained other ways; see § 6.2.

Thus, it is very hard to guarantee that every packet process-
ing element detects all faults locally (indeed, the end-to-end
principle [51] applies here). Also, even if a fault is reported,
the operator may want a way to cross-check. For these reasons,
we see fault localization based on end-to-end observations as

Flock: Accurate network fault localization at scale PACMNET, June 2023, To appear

an important tool in infrastructure engineers’ toolbox for the
foreseeable future.

2.2 Problem setup and goals
The input to a network fault localization algorithm is the
network topology, and input telemetry (flow measurements).
Each flow measurement includes one or more metrics (TCP
loss rate, mean latency, throughput, etc.) and a set of paths
through the topology that the flow may have traversed. De-
pending on the monitoring method, this set may have size one
(the exact path is known) or greater than one (typically, a set
of possible ECMP paths is known). Given this input, the fault
localization algorithm should output a set of links or devices
it believes to be faulty, while meeting two goals.
Performance: Network operators often have to resolve a re-
ported problem quickly. For example, a managed service from
BT has a 15 minute response time in its SLA [14] and Gartner
chose a threshold of 3 minutes in defining “real time” network
data analysis [9]. Thus, fault localization within minutes is
critical and within a few seconds is ideal.
Accuracy: False positives can bury true problems among
several alerts [49]. False negatives could send engineers down
the wrong track of investigation. There may be a tradeoff
between accuracy and performance. As long as results are
available within a few minutes, accuracy (minimizing false
positives and false negatives) is of primary importance.

2.3 Existing fault localization approaches
Several past approaches address above goals, with different
types of input telemetry and different inference algorithms.
Input telemetry: Administrators commonly [9] use passive
monitoring of flows via NetFlow [20] or IPFIX [21] to un-
derstand overall network health. However, this has not been
relied on for automated fault localization because vendor-
specific ECMP hashing obscures flows’ exact paths.

Recent approaches use active probes with known paths.
NetBouncer [54] sends probes uniformly from hosts to core
switches in a Clos topology, via special switch support.
007 [11] uses active probes with assistance from passive mon-
itoring: end-host agents monitor production traffic, and when
they detect flows with anomalous performance, the agents
traceroute the flagged flows’ paths and report the flagged
flows’ metrics for analysis. 007 does not incorporate passive
monitoring of non-flagged flows. In both systems, the volume
of active probes is limited (which assists inference perfor-
mance, and minimizes host/network overhead, and the exact
path of monitored flows is known (which assists accuracy).
But active probes do not eliminate all uncertainty: even if
the path is known, the culprit link(s) are not; and flows can
experience packet loss or latency on non-faulty links (e.g.,
due to congestion). Hence, good inference is still needed.
Further, active probes often take a different data path than

regular traffic and may fail to reproduce problems faced by
production flows [11].

INT has, to our knowledge, not been specifically used by
past work for end-to-end fault localization. INT is similar
to passive NetFlow telemetry in that it can observe a large
volume of actual application traffic, if deployed for all flows.
However, like active probes, it can trace the traversed path. It
also does not eliminate all uncertainty (e.g., a silent packet
corruption will not trigger an INT action, and even if the path
is known, the faulty link is not).

We observe that different deployments are likely to have
different available information. 007 requires host support
and NetBouncer and INT require switch support. INT is now
available in some switches, but is not deployed in most net-
works, and might be deployed selectively. Furthermore, this
technology landscape may evolve. A scheme that is flexible
in its input telemetry is thus preferred.
Inference algorithms: Sherlock [12], NetSonar [58] and
Shrink [36] use a PGM with a form of maximum likelihood
estimation (MLE), but are far too slow. Sherlock targeted a
small use case (358 components), and NetSonar, which uses
Sherlock’s inference, targeted smaller inter-DC networks. In
a data center network with tens of thousands of components,
they require several hours (§ 7.8), even with 𝐾 ≤ 2 con-
current failures (they scan 𝑂 (𝑛𝐾) possibilities, where 𝑛 =

number of components). Furthermore, inevitable concurrent
failures [11, 50, 54] may make 𝐾 > 3 essential.

Hence, state-of-the-art data center fault localization
schemes move away from PGM-based MLE. 007 [11] uses
a scoring function to rank links while NetBouncer [54] opti-
mizes an objective function to solve for drop rates. These are
reasonably fast, but as we will see, they fall short on accuracy.
Summary: Our goal is to localize “gray” failures in datacen-
ter networks, using end-to-end information, achieving as high
accuracy as possible within roughly a few seconds (including
monitoring and inference), making best use of available in-
formation, including active probes or INT (where paths are
known) and passive monitoring (exact paths are unknown).

3 Flock Design
We present Flock in three components. First (§ 3.1), Flock

monitors end-to-end flows at the endpoints (e.g. hosts) of
the network. The monitored flow observations, comprised
of metrics from active probes and (when available) passive
flow monitoring and/or INT, are then sent to a central collec-
tor. Next, the collector periodically constructs a probabilistic
graphical model (PGM) from the flow observations (§ 3.2).
This PGM captures uncertainty in how the observations may
have resulted from underlying network components. Finally,
Flock periodically performs MLE inference (§ 3.3) on the
PGM model, searching through the exponentially-large hy-
pothesis space (i.e., sets of possible faulty components) to find

PACMNET, June 2023, To appear Vipul Harsh, Tong Meng, Kapil Agrawal, P. Brighten Godfrey

the hypothesis that maximizes the probability of the observed
flow metrics in the model.

The first two components (monitoring and the PGM model)
are not the significant contributions of this paper. Our PGM
is similar to that of Sherlock and NetSonar [58], with useful
adaptations to fit our environment. We describe those pieces
for completeness. Our key contribution lies in the MLE infer-
ence algorithm, comprised of multiple optimizations to make
it scale.

3.1 Flow monitoring
Monitoring of end-to-end flows may occur in an agent pro-

cess running on hosts, in the hypervisor of a virtualized data
center, or potentially at edge/top-of-rack switches (e.g., with
INT). Our inference algorithms are agnostic to where exactly
these measurements come from. Still, for concreteness, we
describe the operation of an endpoint monitoring agent (§5).

The agent periodically actively probes the network and may
optionally passively observe performance of ongoing flows.
Note that 007 also observes ongoing traffic, to decide what
active probes to launch. Metrics from both active and passive
monitoring are aggregated by flow, and optionally randomly
sampled to reduce volume. Periodically, the agent sends these
reports to the collector. For the rest of this section, we assume
flow reports include RTT, source, destination, retransmissions,
packets sent and the path if known via active probing/INT,
else the set of possible paths.

3.2 Inference graph model
After telemetry is collected, Flock builds a probabilistic

model of the network using two inputs: (1) telemetry reports
as described above, potentially including active probes, INT,
or passive telemetry, and (2) the network topology and routes.
The latter could be provided by an SDN controller or a topol-
ogy discovery tool and is used to determine a set of paths
(typically, ECMP paths) that each flow may have traversed in
the specific case of passive data with unknown paths.

Flock employs a probability model based on a Bayesian
network that utilizes flow level metrics. A Bayesian network
is a probabilistic graphical model that defines the probability
distribution of a set of observed variables in terms of a set
of unknown (or hidden) variables. It consists of a labeled
directed acyclic graph (DAG) where each node represents a
random variable, unknown or observed, whose distribution
can be specified completely as a function of its immediate
ancestors in the DAG. The goal of the inference is to estimate
the unknown variables (failed/not failed status of each com-
ponent) given the observed variables (retransmissions, RTT,
packets sent etc. associated with each flow).

We use a 3-layer graph model. Fig. 1 shows an example net-
work with two flows and its corresponding model. Formally,
the conversion from datacenter network to model is as follows.

(a) Network

(b) PGM graph
Figure 1: (a) A network with flows F1 and F2 traversing several possible
paths; (b) the corresponding PGM model.

The top layer nodes in the graphical model represent indi-
vidual links in the datacenter, referred to as link-nodes. Each
link-node is a hidden binary variable which is 0 if the link
has failed and 1 otherwise. The intermediate layer consists
of nodes corresponding to paths in the datacenter, referred
to as path-nodes. For each link ℓ in path 𝑝, there is an edge
from the link-node of ℓ to the path-node of 𝑝 in the Bayesian
graph. A path-node represents an intermediate binary variable
which is 0 if the path consists of a faulty link and 1 otherwise.
Finally, the bottom layer consists of flow-nodes – one for
every flow – which are the observed variables. A flow-node
has an edge from each path-node in the path-set of that flow.
We define the value of the flow-node variable as the number
of bad packets – packets which experienced a problem. We
describe two ways of setting the bad packets variable:
• Per packet analysis: For packet loss and corruption, we set

the number of bad packets as the number of retransmissions
which serves as a proxy for lost packets.
• Per flow analysis: To capture symptoms of high latency, we

use a “per-flow” analysis which is in effect a special case
of the per-packet model where the number of packets sent
is 1, and the number of bad packets is set to 1 if the flow’s
RTT is above a threshold and 0 otherwise.

Flock’s model assumes a flow 𝐹 is routed via ECMP; 𝐹 takes
one of 𝑤 paths chosen uniformly at random, and packets
experience problems independently and uniformly at random.
Thus, the probability of observing 𝑟 bad packets out of the 𝑡
sent can be given as:

𝑃 [𝐹 = (𝑟, 𝑡)] = 1
𝑤

𝑤∑︁
𝑖=1
(1 − 𝛾𝑖)𝑝𝑟𝑏 (1 − 𝑝𝑏)

𝑡−𝑟 + 𝛾𝑖𝑝𝑟𝑔 (1 − 𝑝𝑔)𝑡−𝑟

(1)

Flock: Accurate network fault localization at scale PACMNET, June 2023, To appear

where 𝛾𝑖 is the value of the 𝑖𝑡ℎ possible path of 𝐹 (𝛾𝑖 = 0 if a
failed link is on the 𝑖𝑡ℎ possible path and 1 otherwise). 𝑝𝑔 and
𝑝𝑏 are model hyperparameters: 𝑝𝑏 represents the probability
of a packet experiencing problems when taking a bad path
(i.e., with at least one faulty link), and 𝑝𝑔 represents the prob-
ability of a packet experiencing problems on a good path (no
faulty links). Intuitively, a packet going through a failed link
is much more likely to experience a problem, hence 𝑝𝑏 >> 𝑝𝑔.
§ 5.2 describes how to pick 𝑝𝑔 and 𝑝𝑏 . Equation 1 can also be
adapted to include path weights, like in WCMP [61].

A hypothesis is an assignment 𝐻 ∈ {0, 1}𝑛 for all link-
nodes. Equivalently, we can think of 𝐻 as a set of links that
are deemed to be failed, with all other link-nodes being not
failed. The goal of the inference is to recover the hypothesis
that consists of all truly failed links and only those links.
Conditioned on a hypothesis 𝐻 , the probability of the set
of flow observations taking on the observed assignment of
values (a certain number of bad packets 𝑟𝑖 out of 𝑡𝑖 packets
sent, for each flow 𝑖) is simply the product of probabilities of
all individual flow probabilities:

𝑃 [𝐹1, 𝐹2, . . . , 𝐹𝑚 |𝐻] =
∏

𝐹𝑖 ∈flows

𝑃 [𝐹𝑖 = (𝑟𝑖 , 𝑡𝑖) |𝐻
]
=

∏
𝐹𝑖 ∈flows

𝑃 [𝐹𝑖 |𝐻
]

where 𝐹𝑖 is shorthand for the event that flow 𝑖 takes on the
observed metric values, i.e., 𝐹𝑖 = (𝑟𝑖 , 𝑡𝑖).
Incorporating Priors. We assign a prior belief about failures
by assuming that, a priori, any link can fail with probability
𝜌. The priors reduce the false positive rate by effectively
assigning a lower prior to hypotheses with more links, thus
favouring hypotheses with fewer failed links. If hypothesis 𝐻
contains |𝐻 | candidate failed links and there are 𝑛 total links,
then the likelihood of 𝐻 after incorporating priors is given as:

𝑃𝑟𝑖𝑜𝑟 ∗
∏

𝐹𝑖 ∈flows

𝑃 [𝐹𝑖 |𝐻]; 𝑃𝑟𝑖𝑜𝑟 = 𝜌 |𝐻 | (1 − 𝜌)𝑛−|𝐻 |

Model extensions. The top layer nodes can include other
component types besides links; we add device nodes, treating
a device as another component in a flow’s path, exactly as
links. We found that a device prior that is 5× larger on log-
scale, worked well in practice, as it forces Flock to detect a
device failure only when there is stronger evidence for it than
a link failure. Other components (line cards, racks, pods etc.)
can be modeled in a similar way, but is beyond the scope of
this paper.
Model Intuition. The model effectively incorporates several
kinds of uncertainty. Given an observation of bad packets in
a flow, we may not know what path is responsible (modeled
via flow nodes having multiple path parents). Even if we do
know the path, as we do for active probes and INT, we don’t

know what link is responsible3 (this is modeled via path nodes
having multiple link parents). Even if we know what link is
responsible, an observed bad packet might or might not mean
there is a faulty link (this is modeled via both good and bad
links having non-zero probability of bad packets).
Differences from Sherlock’s PGM. Sherlock was intended
to model application-level failures, and thus includes elements
that we don’t need such as services and load balancers. Sher-
lock uses three node states – working, failed, and partially
working; we omit the last, as Flock models some packet loss
even for working links. Starting from Sherlock’s model and
making these changes results in a PGM that is very close to
Flock’s, except for the probability formulations.
Model Assumptions. Like any other model [12, 36, 58], ours
has assumptions: fixed packet fail probabilities (as in [36]),
classifying paths as failed on just the absence/presence of
at least one failed link (as in [58]), and packets getting af-
fected independently (as in [12, 36, 58]). We tried different
assumptions – one with variable fail rates obtaining MLE
using Nesterov’s Gradient Descent algorithm, but it was too
slow; another variation that treats paths differently depending
on their number of failed links, but its accuracy was worse.4

We present the model that gave the best results in experi-
ments based on real environments that don’t adhere to any
model assumptions. We also give theoretical (§ 4.2) evidence
supporting Flock’s effectiveness with these assumptions. Fi-
nally, it’s important to keep in mind that the model does not
need to match reality perfectly, it only needs to be “close
enough” that the most likely explanation in the model is the
right one. See Fig: 6 in appendix for an illustration of how
the PGM-inference can localize more accurately than past
schemes.

3.3 Inference algorithm
We describe the inference algorithm next. For ease of ex-

position, this description only refers to links as components
that can fail. Devices are treated exactly in the same way as
links and our implementation handles both links and devices.

Recall that a hypothesis 𝐻 is a candidate set of failed
links. From the model, we can compute the probability
of the flow variables taking their observed values (num-
ber of bad/sent packets for each flow) given 𝐻 ; this is
the likelihood of 𝐻 . We denote this likelihood as 𝐿(𝐻) =
𝑃 [𝐹1 |𝐻]𝑃 [𝐹2 |𝐻] . . . 𝑃 [𝐹𝑚 |𝐻]. The maximum likelihood es-
timator H is the hypothesis that maximizes 𝐿(𝐻), or
equivalently log likelihood 𝐿𝐿(𝐻) = log𝐿(𝐻), that is
H = arg max

𝐻 ⊆links
𝐿𝐿(𝐻).

3While INT can capture per-hop metrics, it may not detect where a gray
failure happens. For example, a silent corruption of packet data likely would
not be detected until the packet reaches the receiver’s host stack.
4Note that Flock still localizes multiple failures on a path since there are
flows that transit one failed link, but not the other.

PACMNET, June 2023, To appear Vipul Harsh, Tong Meng, Kapil Agrawal, P. Brighten Godfrey

We normalize all likelihoods by the likelihood of the no-
failure hypothesis (i.e.,𝐻0 = {}) to cancel out any flow whose
path set does not include any failed links in a hypothesis 𝐻 .

The goal of MLE inference is to computeH . Simply com-
puting the likelihood of each possible hypothesis would be
impractically slow because there are 2𝑛 hypotheses, where
𝑛 is the number of links. Sherlock [12] and NetSonar [58]
limit max concurrent failures to 𝑘 , reducing the search space
to 𝑂 (𝑛𝑘) hypotheses. However, in our setting, this is still far
too slow, even for 𝑘 = 2 (§ 7.8). Further, a datacenter can have
many concurrent failures making 𝑘 > 3 important.

We introduce two algorithmic techniques to accelerate
MLE inference in PGMs. Greedy search reduces the number
of hypotheses examined. While Greedy MLE is a simple idea,
our main contribution is showing that it finds good solutions
even after narrowing the hypothesis space: we provide theory
(§ 4.2) and experiments (§ 6). Joint likelihood exploration
(JLE) is a new algorithmic technique, that reduces the time
required per examined hypothesis. Both techniques provide
significant speedups individually and together speedup the
inference by several orders of magnitude (§ 7.8).
Greedy Search: We start from the no-failure hypothesis and
extend it one link at a time. Specifically, we maintain a current
hypothesis 𝐻 . Initially, 𝐻 = {}. In each iterative step, we
scan over each link 𝑙 ∉ 𝐻 and calculate 𝐿𝐿(𝐻 ∪ {𝑙}). If one
of these log likelihoods improves over 𝐿𝐿(𝐻), we set 𝐻 :=
𝐻 ∪{𝑙∗} where 𝑙∗ is the link offering the biggest improvement,
and continue iterating. When no added link failure improves
the log likelihood of the current hypothesis 𝐻 , the search
terminates and returns 𝐻𝑔𝑟𝑒𝑒𝑑𝑦 = 𝐻 .

There is still a performance challenge with Greedy MLE.
Each iterative step requires evaluating close to 𝑛 hypothe-
ses (specifically 𝑛 − |𝐻 |) to find 𝑙∗. Even with 40 cores,
greedy search took over 3 hours for a medium-sized data-
center (§ 7.8). This motivates our second key optimization.

Joint likelihood exploration (JLE): We devise an additional
acceleration technique for inference algorithms for PGMs
with discrete variables. We use it to speed up each iteration of
the greedy algorithm by a 𝑂 (𝑛) factor, where 𝑛 is the number
of components (links and switches). Note that greedy+JLE
produces the exact same solutions as greedy.

Suppose we are given the current best hypothesis 𝐻 which
has the maximum likelihood among hypotheses searched till
now. Joint likelihood exploration is a technique to quickly ex-
plore all “neighbors” of 𝐻 – all assignments that are different
from 𝐻 in the inclusion or exclusion of exactly one link. Note
that there are 𝑛 such neighbor hypotheses of 𝐻 .

DEFINITION 1. Let 𝐻 ⊕ 𝑙 denote the hypothesis obtained
by flipping the status of link 𝑙 in 𝐻 , i.e., if 𝑙 ∈ 𝐻 then 𝐻 ⊕
𝑙 = 𝐻 \ {𝑙} and otherwise 𝐻 ⊕ 𝑙 = 𝐻 ∪ {𝑙}. Let Δ𝐻 (𝑙) =

𝐿𝐿(𝐻 ⊕ 𝑙) − 𝐿𝐿(𝐻) represent the difference in log likelihoods
of hypotheses (𝐻 ⊕ 𝑙) and 𝐻 .

JLE Intuition: We explain JLE by showing how it acceler-
ates the Greedy algorithm (although it can also accelerate
exhaustive search). In each iteration, Greedy computes each
𝐿𝐿(𝐻 ∪ {𝑙}) for each 𝑙 , to find the link 𝑙∗ offering the most
improvement. Note that maximizing 𝐿𝐿(𝐻∪{𝑙}) is equivalent
to maximizing the difference in log likelihoods, Δ𝐻 (𝑙). So,
in each iteration of Greedy, we could compute an 𝑛-element
array Δ𝐻 whose elements are the values Δ𝐻 (𝑙) for each link
𝑙 , and then scan the array to find the largest value. This will
find the same 𝑙∗ as in the original greedy algorithm.

But how do we compute the array Δ𝐻? If we do it in the
obvious way, by iterating over each 𝑙 and directly computing
𝐿𝐿(𝐻 ⊕ 𝑙) −𝐿𝐿(𝐻), then this is nearly identical to the original
greedy algorithm which computed 𝐿𝐿(𝐻 ∪ 𝑙), with no appre-
ciable change in runtime. What JLE offers is a faster way
to compute Δ𝐻 , with careful algorithm engineering. This in-
volves two somewhat different types of computation: quickly
preparing the array Δ𝐻0 for the first iteration; and quickly
iteratively updating the array for each subsequent iteration.

To initially create Δ𝐻0 , note each entry Δ𝐻0 (𝑙) represents
the difference in log likelihood due to failing link 𝑙 , compared
to no failures. To compute these differences, we only have
to look at the effect on flows whose paths intersect 𝑙 . Fur-
thermore, there is an important opportunity for memoization
in computing the log likelihood-difference formula across
different links 𝑙 : the effect on a flow’s likelihood depends only
on the number of failed paths, not the specific failed links.

Now suppose we have an existing Δ𝐻 and the search al-
gorithm is about to move from hypothesis 𝐻 to hypothesis
𝐻 ′ in its next iteration. We need to compute the array Δ𝐻 ′ .
To do this, we track the difference in the difference arrays
(Δ𝐻 vs. Δ𝐻 ′) rather than directly computing the difference in
likelihoods of 𝐻 and 𝐻 ⊕ 𝑙 for every 𝑙 . The key insight here
is that each entry of the difference array Δ𝐻 can be written
as a sum of contributions for all flows and only some of the
terms need to be updated after moving to a new hypothesis
𝐻 ′. The fact that we can do this faster than creating the array
from scratch is the key to JLE’s acceleration.
JLE formalization: First the algorithm needs to compute
the array Δ𝐻0 for the first iteration of Greedy. We omit these
details due to space; see function ComputeInitalDelta in Al-
gorithm 2 in appendix which follows the intuition above.

Next, we describe how the Δ𝐻 array can be updated when
the greedy algorithm moves to a new hypothesis 𝐻 ′. We first
note that 𝐿𝐿(𝐻) is a sum of contributions from all flows and
can be written as 𝐿𝐿(𝐻) = ∑

𝐹 ∈flows 𝐿𝐿𝐹 (𝐻), where 𝐿𝐿𝐹 (𝐻) =

Flock: Accurate network fault localization at scale PACMNET, June 2023, To appear

log 𝑃 [𝐹 |𝐻]. We have
Δ𝐻 (𝑙) = 𝐿𝐿(𝐻 ⊕ 𝑙) − 𝐿𝐿(𝐻)

=
∑︁

𝐹 ∈flows

𝐿𝐿𝐹 (𝐻 ⊕ 𝑙) −
∑︁

𝐹 ∈flows

𝐿𝐿𝐹 (𝐻) =
∑︁

𝐹 ∈flows

Δ𝐻 (𝑙, 𝐹)

where Δ𝐻 (𝑙, 𝐹) = 𝐿𝐿𝐹 (𝐻 ⊕ 𝑙) −𝐿𝐿𝐹 (𝐻). Next we derive a use-
ful property about the individual flow contributions Δ𝐻 (𝑙, 𝐹).

DEFINITION 2. A flow 𝐹 intersects with link 𝑙 if at least
one of the possible paths for 𝐹 has link 𝑙 .

THEOREM 1. For a link 𝑙 ′ and hypothesis 𝐻 , let 𝐻 ′ =
𝐻 ⊕ 𝑙 ′. Then for all links 𝑙 and flows 𝐹 ,
(i) If 𝐹 does not intersect with 𝑙 , then Δ𝐻 (𝑙, 𝐹) = 0

(ii) If 𝐹 does not intersect with 𝑙 ′, then Δ𝐻 ′ (𝑙, 𝐹)= Δ𝐻 (𝑙, 𝐹).

PROOF. This can be easily seen by expanding Δ′
𝐻
(𝑙, 𝐹) and

Δ𝐻 (𝑙, 𝐹). We note that for any 𝐻 , the log likelihood of a flow
𝐹 , given by 𝐿𝐿𝐹 (𝐻) = log 𝑃 [𝐹 |𝐻], does not depend on a link
𝑙 if 𝐹 does not intersect with 𝑙 (that is, 𝐿𝐿𝐹 (𝐻) = 𝐿𝐿𝐹 (𝐻 ⊕ 𝑙)).

For (i), if link 𝑙 does not intersect with 𝐹 , then flipping 𝑙’s
status does not affect 𝐹 : 𝐿𝐿𝐹 (𝐻)= 𝐿𝐿𝐹 (𝐻 ⊕ 𝑙) ⇒ Δ𝐻 (𝑙, 𝐹) =
0.

For (ii), when 𝑙 ′ does not intersect with flow 𝐹 , 𝐿𝐿𝐹 (𝐻 ′) =
𝐿𝐿𝐹 (𝐻 ⊕ 𝑙 ′) = 𝐿𝐿𝐹 (𝐻) and 𝐿𝐿𝐹 (𝐻 ′ ⊕ 𝑙) = 𝐿𝐿𝐹 (𝐻 ⊕ 𝑙 ′ ⊕ 𝑙) =
𝐿𝐿𝐹 (𝐻 ⊕ 𝑙). Consequently, we get Δ𝐻 ′ (𝑙, 𝐹)= Δ𝐻 (𝑙, 𝐹). □

Hence, to obtain Δ𝐻 ′ (𝑙) from Δ𝐻 (𝑙), we only need to up-
date the terms Δ𝐻 (𝑙, 𝐹) for flows 𝐹 that intersect with both
links 𝑙 ′ and 𝑙 since all other flow contributions to Δ𝐻 ′ (𝑙) re-
main unchanged from Δ𝐻 (𝑙). Let flows(𝑙 ′, 𝑙) denote the set
of flows that intersect with both 𝑙 and 𝑙 ′. After updating the
current hypothesis from 𝐻 to 𝐻 ′, we can compute the new
entry Δ𝐻 ′ (𝑙) for link 𝑙 using Theorem 1:

Δ𝐻 ′ (𝑙) =
∑︁

𝐹 ∈flows

Δ𝐻 ′ (𝑙, 𝐹) =
∑︁

𝐹 ∈flows

Δ𝐻 (𝑙, 𝐹) +
∑︁

𝐹 ∈flows(𝑙 ′,𝑙)
Δ𝐻 ′ (𝑙, 𝐹) − Δ𝐻 (𝑙, 𝐹)

⇒ Δ𝐻 ′ (𝑙) = Δ𝐻 (𝑙) +
∑︁

𝐹 ∈flows(𝑙 ′,𝑙)
Δ𝐻 ′ (𝑙, 𝐹) − Δ𝐻 (𝑙, 𝐹) (2)

Once we have equation ??, the algorithm to update the Δ
array, for all 𝑛 entries, is simple to state. After moving to
𝐻 ′ = 𝐻 ⊕ 𝑙 ′, we iterate over all flows that intersect with 𝑙 ′. For
each such flow 𝐹 , let 𝐿𝐹 be the set of links that intersect with
𝐹 . For each 𝑙 ∈ 𝐿𝐹 , we update 𝐹 ’s contribution to Δ𝐻 ′ (𝑙). With
memoization, one can update all entries Δ𝐻 ′ (𝑙, 𝐹) for all 𝑙 ∈
𝐿𝐹 in a couple of passes over 𝐿𝐹 , similar to how we initially
computed Δ𝐻0 . The crux of the greedy+JLE algorithm is
outlined in Algorithm 1 in appendix and the full pseudocode
in Algorithm 2 is outlined in appendix .

Given 𝐿𝐿(𝐻), an alternate approach is to compute 𝐿𝐿(𝐻⊕𝑙)
without JLE, individually for each 𝑙 , as in [12, 58]. This re-
quires updating the contribution of all flows that intersect with
𝑙 since their likelihoods 𝐿𝐿𝐹 (𝐻 ⊕ 𝑙) would have changed after

flipping the status of link 𝑙 . Thus, the number of flows whose
contributions need to be updated for computing just one entry
𝐿𝐿(𝐻 ⊕ 𝑙) for a single 𝑙 is the same as that for computing all
𝑛 entries of the Δ array jointly with JLE. Thus, JLE results in
in a 𝑂 (𝑛) speedup. The reason for this large improvement is
that JLE tracks the change in the Δ’s (i.e., the difference in
the differences: 𝐿𝐿𝐹 (𝐻 ⊕ 𝑙) −𝐿𝐿𝐹 (𝐻)) across iterations which
allows reuse of computation from the previous iteration.

Besides greedy search, JLE can apply to any algorithm
which explores a hypothesis 𝐻 ’s neighbors: 𝐻 ⊕ 𝑙 for all 𝑙 .
This includes brute force, Sherlock and NetSonar’s inference,
and MCMC techniques (e.g. Gibbs sampling). Using JLE,
we were able to accelerate (i) Sherlock’s inference (Alg. 3
in appendix), and (ii) Gibbs sampling for Flock, both by
multiple orders of magnitude. We ended up using Greedy for
Flock because (i) Sherlock’s inference can not detect 𝐾 > 2
concurrent failures and was still slow with JLE (§ 7.8) and (ii)
for Gibbs sampling, it’s hard to bound the number of iterations
required for convergence. Gibbs sampling [46] without JLE
was too slow for our purposes.

4 Flock: Analysis
4.1 Runtime analysis

Let 𝑛 be the number of links,𝑚 be the number of flows, 𝑇
be an upper bound on the number of links that any flow inter-
sects with, 𝐷 be an upper bound on the number of flows that
any link intersects with and𝐾 be the maximum number of con-
current failures (note Flock’s inference does not know𝐾). The
runtime of Greedy inference with JLE is𝑂 (𝑛+𝑚𝑇+(𝐾−1)𝐷𝑇).
If we had used just Greedy without JLE (computing likeli-
hood of each hypothesis individually), the runtime would be
𝑂 (𝑛 +𝑚𝑇 + (𝐾−1)𝑛𝐷𝑇). In contrast, Sherlock’s runtime is
𝑂 (𝑛𝐾𝐷𝑇). JLE can improve Sherlock’s runtime by a factor
of 𝑛, to 𝑂 (𝑛𝐾−1𝐷𝑇). From the analysis above (and our exper-
iments later), it can be seen that Greedy + JLE is dramatically
faster. See § C of appendix for derivations of these results.

4.2 Accuracy analysis
We now analyze conditions in which Greedy returns the

true MLE hypothesis. To make the problem tractable, we re-
strict the analysis to cases where path taken is known (true
for active probes and INT) and packets crossing a link get
dropped independently according to a (unknown) drop proba-
bility of that link (inference is NP hard if packets get dropped
adversarially, see § 3 in appendix). Theorem 2 gives a suffi-
cient condition on the traffic pattern for Flock’s inference to
correctly recover the set of failed links, providing intuition
for why Flock’s model and inference work well in practice.

DEFINITION 3. For given traffic 𝑇 , let 𝑇 ({𝑙1, 𝑙2, ...𝑙𝑘 }) de-
note the number of packets that each go through all of the
links {𝑙1, 𝑙2, ...𝑙𝑘 }. If𝑇 ({𝑙1, 𝑙2})/𝑇 ({𝑙1}) ≤ 𝜖 for all links 𝑙1 and
𝑙2, then we say 𝑇 is 𝜖-skewed.

PACMNET, June 2023, To appear Vipul Harsh, Tong Meng, Kapil Agrawal, P. Brighten Godfrey

THEOREM 2. For any topology with (1/𝛼)-skewed traffic,
with high probability, Flock’s inference returns the set of all
failed links if the number of failures is ≤ 𝛼/2, the number
of packets 𝑇𝑚𝑖𝑛 crossing every link is larger than a certain
threshold, and the drop probabilities are < 𝑝𝑔 on all good
links and > 𝑝𝑏 on all failed links where (𝑝𝑔, 𝑝𝑏) satisfy the
condition 5𝑝𝑔 < 𝑝𝑏 < 0.05.

Proof in appendix. Theorem 2 has an intuitive interpretation:
Consider two links 𝑙1 and 𝑙2, where 𝑙1 has failed and 𝑙2 works
correctly. Intuitively, at most 1

𝛼
fraction of the dropped pack-

ets on 𝑙1 will transit 𝑙2. One can think of this as 𝑙2 getting
“ 1
𝛼

fraction of the blame” for the dropped packets on 𝑙1. If
there are (𝑓 𝛼) failures and these are arranged adversarially
so that all of them add blame to 𝑙2, then in the worst case 𝑙2
can get (𝑓 𝛼) · 1

𝛼
= 𝑓 times as much blame as a true failed

link. Intuitively, a large enough constant 𝑓 would confuse the
algorithm into classifying 𝑙2 as failed. The theorem proves
that for 𝑓 < 0.5, the algorithm outputs the true failed links.

5 Implementation
5.1 Agent and inference engine
We implement an agent that runs on end-hosts and collects
flow statistics via a lightweight packet dumping tool based
on the PF_RING module [5]. The agent periodically encap-
sulates the collected flow statistics (52 bytes per flow) into
export IPFIX messages, and sends it to the collector. As the
specifics of the agent/collector don’t affect our results, we
leave more optimized designs for future work. Note that com-
mercial solutions also exist [3, 6], possibly employing alter-
nate approaches such as pulling flow statistics directly from
the kernel via eBPF or using multiple collectors at scale.

Flock’s inference engine, written in C++, (i) collects IPFIX
flow reports from agents and (ii) periodically runs inference
on the collected input. Currently, the network topology is
static, but the inference engine can be modified to obtain the
topology from a controller. The engine periodically reads
flow reports from the queue, every 30 seconds, and runs the
inference algorithm of § 3.3.

5.2 Parameter Calibration
A important problem we encountered, with both Flock and

the other competing schemes, is how to set their hyperparam-
eters. Flock has 3 hyperparameters (𝑝𝑔, 𝑝𝑏 , 𝜌), NetBouncer
has 3, and 007 has 1. In real deployed systems, parameters
and thresholds are quite common, and are set based on past
deployment experience. However, manual tuning puts extra
onus on the user and makes it difficult to evaluate systems.
The manually set parameters of past schemes 007 [11] and
NetBouncer [54] gave suboptimal results in our environments,
across different topology scales and failure scenarios.

Thus, we design an automated parameter calibration
method that we use for all schemes. We use a training set

of monitoring data to search for the parameter settings that
obtain the best precision and recall in the training set. It is
tempting to obtain the training set from historical monitoring
data, which is generally available in deployed systems. How-
ever, this can be tricky, since: (a) historical data may not have
faults labeled; and (b) faults, especially rare faults, may have
diverse and unpredictable types so that historical data is not
entirely representative of the next upcoming incident.

To solve (a), we leverage simulations to obtain the training
set. We calibrate parameters once using this training set and
use those parameters across our experiments, unless stated
otherwise. Note that if this method were used in a deployment,
it would increase concerns with (b) since simulations may not
match the real world. To address (b) we will experimentally
quantify the robustness of each scheme to scenarios where
the train and test sets are drawn from different environments
(different topology, monitoring duration, fault rate, fault type).

Once we have the training set, we use the following cali-
bration method. For each hyperparameter, we choose equally-
spaced values in a reasonable range of possible values. We
fix a minimum precision 𝑃 and find the parameters which, in
a training set, yielded highest recall and had precision > 𝑃 .
Varying 𝑃 produces a set of parameters that are Pareto-optimal
along the precision/recall tradeoff curve. Our evaluation will
apply these parameters to a separate test data set.

To choose a single parameter setting (rather than a tradeoff
curve), we set 𝑃 = 98% and find the setting that maximizes
recall (in the training set); if no such point exists or recall is
too low (< 25%), then we subtract 5% from 𝑃 and try again,
repeating until a setting is found. This method lays more
emphasis on precision, which is usually desirable.

6 Evaluation Methodology
6.1 Systems evaluated
We compare Flock with several state-of-the-art datacenter
fault localization schemes. Our codebase consists of 7K LOC
including C++ implementations of all inference algorithms.

We implemented the “Ferret” inference algorithm of Sher-
lock (Sec. 3.2 of [12]). For a fair comparison, we run Ferret
on the same PGM as Flock (which is anyway similar to Sher-
lock’s; § 3.2). Sherlock can not detect 𝐾 > 2 failures, but (as
expected) resulted in the same accuracy as Flock for 𝐾 ≤ 2
failures at small scale. Hence, we only show performance
differences.

We implemented NetBouncer’s algorithm (Figure 5 in
[54]) and 007 (Algorithm 1 in [11]) We verified our 007
implementation by matching scores outputted by the publicly
available 007 code. We were also able to reproduce Figure 10
in [11] with our implementation/setup.

For all schemes, we calibrate parameters once using simu-
lations of random packet drops and use those parameters by

Flock: Accurate network fault localization at scale PACMNET, June 2023, To appear

default, unless stated otherwise. In some cases, we also show
results with parameters calibrated on that environment.

6.2 Input telemetry types
We use four different kinds of input for inference:
• A1: Active probes between end-hosts and the core switches

with known paths, as designed for NetBouncer [54].
• A2: Reports about flows with ≥ 1 retransmission, along

with their (actively-probed) paths, as designed for 007 [11].
• P: Passive information consisting of reports about regular

(application) data flows, whose traffic matrix is thus dic-
tated by the network environment (§ 6.3). A set of possible
paths is known (based on ECMP multipath).
• INT: We assume INT [2] provides reports, including paths,

for both A1 and P (which thus becomes a superset of A2).
Note the last case is intended to test full deployment of INT;
in other deployment modes it could trace just a subset of traf-
fic. Similar reports could be obtained from other recent packet
marking [50] or mirroring [30, 34, 35, 53, 63] methods. Since
Flock can incorporate different kinds of inputs, we compare
accuracy across input types: Flock (A1) vs NetBouncer (A1),
Flock (INT) vs NetBouncer (INT) and Flock (A2) vs 007
(A2). We also quantify the accuracy boost Flock obtains from
additional passive information (A1+P, A2+P, A1+A2+P). Net-
Bouncer and 007 cannot trivially ingest the passive telemetry
as they do not model path uncertainty. Finally, the passive
flow telemetry can be downsampled in a large datacenter with
high link speeds to reduce volume of the monitoring data.

6.3 Network environments
NS3 simulations. We set up a NS3 simulation to output a
trace consisting of flow metrics (retransmissions/packets sent).
We feed this trace as input to inference. We use a standard
3-tiered Clos topology [7] with 2500 40Gbps links, ECMP
routing and 3x oversubscription at ToRs. Like [54], we set
drop rates on all non-failed links between 0 − 0.01% cho-
sen independently and uniformly at random to model occa-
sional drops on good links 5. For all our experiments, half the
traces used uniform random traffic and the other half used a
skewed traffic pattern where 50% of the traffic is concentrated
among 5% of the racks, randomly chosen. Flow sizes were
drawn from a Pareto distribution (mean: 200KB, scale:1.05)
to mimic irregular flow sizes in a typical datacenter [8].
Large scale simulation. NS3 was too slow for large scale
simulations. Hence, we use a flow level simulator (similar
to [11]), that drops each packet as per preset drop probabilities
on links but does not model queuing or TCP. We use this
simulator for scaling experiments (§ 7.8).
Hardware test cluster. We set up a physical testbed with 10
switches and 48 emulated hosts, each with its own dedicated
hardware NIC port and one CPU core. One of the 48 hosts
5TCP can tolerate such low rates, hence it’s reasonable to qualify such links
as non-faulty. These rates are not central to Flock

runs Flock’s collector. We use a standard 2-tier Clos topology
with 2 spines, 8 leaf racks and 6 hosts per rack. We provision
1 Gbps link speeds to emulate as many hosts as possible.
Schemes with A1 are omitted from our testbed results since
our switches don’t have the in network IP-in-IP feature for
A1 [54].

6.4 Failure scenarios
In simulation:
• Silent link packet drops: a link drops a small fraction of

packets without updating switch counters. Silent drops are
a common problem in the industry [11, 50, 54].
• Silent device failure: An error in a device component (e.g.,

memory, line card) causes silent packet drops. This differs
from the prior scenario because it affects many or all links
on the device.

In hardware test cluster:
• Queue misconfiguration: A WRED queue drops packets

with probability 𝑝 when the queue length is above a config-
urable threshold𝑤 . We misconfigure WRED queues [24]
on switches, setting 𝑝 = 1% (available choices: 1-100%)
and 𝑤 = 0 (so, the link works normally if the queue is
empty).
• Link flap: We pull out a cable manually and quickly put

it back in to emulate link flaps [19]. In our setup, link
flaps caused the latency of the flows transiting the link
to spike, but did not produce any significant increase in
retransmissions (i.e., the link was buffering packets).

Evaluation metrics: We use Precision (fraction of predicted
failed links/devices that actually failed) and Recall (fraction
of failed links/devices that were correctly predicted as failed),
to quantify false positives and false negatives respectively. We
use the standard Fscore measure (harmonic mean of precision
and recall) when we need a combined measure of accuracy.

7 Evaluation Results
The first goal of our evaluation is to investigate Flock’s accu-
racy compared to NetBouncer and 007. We compare various
input types (INT, A1, A2, P) to quantify benefits obtained
from incorporating passive data and INT. As expected, Flock
and Sherlock had the same accuracy in small scale experi-
ments (with max 𝐾 = 2 failures), where Sherlock finished in
reasonable time. Hence we don’t show accuracy comparisons
with Sherlock.

Next, we investigate performance of Flock, including infer-
ence algorithm compared to Sherlock, NetBouncer and 007
and the runtime benefits of using JLE to speed up inference.

7.1 Silent packet drops
We generated 63 traces via NS3, each with 1 to 8 failed
links with drop rate on each failed link chosen uniformly
at random between 0.1% and 1% [54] (drops on good links
are set as in § 6.3). For each trace, we send active flows

PACMNET, June 2023, To appear Vipul Harsh, Tong Meng, Kapil Agrawal, P. Brighten Godfrey0.2 0.4 0.6 0.8 1.0
Precision

0.60.70.80.91.0

R
ec

al
l

Flock (INT)

Flock (A1+A2+P)

Flock (A2)

Flock (A1+P)

NetBouncer (INT)

Flock (A1)

NetBouncer (A1)

007 (A2)
0.2 0.4 0.6 0.8 1.0

Precision

0.2

0.4

0.6

0.8

1.0

R
ec

al
l

(a) With 100K flows

0.4 0.6 0.8 1.0
Precision

0.7

0.8

0.9

1.0

R
ec

al
l

(b) With 400K flows

0.6 0.8 1.0
Precision

0.4

0.6

0.8

1.0

R
ec

al
l

(c) Device failures
Figure 2: Accuracy for silent packet drops. (a), (b): Tradeoff curves for NetBouncer, 007 and Flock for silent drops, varying hyperparameters for each scheme.
Schemes are annotated with the input information they use. (c): Accuracy on device failures.

(a) Uniform traffic

0.2 0.6 1.0 1.4
drop rate (%)

0.0

0.2

0.4

0.6

0.8

1.0

Fs
co

re

(b) Skewed traffic
Figure 3: The extent of drop rates that each scheme can detect.

between the hosts and the core switches (A1), sending 40
packets per second and 400K passive flows per second across
all hosts. Fig. 2 shows precision-recall tradeoff curves, with
different calibrated parameters (§5.2) after 100K and 400K
flows. Using the chosen point for each scheme (§ 5.2), we
draw the following conclusions for each input type:
• A1: Flock reduces error rate over NetBouncer by roughly

45% (fscore: 0.5 vs 0.27). With 4× more probes, Flock still
reduces the error rate by >20% compared to NetBouncer
(fscore: 0.87 vs 0.84).
• A2: Flock (fscore: 0.93) reduces error-rate over 007 (fscore:

0.61) by 5.5x after 400K flows.
• A1+P and A1+A2+P: When active probes (A1, A2) are

augmented with passive information (P), Flock achieves
very high accuracy (fscore with A1+A2+P: 0.98, A1+P:
0.93) after 400K flows (see Fig. 2a), suggesting that these
schemes require less data than active-only schemes for lo-
calization.
• INT: Flock (INT) achieves the best accuracy (fscore 0.99)

reducing error over NetBouncer (INT) (fscore 0.88) by 12x.
The last two points highlight the benefits of incorporating
passive data for accuracy. 007’s performance can be attributed
to it being sensitive to traffic skew (§ 7.3).

7.2 Device failures
Using the same setup as § 7.1, we simulate a device failure by
failing 𝑓 % of a faulty device’s links. We generate 64 traces,
each consisting of up to 2 device failures, varying 𝑓 across
traces from 25% to 100%. A subset of links failing on a device
is similar to the behaviour of a faulty line card on that device.
For all schemes, we used the same parameters as in § 7.1 (we

calibrated NetBouncer’s threshold for the number of prob-
lematic flows crossing a device). As shown in Fig. 2c, Flock
outperforms NetBouncer and 007 for all types of informa-
tion. Flock (INT) achieves ≈100% recall, compared to 80%
recall of NetBouncer (INT). Flock (A2) reduces error-rate
compared to 007 by 8x (fscore 0.97 vs 0.76). Flock (A1+P)
has poorer precision for device failures than link failures.

7.3 Soft gray failures
We vary the drop rate on a single failed link to test what drop
rates Flock can detect. A useful metric is the ratio of drop-rate
on a failed link and the maximum drop-rate on a functioning
link, which we call Signal to Noise Ratio (SNR), by a slight
abuse of terminology. We use the same setup and parameters
as § 7.2 (except 007 which had to be calibrated separately for
skewed traffic since otherwise it had poor recall). We used 32
traces for each data point. From Figs. 3a and 3b, we conclude
that Flock can detect links with > 1% drop rate (or SNR >

100) with high recall, with A2. With uniform traffic, 007’s
accuracy is good when SNR > 100 (consistent with the SNR
in Fig. 10 of [11]). 007’s recall gets affected significantly with
skewed traffic. After adding passive telemetry with either INT
or (A1+A2+P), Flock’s accuracy gets boosted and it is able
to detect > 0.4% drop rate reliably. NetBouncer’s accuracy is
slightly worse than Flock for A1, but its accuracy becomes
even worse for multiple concurrent failures with different
drop rates (§7.1). Schemes utilizing A1 (active probes) are
unaffected by skew in the application traffic and hence omitted
from Fig. 3b.

7.4 Misconfigured queue
We move now from simulated faults to our testbed, beginning
with misconfigured queues. Flock achieves high accuracy
with all information types (see Fig. 4a). Using the same pa-
rameters as in § 7.1 for all schemes, Flock (INT) had higher
precision and recall than NetBouncer (INT) (16x less error
in fscore), whereas Flock (A2) had higher precision than 007
(A2) (the solid markers in Fig. 4a). For comparison, we also
show precision recall tradeoff curves with parameters cali-
brated on the testbed with real examples. In this case, Flock
(INT) had 7x less error than NetBouncer (INT) (fscore: 0.87
vs. 0.98) and Flock (A2) had 16x lower error compared to 007

Flock: Accurate network fault localization at scale PACMNET, June 2023, To appear

(fscore: 0.97 vs. 0.5) (the hollow markers in Fig. 4a). Flock
(A2+P) gets very close to Flock (INT), consistent with §7.1.

7.5 Link flaps
We use a per-flow analysis (§ 3.2), classifying a flow as prob-
lematic if its RTT is > 10 ms. Since the analysis is per-flow
and not per-packet, we had to recalibrate parameters. Flock
does not model acks traversing the reverse path, which is im-
portant in this case. Accounting for that with a revised model
would be possible, we leave that for future work. Even with
a somewhat inaccurate model, Flock (INT) reduces the error
rate by 1.66x over NetBouncer (INT) (fscore: 0.81 vs 0.69)
and Flock (A2) reduces the error rate over 007 by 1.8x (see
Fig. 4b).

7.6 Irregular Clos topologies
Real world datacenters are rarely perfectly symmetric like a
Clos topology and typically have asymmetries due to failures,
policies, piecemeal upgrades, etc. To see the effect of topology
irregularity, we omit links from the fat tree. We recalibrated
parameters on the irregular topologies for all schemes since
the topology can be known in advance. (we also tested without
the recalibration; Flock’s improvement over other schemes
was even higher in this case. We omit the results for brevity.)

Fig. 5a, 5b show that Flock’s accuracy is robust to topology
irregularity. 007 is sensitive to topology irregularity, probably
because its effect is similar as having traffic skew. We omit
A1 since its active probing mechanism is designed only for
regular Clos topologies.
Flock with passive only input (P): Some networks may only
have passive information available. Past fault localization
schemes can not be applied to passive only input since they
don’t handle path uncertainty. Operators in this situation re-
sort to manual troubleshooting (traceroutes, adjustments to
routing or taking links offline, etc.) which can take days.
Flock with only passive input (P) can provide partial analy-
sis (Fig. 5a, 5b). Interestingly, Flock (P)’s accuracy actually
improves with more links removed. This is because in a sym-
metric Clos topology, there are equivalence classes of links
(e.g. all links from a leaf switch to the spine layer) that cannot
be differentiated because they participate in the same ECMP
paths. As the topology becomes irregular, this breaks sym-
metry, and Flock’s inference algorithm automatically takes
advantage of this.

Fig. 5c shows an even more difficult fully passive scenario
where the failed link is one of several symmetric links in a
Clos topology, the network has little irregularity for Flock to
leverage (< 5% omitted links) and absence of active probes or
path tracing. Flock (P) achieved >75% recall and >40% preci-
sion. We also show the theoretical maximum precision (calcu-
lated from the topology’s link equivalence classes). Note that
40% precision means Flock has narrowed down the faulty link

Parameters
calibrated for→

(D: different, S: same)

Different
topology

Different
failure

rate

Different
monitoring

interval

Different
failure

scenario

Aggregate
score

(average Fscore)
p: precision, r: recall p r p r p r p r

Flock
(A1+A2+P)

D 0.92 0.98 0.97 1 0.98 1 0.95 0.99 0.973
S 0.96 0.98 0.97 1 0.99 1 0.96 0.99 0.981

Flock (A2) D 0.90 0.99 0.96 1 0.86 0.97 0.94 0.98 0.948
S 0.94 0.98 1 1 0.94 0.92 0.94 0.98 0.962

Flock (INT) D 0.92 0.99 0.96 1 0.98 1 0.95 0.99 0.973
S 0.96 0.99 0.96 1 0.99 1 0.96 0.99 0.981

007 (A2) D 0.75 1 0.87 1 0.51 0.82 1 0.33 0.728
S 0.82 0.74 1 1 0.47 0.87 0.82 0.74 0.792

NetBouncer
(INT)

D 0.25 0.33 0.95 1 1 0.66 0.28 0.33 0.589
S 0.81 0.9 1 1 0.95 0.85 0.81 0.9 0.901

Table 1: Evaluating parameter robustness. For each scheme, we show accu-
racy when its parameters are calibrated on a different environment than the
test data set (D) and when they are calibrated in the same environment (S).

to about 2-3 possibilities. We believe this will be an extremely
helpful starting point for operators.

7.7 Parameter calibration robustness
As discussed in § 5.2, all the schemes we consider have pa-
rameters that must be set, and we have calibrated them based
on simulations with known ground truth. What happens when
these systems encounter unexpected situations?

To test robustness, we trained each scheme on one environ-
ment and tested in a different environment. (This is effectively
a strong form of cross-validation where not only are the train
and test sets different, they are drawn from different distribu-
tions.) Specifically, we created different types of differences
between train and test, changing the (a) duration of moni-
toring, (b) topology, (c) failure rate (training set has failed
links with significantly different drop rates), and (d) failure
type. In particular, for (b), the schemes were calibrated in our
simulator with random packet drops, and tested on misconfig-
ured queues in a 20x smaller topology in our physical testbed.
Table 1 shows the accuracy in these cases, both when the
train and test sets are drawn from different distributions (“D”)
and when they are drawn from the same distribution (“S”).
The table’s aggregate score column shows Flock was fairly
robust to parameter calibration in a different environment,
with under 2% loss in accuracy. 007 was also robust (6% loss)
while NetBouncer was more sensitive (31% loss).

We also tested Flock’s parameter sensitivity, i.e., how pre-
cision and recall vary with perturbations of its parameters.
Accuracy remained high for many choices of parameters. See
Fig. 8a in appendix .

7.8 Running time and scalability
Algorithm runtime: Flock’s main algorithmic innovation is
its fast PGM inference compared to Sherlock’s PGM infer-
ence. Fig. 4c shows Flock’s inference is more than 4 orders of
magnitude of faster than Sherlock, whose runtime on a large
network was estimated to be 19 days, based on extrapolating
a partial run. Recall Flock employs two optimizations: greedy

PACMNET, June 2023, To appear Vipul Harsh, Tong Meng, Kapil Agrawal, P. Brighten Godfrey

0.4 0.6 0.8 1.0
Precision

0.4

0.6

0.8

1.0

R
ec

al
l

Flock (INT)

Flock (A2+P)

Flock (A2)

NetBouncer (INT)

007 (A2)

(a) Misconfigured queue

0.6 0.8 1.0
Precision

0.6

0.8

1.0

R
ec

al
l

(b) Link Flap

4K 8K 16K 32K
Topology size (#servers)

101

103

105

T
im

e
(s

ec
)

Sherlock

Flock (greedy only)

Flock (JLE only)

Flock

(c) Benefit of greedy and JLE

NetBouncer (INT)
Flock (A1+A2+P)
Flock (INT)
NetBouncer (A1)
Flock (A1)

Flock (A2)
007 (A2)

(d) Scheme runtime
Figure 4: (a), (b) Accuracy on failure scenarios in testbed (solid markers). For (a), for comparison, we also show precision recall tradeoff curves with recalibrated
parameters (hollow markers) (c) Running time vs. a past PGM scheme (Sherlock); Flock achieves the same accuracy while being >104x faster. Also shown is the
effect of Flock’s two optimizations (JLE, greedy) alone. (d) Running time of all schemes on various topology sizes.

0 5 10 15 20
% Links omitted

0.00

0.25

0.50

0.75

1.00

Pr
ec

is
io

n Flock (INT)

Flock (A2+P)

Flock (A2)

Flock (P)

NetBouncer (INT)

007(A2)

(a) Precision

0 5 10 15 20
% Links omitted

0.00

0.25

0.50

0.75

1.00

R
ec

al
l

(b) Recall

1 2 3 4
% Links omitted

0.0

0.2

0.4

0.6

0.8

pr
ed

ic
tio

n
sc

or
e

precision
recall
theoretical
max precision

(c) Flock(P) on a hard scenario
Figure 5: (a),(b) Accuracy on “irregular” Clos networks with a few links omitted. (c) Flock (P) produces useful results in a difficult scenario, where other schemes
don’t apply.

and JLE. Fig. 4c shows each of these optimizations alone
yields a ≈ 100x improvement over Sherlock.

Fig. 4d compares Flock to the non-PGM schemes. Flock
is faster than NetBouncer on the same input data. 007 is the
fastest but its time savings (< 1 sec) does not trade-off well
with accuracy.
Agent/Collector : Refer to Appendix A for the scalability
of our agent/collector. As other commercial solutions also
exist [3, 6], we leave more optimized agent/collector designs
for future work.

8 Related work
Many other works have studied fault localization outside of

datacenter networks – for troubleshooting reachability, black
holes in IP networks [22, 28, 40, 58], virtual disk failures [59],
performance problems in distributed services [12, 26, 44] and
application performance anomalies [57]. Some of these can
benefit from PGM-based inference, accelerated via JLE. We
leave this for future work.

Detecting entire flow drops, for e.g., caused by a miscon-
figured ACL or a forwarding loop, is challenging for end-to-
end schemes (as noted in [54]), partly due to (un)available
input when paths are fully blocked. Other schemes such
as NetSeer [62] and Omnimon [34] or network verifica-
tion [25, 37, 38, 42] are more suitable for this class of faults.

Several works orchestrate active probes for inference [4, 16,
29, 32, 36, 39, 41, 54, 60]. Flock can handle active probes and
outperforms one such approach (NetBouncer). Additionally,
it can use passive data for accuracy gains. deTector [48],

MaxCoverage [40], Tomo [22] and Score [39] find a minimal
set of components that explain most of the problems (e.g.
packet drops). We expect them to run into similar problems
as 007, since they don’t account for traffic skew. Simon [27]
reconstructs queuing times from active probes. This allows it
to diagnose high latency, but not silent packet drops. Packet
mirroring [63] can catch packet drops that happen in the
switch pipeline (e.g. congestion drops), but can not detect
silent interswitch or silent intercard drops. Flock is well suited
to detect such problems. Pingmesh [29] and NetNorad [4] use
active pings, but do not provide complete localization. [50]
identifies anomalies among symmetric links in a Clos network
using statistical tests. It is sensitive to topology irregularity
and requires path information.

9 Conclusion
Flock is a fault localization system for large datacenter

networks based on end-to-end information. Flock’s key inno-
vation is an optimized MLE inference algorithm which allows
it to use a PGM at scale, achieving both high accuracy and
speed, where past work achieved only one of the two.

Acknowledgements
We thank Radhika Mittal and members of the SysNet group

at UIUC for providing feedback on an earlier version of the
paper. We also thank CoNext 2023 reviewers for their reviews
and feedback.

References
[1] Flock code. https://github.com/netarch/FaultLocalization.

https://github.com/netarch/FaultLocalization

Flock: Accurate network fault localization at scale PACMNET, June 2023, To appear

[2] In-band network telemetry (int) dataplane specification. https://github.
com/p4lang/p4-applications/blob/master/docs/INT_latest.pdf.

[3] Manage engine traffic analyzer. https://www.manageengine.com/
products/netflow/.

[4] Netnorad: Troubleshooting networks via end-to-end probing.
https://code.fb.com/networking-traffic/netnorad-troubleshooting-
networks\-via-end-to-end-probing/.

[5] Pf_ring by ntop software. github.com/ntop/PF_RING.
[6] Solarwinds traffic analyzer. https://www.solarwinds.com/netflow-

traffic-analyzer.
[7] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable, commodity data

center network architecture. In Proceedings of the ACM SIGCOMM
2008 Conference on Data Communication, SIGCOMM ’08, pages
63–74, New York, NY, USA, 2008. ACM.

[8] M. Alizadeh, A. Kabbani, T. Edsall, B. Prabhakar, A. Vahdat, and
M. Yasuda. Less is more: Trading a little bandwidth for ultra-low
latency in the data center. In Presented as part of the 9th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
12), pages 253–266, San Jose, CA, 2012. USENIX.

[9] Andrew Lerner. Inclusion Criteria for the 2016 NPMD Magic Quadrant.
https://blogs.gartner.com/andrew-lerner/2015/06/29/gotnpmd/, 2015.

[10] Arista. Arista Network Telemetry. https://www.arista.com/en/solutions/
software-defined-network-telemetry, Accessed 2021-01-27.

[11] B. Arzani, S. Ciraci, L. Chamon, Y. Zhu, H. H. Liu, J. Padhye, B. T.
Loo, and G. Outhred. 007: Democratically finding the cause of packet
drops. In 15th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 18), pages 419–435, Renton, WA, 2018.
USENIX Association.

[12] P. Bahl, R. Chandra, A. Greenberg, S. Kandula, D. A. Maltz, and
M. Zhang. Towards highly reliable enterprise network services via
inference of multi-level dependencies. In Proceedings of the 2007
Conference on Applications, Technologies, Architectures, and Protocols
for Computer Communications, SIGCOMM ’07, pages 13–24, New
York, NY, USA, 2007. ACM.

[13] R. Ben Basat, S. Ramanathan, Y. Li, G. Antichi, M. Yu, and M. Mitzen-
macher. PINT: probabilistic in-band network telemetry. In Proceedings
of the Annual conference of the ACM Special Interest Group on Data
Communication on the applications, technologies, architectures, and
protocols for computer communication, pages 662–680, 2020.

[14] British Telecommunications. Contract for BT Managed WAN Ser-
vices. https://business.bt.com/content/dam/terms/it-solutions-support/
bt1190.pdf, 2018.

[15] J. Case, M. Fedor, M. Schoffstall, and J. Davin. A Simple Network
Management Protocol (SNMP). In RFC 1157. Internet Engineering
Task Force, 1990.

[16] Y. Chen, D. Bindel, H. Song, and R. H. Katz. An algebraic approach
to practical and scalable overlay network monitoring. In Proceedings
of the 2004 Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communications, SIGCOMM ’04, pages
55–66, New York, NY, USA, 2004. ACM.

[17] Cisco. Monitoring and Troubleshooting With Cisco Prime
LAN Management Solution 4.1. https://www.cisco.com/c/en/
us/td/docs/net_mgmt/ciscoworks_lan_management_solution/4-
1/user/guide/monitoring_troubleshooting/mnt_ug/SNMPInfo.html,
2018.

[18] Cisco. Cisco Bug: CSCvn56156 - Silent packet drops may occur
on FXOS platforms due to classifier table entry corruption. https:
//quickview.cloudapps.cisco.com/quickview/bug/CSCvn56156, 2020.

[19] Cisco. Configure Link Flap Prevention on a Cisco Business Switch
using CLI. https://www.cisco.com/c/en/us/support/docs/smb/switches/
Cisco-Business-Switching/kmgmt-2249-configure-the-link-flap-
prevention-settings-on-a-switch-thro.html, July 2020.

[20] B. Claise. Cisco Systems NetFlow services export version 9. RFC 3954
(Internet Standard), Internet Engineering Task Force, 2004.

[21] B. Claise, B. Trammell, and P. Aitken. Specification of the ip flow
information export (ipfix) protocol for the exchange of flow information.
RFC 7011 (Internet Standard), Internet Engineering Task Force, 2013.

[22] A. Dhamdhere, R. Teixeira, C. Dovrolis, and C. Diot. Netdiagnoser:
Troubleshooting network unreachabilities using end-to-end probes and
routing data. In Proceedings of the 2007 ACM CoNEXT Conference,
CoNEXT ’07, New York, NY, USA, 2007. Association for Computing
Machinery.

[23] Divya Rao. Hot off the press: Introducing OpenConfig Telemetry
on NX-OS with gNMI and Telegraf! https://www.cisco.com/c/
en/us/td/docs/net_mgmt/ciscoworks_lan_management_solution/4-
1/user/guide/monitoring_troubleshooting/mnt_ug/SNMPInfo.html,
July 2020.

[24] S. Floyd and V. Jacobson. Random early detection gateways for con-
gestion avoidance. IEEE/ACM Trans. Netw., 1(4):397–413, Aug. 1993.

[25] A. Fogel, S. Fung, L. Pedrosa, M. Walraed-Sullivan, R. Govindan,
R. Mahajan, and T. Millstein. A general approach to network configu-
ration analysis. In 12th {USENIX} symposium on networked systems
design and implementation ({NSDI} 15), pages 469–483, 2015.

[26] Y. Gan, M. Liang, S. Dev, D. Lo, and C. Delimitrou. Sage: Practical
and scalable ml-driven performance debugging in microservices. In
Proceedings of the 26th ACM International Conference on Architec-
tural Support for Programming Languages and Operating Systems,
ASPLOS 2021, page 135–151, New York, NY, USA, 2021. Association
for Computing Machinery.

[27] Y. Geng, S. Liu, Z. Yin, A. Naik, B. Prabhakar, M. Rosenblum, and
A. Vahdat. {SIMON}: A simple and scalable method for sensing, infer-
ence and measurement in data center networks. In 16th {USENIX} Sym-
posium on Networked Systems Design and Implementation ({NSDI}
19), pages 549–564, 2019.

[28] D. Ghita, H. Nguyen, M. Kurant, K. Argyraki, and P. Thiran. Netscope:
Practical network loss tomography. In Proceedings of the 29th Con-
ference on Information Communications, INFOCOM’10, pages 1262–
1270, Piscataway, NJ, USA, 2010. IEEE Press.

[29] C. Guo, L. Yuan, D. Xiang, Y. Dang, R. Huang, D. Maltz, Z. Liu,
V. Wang, B. Pang, H. Chen, Z.-W. Lin, and V. Kurien. Pingmesh: A
large-scale system for data center network latency measurement and
analysis. In Proceedings of the 2015 ACM Conference on Special
Interest Group on Data Communication, SIGCOMM ’15, pages 139–
152, New York, NY, USA, 2015. ACM.

[30] A. Gupta, R. Harrison, M. Canini, N. Feamster, J. Rexford, and W. Will-
inger. Sonata: Query-driven streaming network telemetry. In Proceed-
ings of the 2018 Conference of the ACM Special Interest Group on Data
Communication, SIGCOMM ’18, page 357–371, New York, NY, USA,
2018. Association for Computing Machinery.

[31] M. Hamblen. Programmable chips for data center switches catch
fire with 20% annual growth. https://www.fierceelectronics.com/
electronics/programmable-chips-for-data-center-switches-catch-fire-
20-annual-growth, August 2019.

[32] H. Herodotou, B. Ding, S. Balakrishnan, G. Outhred, and P. Fitter.
Scalable near real-time failure localization of data center networks. In
Proceedings of the 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’14, pages 1689–1698,
New York, NY, USA, 2014. ACM.

[33] P. Huang, C. Guo, L. Zhou, J. R. Lorch, Y. Dang, M. Chintalapati, and
R. Yao. Gray failure: The achilles’ heel of cloud-scale systems. In
Proceedings of the 16th Workshop on Hot Topics in Operating Systems,
HotOS ’17, pages 150–155, New York, NY, USA, 2017. ACM.

[34] Q. Huang, H. Sun, P. P. C. Lee, W. Bai, F. Zhu, and Y. Bao. Omnimon:
Re-architecting network telemetry with resource efficiency and full

https://github.com/p4lang/p4-applications/blob/master/docs/INT_latest.pdf
https://github.com/p4lang/p4-applications/blob/master/docs/INT_latest.pdf
https://www.manageengine.com/products/netflow/
https://www.manageengine.com/products/netflow/
https://code.fb.com/networking-traffic/netnorad-troubleshooting-networks\ -via-end-to-end-probing/
https://code.fb.com/networking-traffic/netnorad-troubleshooting-networks\ -via-end-to-end-probing/
github.com/ntop/PF_RING
https://www.solarwinds.com/netflow-traffic-analyzer
https://www.solarwinds.com/netflow-traffic-analyzer
https://blogs.gartner.com/andrew-lerner/2015/06/29/gotnpmd/
https://www.arista.com/en/solutions/software-defined-network-telemetry
https://www.arista.com/en/solutions/software-defined-network-telemetry
https://business.bt.com/content/dam/terms/it-solutions-support/bt1190.pdf
https://business.bt.com/content/dam/terms/it-solutions-support/bt1190.pdf
https://www.cisco.com/c/en/us/td/docs/net_mgmt/ciscoworks_lan_management_solution/4-1/user/guide/monitoring_troubleshooting/mnt_ug/SNMPInfo.html
https://www.cisco.com/c/en/us/td/docs/net_mgmt/ciscoworks_lan_management_solution/4-1/user/guide/monitoring_troubleshooting/mnt_ug/SNMPInfo.html
https://www.cisco.com/c/en/us/td/docs/net_mgmt/ciscoworks_lan_management_solution/4-1/user/guide/monitoring_troubleshooting/mnt_ug/SNMPInfo.html
https://quickview.cloudapps.cisco.com/quickview/bug/CSCvn56156
https://quickview.cloudapps.cisco.com/quickview/bug/CSCvn56156
https://www.cisco.com/c/en/us/support/docs/smb/switches/Cisco-Business-Switching/kmgmt-2249-configure-the-link-flap-prevention-settings-on-a-switch-thro.html
https://www.cisco.com/c/en/us/support/docs/smb/switches/Cisco-Business-Switching/kmgmt-2249-configure-the-link-flap-prevention-settings-on-a-switch-thro.html
https://www.cisco.com/c/en/us/support/docs/smb/switches/Cisco-Business-Switching/kmgmt-2249-configure-the-link-flap-prevention-settings-on-a-switch-thro.html
https://www.cisco.com/c/en/us/td/docs/net_mgmt/ciscoworks_lan_management_solution/4-1/user/guide/monitoring_troubleshooting/mnt_ug/SNMPInfo.html
https://www.cisco.com/c/en/us/td/docs/net_mgmt/ciscoworks_lan_management_solution/4-1/user/guide/monitoring_troubleshooting/mnt_ug/SNMPInfo.html
https://www.cisco.com/c/en/us/td/docs/net_mgmt/ciscoworks_lan_management_solution/4-1/user/guide/monitoring_troubleshooting/mnt_ug/SNMPInfo.html
https://www.fierceelectronics.com/electronics/programmable-chips-for-data-center-switches-catch-fire-20-annual-growth
https://www.fierceelectronics.com/electronics/programmable-chips-for-data-center-switches-catch-fire-20-annual-growth
https://www.fierceelectronics.com/electronics/programmable-chips-for-data-center-switches-catch-fire-20-annual-growth

PACMNET, June 2023, To appear Vipul Harsh, Tong Meng, Kapil Agrawal, P. Brighten Godfrey

accuracy. SIGCOMM ’20, page 404–421, New York, NY, USA, 2020.
Association for Computing Machinery.

[35] Q. Huang, H. Sun, P. P. C. Lee, W. Bai, F. Zhu, and Y. Bao. Omni-
mon: Re-architecting network telemetry with resource efficiency and
full accuracy. In Proceedings of the Annual Conference of the ACM
Special Interest Group on Data Communication on the Applications,
Technologies, Architectures, and Protocols for Computer Communi-
cation, SIGCOMM ’20, page 404–421, New York, NY, USA, 2020.
Association for Computing Machinery.

[36] S. Kandula, D. Katabi, and J.-P. Vasseur. Shrink: A tool for failure
diagnosis in ip networks. In Proceedings of the 2005 ACM SIGCOMM
Workshop on Mining Network Data, MineNet ’05, pages 173–178, New
York, NY, USA, 2005. ACM.

[37] P. Kazemian, G. Varghese, and N. McKeown. Header space analy-
sis: Static checking for networks. In 9th {USENIX} Symposium on
Networked Systems Design and Implementation ({NSDI} 12), pages
113–126, 2012.

[38] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B. Godfrey. Veriflow:
Verifying network-wide invariants in real time. In 10th {USENIX} Sym-
posium on Networked Systems Design and Implementation ({NSDI}
13), pages 15–27, 2013.

[39] R. R. Kompella, J. Yates, A. Greenberg, and A. C. Snoeren. Ip fault
localization via risk modeling. In Proceedings of the 2Nd Conference
on Symposium on Networked Systems Design & Implementation - Vol-
ume 2, NSDI’05, pages 57–70, Berkeley, CA, USA, 2005. USENIX
Association.

[40] R. R. Kompella, J. Yates, A. Greenberg, and A. C. Snoeren. Detec-
tion and localization of network black holes. In Proceedings of the
IEEE INFOCOM 2007 - 26th IEEE International Conference on Com-
puter Communications, pages 2180–2188, Washington, DC, USA, 2007.
IEEE Computer Society.

[41] L. Ma, T. He, A. Swami, D. Towsley, K. K. Leung, and J. Lowe. Node
failure localization via network tomography. In Proceedings of the
2014 Conference on Internet Measurement Conference, IMC ’14, pages
195–208, New York, NY, USA, 2014. ACM.

[42] H. Mai, A. Khurshid, R. Agarwal, M. Caesar, P. B. Godfrey, and S. T.
King. Debugging the data plane with anteater. ACM SIGCOMM
Computer Communication Review, 41(4):290–301, 2011.

[43] E. C. Molero, S. Vissicchio, and L. Vanbever. Fast in-network gray
failure detection for isps. In Proceedings of the ACM SIGCOMM 2022
Conference, SIGCOMM ’22, page 677–692, New York, NY, USA,
2022. Association for Computing Machinery.

[44] R. N. Mysore, R. Mahajan, A. Vahdat, and G. Varghese. Gestalt: Fast,
unified fault localization for networked systems. In 2014 USENIX An-
nual Technical Conference (USENIX ATC 14), pages 255–267, Philadel-
phia, PA, 2014. USENIX Association.

[45] P4.org Applications Working Group. In-band Network Telemetry (INT)
Dataplane Specification Version 2.1. https://github.com/p4lang/p4-
applications/blob/master/docs/INT_v2_1.pdf, 2020.

[46] V. N. Padmanabhan, L. Qiu, and H. J. Wang. Passive network to-
mography using bayesian inference. In Proceedings of the 2nd ACM
SIGCOMM Workshop on Internet Measurment, IMW ’02, page 93–94,
New York, NY, USA, 2002. Association for Computing Machinery.

[47] Palo Alto Networks. Critical Issues Addressed in PAN-OS Releases.
https://knowledgebase.paloaltonetworks.com/KCSArticleDetail?id=
kA10g000000Cm68CAC, 2020.

[48] Y. Peng, J. Yang, C. Wu, C. Guo, C. Hu, and Z. Li. detector: a topology-
aware monitoring system for data center networks. In 2017 USENIX
Annual Technical Conference (USENIX ATC 17), pages 55–68, Santa
Clara, CA, 2017. USENIX Association.

[49] A. Roy, D. Bansal, D. Brumley, H. K. Chandrappa, P. Sharma, R. Tewari,
B. Arzani, and A. C. Snoeren. Cloud datacenter sdn monitoring: Expe-
riences and challenges. In Proceedings of the Internet Measurement

Conference 2018, IMC ’18, page 464–470, New York, NY, USA, 2018.
Association for Computing Machinery.

[50] A. Roy, H. Zeng, J. Bagga, and A. C. Snoeren. Passive realtime dat-
acenter fault detection and localization. In 14th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 17), pages
595–612, Boston, MA, 2017. USENIX Association.

[51] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end arguments
in system design. ACM Transactions on Computer Systems (TOCS),
2(4):277–288, 1984.

[52] SolarWinds. Configure polling statistics intervals in the Orion
Platform. https://documentation.solarwinds.com/en/Success_Center/
orionplatform/content/core-polling-statistics-intervals-sw1829.htm,
Accessed 2021-01-24.

[53] P. Tammana, R. Agarwal, and M. Lee. Simplifying datacenter network
debugging with pathdump. In 12th USENIX Symposium on Operat-
ing Systems Design and Implementation (OSDI 16), pages 233–248,
Savannah, GA, 2016. USENIX Association.

[54] C. Tan, Z. Jin, C. Guo, T. Zhang, H. Wu, K. Deng, D. Bi, and D. Xiang.
Netbouncer: Active device and link failure localization in data center
networks. In 16th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 19), pages 599–614, Boston, MA, 2019.
USENIX Association.

[55] VMware. Possible data corruption after a Windows 2012 virtual ma-
chine network transfer. https://kb.vmware.com/s/article/2058692, 2017.

[56] VMware. Network timeouts or packet drops with VMware Tools 11.x
with Guest Introspection Driver on ESXi 6.5/6.7. https://kb.vmware.
com/s/article/79185, 2021.

[57] M. Yu, A. Greenberg, D. Maltz, J. Rexford, L. Yuan, S. Kandula, and
C. Kim. Profiling network performance for multi-tier data center appli-
cations. In Proceedings of the 8th USENIX Conference on Networked
Systems Design and Implementation, NSDI’11, page 57–70, USA, 2011.
USENIX Association.

[58] H. Zeng, R. Mahajan, N. McKeown, G. Varghese, L. Yuan, and
M. Zhang. Measuring and troubleshooting large operational multipath
networks with gray box testing. Technical Report MSR-TR-2015-55,
June 2015.

[59] Q. Zhang, G. Yu, C. Guo, Y. Dang, N. Swanson, X. Yang, R. Yao,
M. Chintalapati, A. Krishnamurthy, and T. Anderson. Deepview: Virtual
disk failure diagnosis and pattern detection for azure. In 15th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
18), pages 519–532, Renton, WA, Apr. 2018. USENIX Association.

[60] Y. Zhao, Y. Chen, and D. Bindel. Towards unbiased end-to-end network
diagnosis. In Proceedings of the 2006 Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communi-
cations, SIGCOMM ’06, pages 219–230, New York, NY, USA, 2006.
ACM.

[61] J. Zhou, M. Tewari, M. Zhu, A. Kabbani, L. Poutievski, A. Singh, and
A. Vahdat. Wcmp: Weighted cost multipathing for improved fairness
in data centers. In Proceedings of the Ninth European Conference on
Computer Systems, EuroSys ’14, pages 5:1–5:14, New York, NY, USA,
2014. ACM.

[62] Y. Zhou, C. Sun, H. H. Liu, R. Miao, S. Bai, B. Li, Z. Zheng, L. Zhu,
Z. Shen, Y. Xi, P. Zhang, D. Cai, M. Zhang, and M. Xu. Flow event
telemetry on programmable data plane. In Proceedings of the Annual
Conference of the ACM Special Interest Group on Data Communication
on the Applications, Technologies, Architectures, and Protocols for
Computer Communication, SIGCOMM ’20, page 76–89, New York,
NY, USA, 2020. Association for Computing Machinery.

[63] Y. Zhu, N. Kang, J. Cao, A. Greenberg, G. Lu, R. Mahajan, D. Maltz,
L. Yuan, M. Zhang, B. Y. Zhao, and H. Zheng. Packet-level telemetry in
large datacenter networks. In Proceedings of the 2015 ACM Conference

https://github.com/p4lang/p4-applications/blob/master/docs/INT_v2_1.pdf
https://github.com/p4lang/p4-applications/blob/master/docs/INT_v2_1.pdf
https://knowledgebase.paloaltonetworks.com/KCSArticleDetail?id=kA10g000000Cm68CAC
https://knowledgebase.paloaltonetworks.com/KCSArticleDetail?id=kA10g000000Cm68CAC
https://documentation.solarwinds.com/en/Success_Center/orionplatform/content/core-polling-statistics-intervals-sw1829.htm
https://documentation.solarwinds.com/en/Success_Center/orionplatform/content/core-polling-statistics-intervals-sw1829.htm
https://kb.vmware.com/s/article/2058692
https://kb.vmware.com/s/article/79185
https://kb.vmware.com/s/article/79185

Flock: Accurate network fault localization at scale PACMNET, June 2023, To appear

on Special Interest Group on Data Communication, SIGCOMM ’15,
pages 479–491, New York, NY, USA, 2015. ACM.

A Proofs
If the topology, flow statistics and path taken for each

flow are chosen arbitrarily, then finding the MLE for such
adversarial inputs, unsurprisingly, is NP-hard (§ appendix A).

DEFINITION 4. Define adversarial inference as inference
when the input is arbitrary, consisting of topology, flow met-
rics with arbitrarily chosen source and destinations, paths
and arbitrarily chosen flow metrics (packets sent/dropped).

However, we can make the following assumption, in the
context of packet drops, to alleviate intractability for adver-
sarial inputs: for each link, there is a (unknown) ground truth
drop probability. Rather than adversarially, each packet cross-
ing that link is dropped independently according to the drop
probability of the link. First, we prove that adversarial infer-
ence is NP-hard.

THEOREM 3. Adversarial inference is NP-hard.

PROOF. We reduce the problem of finding a minimum
vertex cover in a graph to the adversarial inference problem.
For the proof, we will design an algorithm for min-vertex
cover that makes polynomial number of accesses to an oracle
𝑂𝐴𝐼 for adversarial inference.

Let’s say, we’re given a graph G = (V, E) where V is the set
of vertices and E is the set of edges and our goal is to find a
minimum vertex cover in this graph. We create topology T
for 𝑂𝐴𝐼 as follows-
• We create “vertex”-nodes 𝑛1𝑣 and 𝑛2𝑣 in T for each vertex
𝑣 ∈ 𝑉 and attach them with a directed link 𝑙𝑣: (𝑛1𝑣 → 𝑛2𝑣).
Note that all vertex-nodes in T have exactly one link, either
incoming or outgoing.
• For each edge 𝑒 ∈ 𝐸, we create an “edge"-flow 𝑓𝑒 , where
𝑓𝑒 goes through links (𝑙𝑣1 and 𝑙𝑣2), where 𝑣1 and 𝑣2 are the
endpoints of 𝑒. In order for this to be a legitimate path, we
connect the endpoints of (𝑙𝑣1 and 𝑙𝑣2) to a special node.
• For each link 𝑙 in T , we create a “link"-flow 𝑓𝑙 . going

through just link 𝑙 .
Finally we need to assign each flow, some number of pack-

ets sent and dropped. We first derive an expression for the
return value of oracle 𝑂𝐴𝐼 . The output of 𝑂𝐴𝐼 is a binary as-
signment to links in T where we interpret a value of 0 as that
link being failed and 1 as the link being up. Let 𝐸T be the
number of links in T and 𝛾𝐴

𝑓
=
∏
𝑙 ∈𝑃𝑎𝑡ℎ (𝑓) 𝑙 denote the status

of the path taken by flow a 𝑓 with 𝛾𝐴
𝑓

=0 being path failed
and 1 being path not failed. Recall that a path is deemed to
be failed if it contains at least one failed link. For flow 𝑓 , if
𝑛 and 𝑟 be the number of packets sent/dropped by the flow
respectively, then the likelihood for flow 𝑓 can be written as:

𝑃 [𝑓 |𝐻 = {𝑙1, 𝑙2, ... 𝑙𝐸T }]
𝑃 [𝑓 |𝑙1 = 1, 𝑙2 = 1, ... 𝑙𝐸T = 1]

=
𝛾𝐴
𝑓
𝑝𝑟𝑔 (1 − 𝑝𝑔)𝑛−𝑟 + (1 − 𝛾𝐴𝑓)𝑝

𝑟
𝑏
(1 − 𝑝𝑏)𝑛−𝑟

𝑝𝑟𝑔 (1 − 𝑝𝑔)𝑛−𝑟

=
𝑝𝑟
𝑏
(1 − 𝑝𝑏)𝑛−𝑟

𝑝𝑟𝑔 (1 − 𝑝𝑔)𝑛−𝑟

(
1 + 𝛾𝐴

𝑓

(𝑝𝑟𝑔 (1 − 𝑝𝑔)𝑛−𝑟
𝑝𝑟
𝑏
(1 − 𝑝𝑏)𝑛−𝑟

− 1
))

=
1 + 𝛼 𝑓 𝛾𝐴𝑓
𝛼 𝑓 + 1

=
(1 + 𝛼 𝑓

∏
𝑙 ∈𝑃𝑎𝑡ℎ (𝑓) 𝑙)

𝛼 𝑓 + 1
where, 𝛼 𝑓 =

𝑝𝑟𝑔 (1−𝑝𝑔)𝑛−𝑟
𝑝𝑟
𝑏
(1−𝑝𝑏)𝑛−𝑟 − 1 ∈ (−1,∞) is a constant for

flow 𝑓 irrespective of 𝐻 . The oracle 𝑂𝐴𝐼 then returns

arg max
𝐻 ∈{0,1}𝐸T

∏
𝑓 :flows

𝑃 [𝑓 |𝐻] = arg max
𝐻 ∈{0,1}𝐸T

∏
𝑓 :flows

(1 + 𝛼 𝑓
∏

𝑙 ∈𝑃𝑎𝑡ℎ (𝑓)
𝑙𝐻)

Where 𝑙𝐻 is the status (0/1) of link 𝑙 as per hypothesis 𝐻 .
Given the above expression, we set the number of packets
sent/dropped for all flows in the following way

(1) For all edge-flows 𝑓𝑒 , we set 𝑛, 𝑟 : the number of packets
sent/dropped such that 1 + 𝛼 𝑓𝑙 = 1

𝐶
where 𝐶 >> 1.

(2) For all link-flows 𝑓𝑙 where 𝑙 is connected to a special
node, we set 𝑛, 𝑟 : the number of packets sent/dropped
in such a way that if 𝑙 is connected to a special node,
then 1 + 𝛼 𝑓𝑙 = 1 +𝐶. This ensures that 𝑂𝐴𝐼 will always
assign a label of 1 to a link connected to a special node
(recall that 1 denotes the link being up).

(3) For all link-flows 𝑓𝑙 where both endpoints of 𝑙 are con-
nected to vertex nodes, we set 𝑛, 𝑟 : the number of pack-
ets sent/dropped such that 1 + 𝛼 𝑓𝑙 = 1 + 𝜖 where 𝜖 is a
small number > 0. This assigns a small cost of assign-
ing a label 0 to a link in T whose both endpoints of 𝑙
are connected to vertex nodes.

The vertex cover is obtained by simply picking vertices in
𝐺 corresponding to links in T that are deemed as failed by
𝑂𝐴𝐼 . Conditions (1) and (2) above ensure that only vertex-
links will be classified as failed by 𝑂𝐴𝐼 . Conditions (2) and
(3) ensure that the result set of vertices will cover all edges.
Condition (3) ensures that the resultant vertex cover will be
of the smallest size. □

Agent/Collector scalability : Our agent’s CPU usage for a
end-host sending traffic grew linearly with the data rate (see
Fig 7b) and was <2% of one core for a 1Gbps uplink and
10-15% of a core for a 10 Gbps uplink. As can be seen from
figure 7c, the resource usage was independent of the number
of flows. We verified that our multicore collector can handle
8K connections/sec from agents (see Fig 7). We tested this by
launching several agent processes that generate dummy flow
reports to send to the collector . These results show that the
passive monitoring can be handled by an end-host agent and
a centralized collector.

PACMNET, June 2023, To appear Vipul Harsh, Tong Meng, Kapil Agrawal, P. Brighten Godfrey

D1

D2

S1

S2

543/10K

2/10K

461/10K

I1 I2

0/10K

0/10K

(a) Example: failed link shown via the red cross

Scheme Predicted failed
links

007 (I1, I2)

NetBouncer (S2, I1), (I2, D2)

Flock (I2, D2)
(b) Output of various schemes

Figure 6: Example: (a) 5 links in the network. 5 flows shown in 5 different colors, annotated with packets dropped/packets sent. (b) Flock correctly localizes the
failed link.

1024 2048 4096 8192
connections/sec (100 flow reports/conn)

2.0

4.0

8.0

16.0

C
P
U

 u
sa

g
e

(a) Collector scaling

��
��
��
��
��

���
���
���
���

����� ���� �� ���

�
��

�
�
��
��

�
��
�

�����������

���
�

(b) agent CPU usage: single flow

 0

 1

 2

 3

 4

 5

20 40 60 80 100

C
P
U

 U
sa

g
e
 (

%
)

Number of Flows

1Gbps, D+A
1Gbps, D
2Gbps, D+A
2Gbps, D

(c) several flows
Figure 7: (a) CPU usage at the collector, varying number of agents (b) CPU usage on the agent for handling a single flow. D: cost of packet header dumping, A:
cost of compiling flow reports from packet headers.(c) agent CPU usage with many concurrent flows

0.2 0.4 0.6 0.8 1.0
pb

1e−2

0.4

0.6

0.8

1.0

Fs
co

re pg=1.0e-4

pg=3.0e-4

pg=5.0e-4

pg=7.0e-4

(a) Parameter sensitivity

0.70 0.75 0.80 0.85 0.90 0.95 1.00

precision
0.70

0.75

0.80

0.85

0.90

0.95

1.00

re
ca

ll 5

10

15

20

(b) Effect of changing priors
Figure 8: (a) Effect of changing 𝑝𝑔 and 𝑝𝑏 : intuitively, we expect precision
to increase when 𝑝𝑔 or 𝑝𝑏 is increased, at the cost of reduced recall, which is
confirmed by the figure (b) Higher priors result in points to the right. Priors
𝜌 resulted in a significant reduction in false positives.

THEOREM 4. For any topology with (1/𝛼)-skewed traf-
fic, Flock’s inference returns the set of all failed links if the
number of failures is ≤ 𝛼/2 with high probability, the number
of packets 𝑇𝑚𝑖𝑛 crossing every link is larger than a certain
threshold, and the drop probabilities are < 𝑝𝑔 on all good
links and > 𝑝𝑏 on all failed links where (𝑝𝑔, 𝑝𝑏) satisfy the
condition 5𝑝𝑔 < 𝑝𝑏 < 0.05.

The condition 𝑇𝑚𝑖𝑛 > 𝑇0 ensures that the effect of variance
in the number of packets dropped by a link is small. The-
orem 2 holds for a wide range of values of 𝑝𝑔 and 𝑝𝑏 (see
lemma 1).

PROOF. If 𝛾𝐻
𝑓

be the 0/1 status of the path taken by flow
𝑓 as per hypothesis 𝐻 (0 being that the path has at least one
failed link as per 𝐻 and hence is labeled as failed), we can
express the (normalized) log likelihood for a flow given a
hypothesis as follows

Flock: Accurate network fault localization at scale PACMNET, June 2023, To appear

log 𝑃 [𝑓 |𝐻 = {𝑙1, 𝑙2, ... 𝑙𝑛}] − log 𝑃 [𝑓 |𝑙1 = 1, 𝑙2 = 1, ... 𝑙𝑛 = 1]
= log

(
𝛾𝐻
𝑓
𝑝𝑟𝑔 (1 − 𝑝𝑔)𝑛−𝑟 + (1 − 𝛾𝐻𝑓)𝑝

𝑟
𝑏
(1 − 𝑝𝑏)𝑛−𝑟

)
− log

(
𝑝𝑟𝑔 (1 − 𝑝𝑔)𝑛−𝑟

)
=(1 − 𝛾𝐻

𝑓
)
(
𝑟 log

𝑝𝑏

𝑝𝑔
+ (𝑛 − 𝑟) log

(1 − 𝑝𝑔)
(1 − 𝑝𝑏)

)
=(1 − 𝛾𝐻

𝑓
)_(𝑟 − 𝑛`) = (1 − 𝛾𝐻

𝑓
)_

𝑛∑︁
𝑖=0
(𝑏𝑖 − `)

=(1 − 𝛾𝐻
𝑓
)𝑋 (𝑓 , 𝐻)

where _ = log 𝑝𝑏 (1−𝑝𝑔)
𝑝𝑔 (1−𝑝𝑏) and ` = log (1−𝑝𝑔)(1−𝑝𝑏)

/
log 𝑝𝑏 (1−𝑝𝑔)

𝑝𝑔 (1−𝑝𝑏)
are constants and 𝑏𝑖 is a binary variable which is 1 if the
𝑖𝑡ℎ packet of the flow was dropped and 0 otherwise. One
can check that 𝑝𝑔 < ` < 𝑝𝑏 for any 0 < 𝑝𝑔 < 𝑝𝑏 < 1 by
taking partial derivatives or using a plotting tool. Note that
we can simply ignore the constant _ for the purpose of log
likelihood maximization. If the maximum allowed drop rate
on a correctly working link be 𝑝∗ and the maximum path
length for the given topology be 𝑘, then we set 𝑝𝑔 ≥ 𝑘𝑝∗ so
that for any flow 𝑓 that does not go through any of the failed
links , (𝑝 𝑓 − `) < 0, where 𝑝 𝑓 is the packet drop probability
of the path taken by 𝑓 . We show the following lemma which
holds for any reasonable settings for 𝑝𝑔 and 𝑝𝑏 for the purpose
of detecting packet drops. The expected value of the 𝑋 (𝑓 , 𝐻)
is given as

𝐸 [𝑋 (𝑓 , 𝐻)] = 𝐸
[
_

𝑛∑︁
𝑖=0
(𝑏𝑖 − `)

]
= _

𝑛∑︁
𝑖=0

𝐸 [(𝑏𝑖 − `)] = 𝑛_(𝑝 𝑓 − `)

LEMMA 1. If ` =
log (1−𝑝𝑔)(1−𝑝𝑏)

log 𝑝𝑏 (1−𝑝𝑔)
𝑝𝑔 (1−𝑝𝑏)

and 5𝑝𝑔 < 𝑝𝑏 ≤ 0.05, then

0 ≤ 𝑝𝑔 < ` < 2` < 𝑝𝑏

Lemma 1 can be seen by taking partial derivatives or via a
numerical plotting tool.

LEMMA 2. If 𝑝𝑙 denotes the drop probability of link 𝑙 ,
𝐿𝑓 = {𝑙1, 𝑙2, ...𝑙𝑘 } be the links in the path taken by flow 𝑓 , 𝑝 𝑓
denotes the drop probability of the path 𝐿𝑓 and 𝐻 ∗ denote the
set of failed links, then (𝑝 𝑓 − `) ≤

∑
(𝑙 ∈𝐻 ∗∩𝐿𝑓) 𝑝𝑙

PROOF. For any 𝑙𝑖 ∈ 𝐿𝑓 , we have-

𝑝 𝑓 = 1 −
(
(1 − 𝑝𝑙1)...(1 − 𝑝𝑙𝑖)...(1 − 𝑝𝑙𝑘)

)
= 1 − (1 − 𝑝𝑙𝑖)

(
(1 − 𝑝𝑙1)...(1 − 𝑝𝑙𝑖−1) (1 − 𝑝𝑙𝑖+1)...(1 − 𝑝𝑙𝑘)

)
= 1 −

(
(1 − 𝑝𝑙1) ...(1 − 𝑝𝑙𝑖−1) (1 − 𝑝𝑙𝑖+1)...(1 − 𝑝𝑙𝑘)

)
+ 𝑝𝑙𝑖

(
(1 − 𝑝𝑙1)...(1 − 𝑝𝑙𝑖−1) (1 − 𝑝𝑙𝑖+1)...(1 − 𝑝𝑙𝑘)

)
≤ 1 −

(
(1 − 𝑝𝑙1)...(1 − 𝑝𝑙𝑖−1) (1 − 𝑝𝑙𝑖+1)...(1 − 𝑝𝑙𝑘)

)
+ 𝑝𝑙

Applying the same argument recursively for all links in 𝐻 ∗ ∩
𝐿𝑓 , we get:
𝑝 𝑓 − ` = 1 − (1 − 𝑝𝑙1) (1 − 𝑝𝑙2)...(1 − 𝑝𝑙𝑘) − `

≤
(
1 −

∏
𝑙 ∈𝐿𝑓 \𝐻 ∗

(1 − 𝑝𝑙)
)
− ` +

∑︁
(𝑙 ∈𝐻 ∗∩𝐿𝑓)

𝑝𝑙 ≤
∑︁

(𝑙 ∈𝐻 ∗∩𝐿𝑓)
𝑝𝑙

The last inequality follows from the fact that (𝑝 𝑓 − `) < 0 for
a path consisting of only good links. This completes the proof
of lemma 2. □

Consider the set of hypotheses with single link failures- say
𝑆1. We first show that 𝐻𝑜𝑝𝑡 = arg max𝐻 ∈𝑆1𝐿(𝐻), corresponds
to a failed link as 𝑇𝑚𝑖𝑛 → ∞ which in turns implies that the
greedy algorithm succeeds in picking a failed link in the first
iteration. Let 𝐻𝑙 ∈ 𝑆1 denote the hypothesis {𝑙} where 𝑙 is
a good link in the topology, 𝐹 (𝑙) is the set of flows that go
through the link 𝑙 , 𝑛𝑓 is the number of packets sent by flow 𝑓

and 𝑝 𝑓 as before is the ground truth drop probability of the
path taken by 𝑓 . We have,

𝐸 [𝐿𝐿(𝐻𝑙)] =
∑︁
𝑓 ∈𝐹 (𝑙)

𝐸 [𝑋 (𝑓 , 𝐻)] =
∑︁
𝑓 ∈𝐹 (𝑙)

𝑛(𝑝 𝑓 − `)

≤
∑︁
𝑙∗∈𝐻 ∗

∑︁
𝑓 ∈𝐹 (𝑙)∩𝐹 (𝑙∗)

𝑛(𝑝 𝑓 − `)

≤
∑︁
𝑙∗∈𝐻 ∗

∑︁
𝑓 ∈𝐹 (𝑙)∩𝐹 (𝑙∗)

𝑛𝑓 𝑝𝑙∗ ≤
∑︁
𝑙∗∈𝐻 ∗

𝑝𝑙∗ 𝑇 (𝑙, 𝑙∗)

≤
∑︁
𝑙∗∈𝐻 ∗

1
𝛼
𝑝𝑙∗ 𝑇 (𝑙∗) ≤

∑︁
𝑙∗∈𝐻 ∗

1
𝛼

∑︁
𝐹 (𝑙∗)

𝑛𝑓 𝑝𝑙∗

≤
∑︁
𝑙∗∈𝐻 ∗

1
𝛼

∑︁
𝐹 (𝑙∗)

𝑛𝑓 2(𝑝𝑙∗ − `) <
2
𝛼

∑︁
𝑙∗∈𝐻 ∗

𝐸 [𝐿𝐿(𝐻𝑙∗]

< arg max
𝑙 ∈𝐻 ∗

𝐸 [𝐿𝐿(𝐻𝑙)]

Note that 𝑝 𝑓 − ` < 0 if flow 𝑓 takes a path with all good
links and |𝐻 ∗ | ≤ 𝛼/2.
This shows that the greedy inference algorithm will pick a
failed link in the first iteration, say 𝑙1. Greedily picking the
link that maximizes the log likelihood of the hypothesis {𝑙1} is
equivalent to deleting all flows crossing 𝑙1 and the link 𝑙1 itself
from the input for analysis for subsequent iterations. Hence,
the same proof about iteratively picking a failed link works
for subsequent iterations if we ensure that the traffic-skew is
maintained after deleting 𝑙1 and all flows crossing it.

For any pair of links 𝑙2, 𝑙3 ≠ 𝑙1, we have
𝑇 ({𝑙2, 𝑙3})/𝑇 ({𝑙2}) ≤ 1

𝛼
. Let’s say that the number of

packets crossing link 𝑙2 is 𝑇 ′({𝑙2}) after we delete 𝑙1 and all

PACMNET, June 2023, To appear Vipul Harsh, Tong Meng, Kapil Agrawal, P. Brighten Godfrey

Algorithm 1 Flock inference: Greedy search with JLE (crux)
1: procedure GREEDYSEARCH()
2: current_hypothesis← []
3: Δ = ComputeInitialDelta()
4: while max(Δ) > 0 do
5: link = argmax(Δ)
6: Δ = UpdateDeltaArr(Δ, current_hypothesis, link)
7: current_hypothesis.add(link)
8: return current_hypothesis
9: procedure UPDATEDELTAARR(Δ, hypothesis, link)

10: new_hypothesis← hypothesis + [link]
11: for F in FlowsIntersectingWithLink(link) do
12: for l in F.links do
13: Δ[l] += GetFlowDelta(new_hypothesis, l, F)
14: Δ[l] -= GetFlowDelta(hypothesis, l, F)
15: return Δ

flows crossing 𝑙1. Then we have,
𝑇 ′({𝑙2, 𝑙3})
𝑇 ′({𝑙2})

≤𝑇 ({𝑙2, 𝑙3})
𝑇 ′({𝑙2})

=
𝑇 ({𝑙2, 𝑙3})

𝑇 ({𝑙2}) −𝑇 ({𝑙1, 𝑙2})

≤ 𝑇 ({𝑙2, 𝑙3})
(1 − 1/𝛼)𝑇 ({𝑙2})

=
1

𝛼 − 1
Thus, for subsequent iterations, after deleting 𝑙1, traffic is
1/(𝛼 − 1)-skewed and the number of failures is 𝛼/2 − 1 in
the deleted graph. The same argument as before shows that
the greedy algorithm will pick a failed link in every iteration
as long as there is at least one failed link not in the current
hypothesis.

Stopping Criteria: Finally we need to show that once all
failed links are picked, the greedy algorithm will halt. This
happens when 𝐿𝐿(𝐻𝑙) < 0 for all 𝑙 not in the current hypothe-
sis. Note that the input to log likelihood computations in the

current iteration is the topology obtained after deleting all
links in the current hypothesis and all flows crossing any of
those links. As before we have,

𝐸 [𝐿𝐿(𝐻𝑙)] =
∑︁
𝑓 ∈𝐹 (𝑙)

𝐸 [𝑋 (𝑓 , 𝐻)] =
∑︁
𝑓 ∈𝐹 (𝑙)

𝑛(𝑝 𝑓 − `)

Note that for a path with all good links, 𝑝 𝑓 − ` ≤ 𝑝𝑔 − ` <

0. Hence, 𝐸 [𝐿𝐿(𝐻𝑙)] is bounded away from 0 towards −∞.
Since, 𝐿𝐿(𝐻𝑙) is the sum of independent binary variables
corresponding to packets each of whose expectation is ≤
(𝑝𝑔 − `) < 0, applying Chernoff bounds followed by a union
bound for all links shows that 𝐿𝐿(𝐻𝑙) < 0 for all links 𝑙 with
high probability. This complete the proof of Theorem 2. □

A.1 Defining precision/recall
Precision is the fraction of predicted failed links that had

actually failed and recall is the fraction of failed links that
were correctly reported as failed. A faulty device or any of
its links are considered to be correct for calculating precision.
For calculating recall, including the faulty device itself in
𝐻 counts as 100% recall, and including x% of the device
links in 𝐻 counts as x% recall, where 𝐻 is the set of failed
links/devices predicted by the algorithm. More precisely, if
𝐻 is the set of failed links predicted by the algorithm and 𝐻 ∗

is the actual set of failed links, then precision =|𝐻 ∩ 𝐻 ∗ |/|𝐻 |
and recall = |𝐻 ∩ 𝐻 ∗ |/|𝐻 ∗ |.

We define precision to be 1 if the algorithm returns the
empty hypothesis. For 0 actual failures, precision represents
the fraction of examples where the algorithm returns a wrong
answer and recall is 1 since there are no failures to detect.

Flock: Accurate network fault localization at scale PACMNET, June 2023, To appear

Algorithm 2 Flock’s Hypotheses search: Greedy with Joint
Likelihood Exploration

1: procedure GREEDYSEARCH()
2: current_hypothesis← []
3: Δ = ComputeInitialDelta()
4: while max(Δ) > 0 do
5: link = argmax(Δ)
6: Δ = UpdateDeltaArr(Δ, current_hypothesis, link)
7: current_hypothesis.add(link)
8: return current_hypothesis
9:

10: procedure UPDATEDELTAARR(Δ, hypothesis, link)
11: new_hypothesis← hypothesis + [link]
12: for F in FlowsIntersectingWithLink(link) do

⊲ these counters are a simple data structure
⊲ trick to speed-up the subsequent for loop

13: old_counters = GetCounters(hypothesis, flow)
14: new_counters = GetCounters(new_hypothesis, flow)
15: for l in F.links do
16: Δ[l] += GetFlowDelta(l, *new_counters)
17: Δ[l] -= GetFlowDelta(l, *old_counters)
18: return Δ
19:
20: procedure GETCOUNTERS(hypothesis, flow)
21: paths_failed← 0
22: num_paths = dict()
23: for path in flow.paths do
24: if (PathFailedAsPerHypothesis(path, hypothesis)) then
25: paths_failed++
26: else
27: for link in path do
28: num_paths[link]++
29: return (paths_failed, num_paths[link], flow.paths.size(),

flow.packets_sent, flow.bad_packets)
30:
31: procedure GETFLOWDELTA(link, paths_failed, num_paths,

n_flow_paths, packets_sent, bad_packets)
32: bad_paths = paths_failed + num_paths[link]
33: return GetLogLikelihood(bad_paths, n_flow_paths, packets_sent,

packets_dropped)
34:
35: procedure COMPUTEINITIALDELTA()
36: for l in links do
37: Δ[l]← 0
38: for flow in flows do
39: counters = GetCounters([], flow)
40: for l in flow.links do
41: Δ[l] += GetFlowDelta(l, *counters)
42: return Δ
43:
44: procedure GETLOGLIKELIHOOD(bad_paths, n_flow_paths,

bad_packets, packets_sent)
45: good_packets = packets_sent - bad_packets
46: log_likelihood = bad_paths * pow(𝑝𝑏 , bad_packets) *
47: pow(1 - 𝑝𝑏 , good_packets)
48: good_paths = n_flow_paths - bad_paths
49: log_likelihood += good_paths * pow(𝑝𝑔 , bad_packets)
50: * pow(1 - 𝑝𝑔 , good_packets)
51: log_likelihood /= n_flow_paths
52: return log_likelihood

Algorithm 3 JLE can be used to speedup Sherlock’s infer-
ence, with max concurrent failures = K

1: best_hypothesis = None
2: max_likelihood = -∞
3: procedure SHERLOCKWITHJLE()
4: Δ = ComputeInitialDelta()
5: ExploreBranch([], Δ, 0.0)
6: return best_hypothesis
7: procedure EXPLOREBRANCH(current_hypothesis, Δ, cur-

rent_likelihood)
8: if current_likelihood > max_likelihood then
9: max_likelihood = current_likelihood

10: best_hypothesis = current_hypothesis
11: if current_hypothesis.size < K then
12: for l in links do
13: new_hypothesis = current_hypothesis.add(l)
14: new_likelihood = current_likelihood + Δ[l]
15: Δ𝑛𝑒𝑤 = UpdateDeltaArr(Δ, current_hypothesis, l)
16: ExploreBranch(new_hypothesis, Δ𝑛𝑒𝑤 , new_likelihood)

B Joint Likelihood Exploration: pseudocode
Refer to Algorithm 1 for a short summary of Flock’s infer-

ence algorithm and Algorithm 2 for full pseudocode.

C Full Runtime analysis
Let 𝑛 be the number of links, 𝑚 be the number of flows,

𝑇 be an upper bound on the number of links that any flow
intersects with, 𝐷 be an upper bound on the number of flows
that any link intersects with and 𝐾 be the maximum number
of concurrent failures (note that Flock’s algorithm doesn’t
need to know 𝐾).

We describe the components in the running time of Flock’s
overall inference, including Greedy and JLE:
• Before the first greedy iteration, the Δ array is computed

once, in a linear pass over all flows and their path sets,
incurring 𝑂 (𝑛 +𝑚𝑇) time.
• After each greedy iteration, updating the Δ array via JLE

requires iterating over all flows that intersect with the newly
added link. For each such flow 𝐹 , let 𝐿𝐹 be the links that 𝐹
intersects with. Updating all entries Δ𝐻 ′ (𝑙, 𝐹) for all 𝑙 ∈ 𝐿𝐹
requires a couple of passes over 𝐿𝐹 . Thus, the execution
time for subsequent (𝐾 − 1) greedy iterations, barring the
first, is 𝑂 ((𝐾 − 1)𝐷𝑇).

Hence, the running time of Greedy inference with JLE is
𝑂 (𝑛 +𝑚𝑇 + (𝐾−1)𝐷𝑇). If we had used just Greedy without
JLE (computing likelihood of each hypothesis individually),
the runtime would be 𝑂 (𝑛 +𝑚𝑇 + (𝐾−1)𝑛𝐷𝑇).

We compare runtime with Sherlock. To compute the MLE,
Sherlock scans all 𝑂 (𝑛𝐾) hypotheses with ≤ 𝐾 failures. Sher-
lock is better than brute force, however: it uses 𝐿𝐿(𝐻), for an
explored hypothesis 𝐻 , to compute 𝐿𝐿(𝐻 ⊕ 𝑙) by updating the
flow contributions 𝐿𝐿𝐹 (𝐻) for all flows 𝐹 that intersect with
link 𝑙 (since their likelihoods would have changed after flip-
ping the status of link 𝑙), giving 𝑂 (𝑛𝐾𝐷𝑇) runtime. We can
apply JLE to accelerate Sherlock’s inference by evaluating 𝑛

PACMNET, June 2023, To appear Vipul Harsh, Tong Meng, Kapil Agrawal, P. Brighten Godfrey

neighbor hypotheses at once (Algorithm 3 in appendix), im-
proving Sherlock’s runtime, by a factor of 𝑛, to 𝑂 (𝑛𝐾−1𝐷𝑇).

However, this is exponential in 𝐾 and too slow for our pur-
poses. From the analysis above (and our experiments later), it
can be seen that Greedy + JLE is dramatically faster.

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 When fault localization is useful
	2.2 Problem setup and goals
	2.3 Existing fault localization approaches

	3 Flock Design
	3.1 Flow monitoring
	3.2 Inference graph model
	3.3 Inference algorithm

	4 Flock: Analysis
	4.1 Runtime analysis
	4.2 Accuracy analysis

	5 Implementation
	5.1 Agent and inference engine
	5.2 Parameter Calibration

	6 Evaluation Methodology
	6.1 Systems evaluated
	6.2 Input telemetry types
	6.3 Network environments
	6.4 Failure scenarios

	7 Evaluation Results
	7.1 Silent packet drops
	7.2 Device failures
	7.3 Soft gray failures
	7.4 Misconfigured queue
	7.5 Link flaps
	7.6 Irregular Clos topologies
	7.7 Parameter calibration robustness
	7.8 Running time and scalability

	8 Related work
	9 Conclusion
	References
	A Proofs
	A.1 Defining precision/recall

	B Joint Likelihood Exploration: pseudocode
	C Full Runtime analysis

