
Spineless Data Centers
Vipul Harsh

University of Illinois at

Urbana-Champaign

Sangeetha Abdu Jyothi

University of California, Irvine and

VMware Research

P. Brighten Godfrey

University of Illinois at

Urbana-Champaign and VMware

ABSTRACT
In enterprises, CDNs, and increasingly in edge computing, most data

centers have moderate scale. Recent research has developed designs

such as expander graphs that are highly efficient compared to large-

scale, 3-tier Clos networks, but moderate-scale data centers need

to be constructed with standard hardware and protocols familiar to

network engineers, and are overwhelmingly built with a leaf-spine

architecture.

This paper explores whether the performance efficiency that is

known to be theoretically possible at large scale can be realized

in a practical way for the common leaf-spine data center. First,

we find that more efficient topologies indeed exist at moderate

scale, showing through simulation and analysis that much of the

benefit comes from choosing a “flat” network that uses one type of

switch rather than having separate roles for leafs and spines; indeed,

even a simple ring-based topology outperforms leaf-spine for a

wide range of traffic scenarios. Second, we design and prototype

an efficient routing scheme for flat networks that uses entirely

standard hardware and protocols. Our work opens new research

directions in topology and routing design that can have significant

impact for the most common data centers.

CCS CONCEPTS
•Networks→Network design principles;Routing protocols.
ACM Reference Format:
Vipul Harsh, Sangeetha Abdu Jyothi, and P. Brighten Godfrey. 2020. Spine-

less Data Centers. In Proceedings of the 19th ACM Workshop on Hot Topics in
Networks (HotNets ’20), November 4–6, 2020, Virtual Event, USA. ACM, New

York, NY, USA, 7 pages. https://doi.org/10.1145/3422604.3425945

1 INTRODUCTION
Over the last decade, public clouds, manifested in hyperscale data

centers (DCs), have become key infrastructure run by a handful

of top cloud service providers. However, small- and medium-scale

DCs, comprised of a few 10s to 100 racks and up to a few thousand

servers, are critical as well, and are more numerous. Such DCs form

the on-premises, privately-owned infrastructure expected to run

half of all enterprise IT workloads as of 2021 [26]. Moderate-scale

DCs are also the foundation of Internet exchange points, CDNs,

and, increasingly, edge computing, whose market size is projected

to grow from $4.5B in 2018 to $16B in 2025 [28].

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

HotNets ’20, November 4–6, 2020, Virtual Event, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-8145-1/20/11. . . $15.00

https://doi.org/10.1145/3422604.3425945

A line of research has developed modern architectures for hyper-

scale DC networks, typically based on 3-tier Clos networks [4], and

has optimized various aspects of these architectures. Of most inter-

est here, alternative topologies based on expander graphs
1
, such as

Jellyfish [23] and Xpander [27], have recently been shown to yield

higher performance than 3-tier Clos networks. This is partly due to

smaller path length in expanders, which helps reduce congestion,

an effect that is more pronounced with larger scale [13].

Moderate-scale DCs, however, have so far not realized these

benefits. In practice, they are overwhelmingly built with 2-tier leaf-

spine networks [1]. As leaf-spine networks have shorter paths than

3-tier Clos networks, it is not clear if the gains of expanders apply to

leaf-spine networks. In addition, current expander designs require

uncommon or novel transport, routing, or forwarding protocols,

like MPTCP with 𝑘-shortest path routing [23], or an ECMP/VLB

routing hybrid with dynamic switching at flowlet granularity [15].

Using such protocols is always a deployment hurdle, but would be

a non-starter for enterprises that depend on standard hardware and

IT support, lacking the hyperscale operators’ ability to develop and

support custom designs.

Our goal is to determine whether advances are possible in the

under-explored area of efficiency of moderate-scale DC networks,

and in particular, whether more efficient topologies are feasible. As

we will show, achieving this goal comes with fundamentally differ-

ent challenges and opportunities than large-scale DC networks.

We first show that topologies that outperform leaf-spine net-

works at moderate scale do exist. Importantly, a significant benefit

comes from using a “flat” network, by which we mean that switches

have only one role: all are top-of-rack (ToR) switches directly con-

nected to servers and to other switches, and servers are distributed

evenly across all the switches. To demonstrate this, we design a

flat ring-like topology that we call a DRing, which is topologically

unlike an expander. We show that the DRing’s performance at

small scale is comparable to expanders, and both DRings and ex-

panders significantly outperform leaf-spine networks for several

broad classes of traffic demand. The DRing’s performance deterio-

rates with increasing scale, thereby showing that new design points

exist for small scale DCs that would not be feasible at large scale.

These design points may have new and perhaps more advantageous

tradeoffs in system design (such as wiring and management com-

plexity, which has been a road block for adoption of large-scale

expander DCs [31]).

Intuitively, flatness increases the number of links exiting a rack,

relative to the number of servers in the rack. Analytically, we show

ToR over-subscription is 2× less in flat networks than leaf-spines

built with the same hardware (§ 3.1). This does not mean flat net-

works always get 2× higher throughput. But when two factors

are combined – (1) over-subscription causing a bottleneck exiting

1
Expanders are an extensively studied class of graphs that are in a sense maximally or

near-maximally well-connected.

Session 2: Protocols and Architectures HotNets '20, November 4–6, 2020, Virtual Event, USA

67

https://doi.org/10.1145/3422604.3425945
https://doi.org/10.1145/3422604.3425945

(a) Leaf-spine topology (b) Flat topology

Figure 1: A flat topology can mask oversubscription. The
leaf-spine (a) has 4 servers and 2 network links per rack,
whereas the flat network (b), built with the same hardware,
has 3 servers and 3 network links per rack. Hence, the
number of network ports per server in the leaf-spine is 1/2
whereas it is 1 for the flat topology.

the leaf-spine’s racks, and (2) a skewed traffic pattern causing this

bottleneck at a minority of racks – flat networks are effectively able

to mask the over-subscription and behave closer to a non-blocking

network (see Figure 1). Oversubscription happens to be the most

realistic scenario and was not explicitly explored in past work.

Second, we evaluate practical routing designs for flat DC net-

works through emulation in multiple classes of traffic demand. We

find that simple shortest path routing with ECMP (and standard

TCP transport) is sufficient for certain important traffic patterns,

having up to 7× lower flow completion times than a leaf-spine

for a real-world workload. However, as in larger expanders [15],

there are cases where ECMP provides too few paths. In fact, this

will be true of any flat topology. We therefore propose a practical

and efficient routing scheme that exposes the path diversity of flat

networks via simple, familiar features available in essentially all DC

switches: BGP, ECMP, and virtual routing and forwarding (VRF).

We demonstrate our scheme’s viability by prototyping it in the

GNS3 emulator [3] with Cisco 7200 switch images. To the best of

our knowledge, this is the first implementation of a routing scheme

on standard hardware for expanders or flat networks in general.

Overall, these results show that promising new design points are

possible for small- to medium-scale DC networks. Our work sug-

gests new research directions- searching for other new small-scale

topology design point, evaluating their operational advantages, and

improving practical routing designs. Via use of standard protocols,

we believe this line of work can have real impact on DC deploy-

ments. Our code and routing setup is available open source [2].

2 BACKGROUND
Previous research has shown that expander graphs can yield higher

performance than 3-tier Clos topologies. Singla et. al [23] first

showed that expanders, embodied in the random-graph-based Jel-

lyfish, can outperform 3-tier fat trees [4], and [22] demonstrated

that they flexibly accommodate heterogeneous switch hardware

and come close to optimal performance for uniform patterns under

a fluid flow routing model. Asaf et al. [27] proposed the Xpander

topology as a cabling-friendly alternative to Jellyfish, while match-

ing its performance. Both Jellyfish and Xpander used 𝑘-shortest

path routing and, in the transport layer, MPTCP [30] for good

performance. Kassing et. al [15] demonstrated that expanders can

outperform fat trees for skewed traffic patterns using a combina-

tion of VLB, ECMP, and flowlet switching [14, 25]. Jyothi et. al [13]

showed that under the fluid flow model with ideal routing, the

random graph outperforms the fat tree for near-worst case traffic.

However, reliance on non-traditional protocols (MPTCP, 𝑘-

shortest path routing, flowlet switching, and VLB) restricts the

practicality of these proposals. 𝑘-shortest path routing requires

control and data plane modifications; MPTCP requires operating

system support and configuration, often out of the control of the

data center operator; and flowlet switching depends on flow size

detection and dynamic switching of paths. Some of these mech-

anisms, such as flowlet switching [5], exist in some data center

switches, but they are not common. Designing completely oblivi-

ous routing schemes for expanders, or flat networks, that yield high

performance and can be realized with common tools available in

data center switches has thus far remained an elusive goal.

All of the above proposals target replacing 3-tier Clos topologies,

which are suitable for hyperscale datacenters. Most datacenters,

however, are small- or medium-sized and in modern realizations

are overwhelmingly based on 2-tier Clos topologies, i.e., leaf-spine

networks (Figure 1a), running shortest-path routing (BGP or OSPF)

with equal cost multipath (ECMP) forwarding. At this small scale,

there are different factors in play. First, topologies such as Jellyfish

and Xpander are known to be excellent expanders, but as [13, 23]

showed, their performance gains come with scale. Small-scale real-

ization of these networks don’t necessarily respect these asymptotic

characteristics, and networks that are inefficient at large scale may

perform well at small scale. Second, it is especially important to

stay as close as possible to the protocols that are standard for these

data centers and familiar to their network engineers.

3 TOPOLOGY DESIGN
We define a flat network as one in which switches have only one

role: all are top-of-rack (ToR) switches directly connected to servers

and to other switches (we refer to the latter connections as network
links). Flat networks mask rack oversubscription since they have

more network links per server in a rack (see Figure 1). Note that,

in a leaf-spine, the network links of a ToR carry only local traffic

(originating from or destined to servers in the rack). In contrast, the

network links of a ToR in a flat network carry both local traffic as

well as transit traffic (originating and destined elsewhere but routed

through that ToR). Nevertheless, all network links of a ToR in a flat

network can carry local traffic. This is especially valuable for micro

bursts where a rack has a lot of traffic to send in a short period of

time and traffic is well-multiplexed at the network links (very few

racks are bursting at any given point). The same argument also

holds for skewed traffic matrices. In the next section, motivated

by the above arguments, we introduce the notion of Uplink to
Downlink Factor (UDF) of a topology, representing how much

throughput gains one can expect from a flat topology compared to

a baseline topology, when the network links are bottlenecked due

to oversubscription.

3.1 Quantifying benefit of flatness
Consider a topology 𝑇 and a flat topology 𝐹 (𝑇) built with the

same equipment but with servers distributed among all switches.

For every ToR that contains servers, we define the Network Server

Ratio (NSR) as the ratio of network ports to server ports (to simplify,

Session 2: Protocols and Architectures HotNets '20, November 4–6, 2020, Virtual Event, USA

68

we assume this is the same for all ToRs with servers). We define

UDF(𝑇) as

𝑈𝐷𝐹 (𝑇) = 𝑁𝑆𝑅(𝐹 (𝑇))
𝑁𝑆𝑅(𝑇) .

Intuitively, NSR represents the outgoing network capacity per

server in a rack. The UDF represents the expected performance

gains with a flat network as compared to the baseline topology,

when traffic is bottlenecked at ToRs. It represents the best case

scenario for a flat graph when the network links of a ToR carry

only traffic originated from or destined to the rack.

Define leaf-spine (x, y), for arbitrary (positive integer) parame-

ters 𝑥 and 𝑦, as the following network with switch degree (𝑥 + 𝑦):
• There are 𝑦 spines, each connected to all leafs.

• There are (𝑥 + 𝑦) leafs, each connected to all spines.

• Each leaf is connected to 𝑥 servers.

We can compute the UDF for leaf-spine networks for arbitrary 𝑥

and 𝑦. We have,

𝑁𝑆𝑅(𝑇 = 𝐿𝑒𝑎𝑓 𝑆𝑝𝑖𝑛𝑒 (𝑥,𝑦)) = 𝑦

𝑥

For the corresponding flat network 𝐹 (𝑇) built with the same equip-

ment,

𝑁𝑆𝑅(𝐹 (𝑇)) = (𝑥 + 𝑦) − server ports per switch

server ports per switch

=
(𝑥 + 𝑦) −

(
𝑥 (𝑥 + 𝑦)/(𝑥 + 2𝑦))

𝑥 (𝑥 + 𝑦)/(𝑥 + 2𝑦) =
2𝑦

𝑥

Thus, 𝑈𝐷𝐹
(
𝑇 = 𝐿𝑒𝑎𝑓 𝑆𝑝𝑖𝑛𝑒 (𝑥,𝑦)

)
=
𝑁𝑆𝑅(𝐹 (𝑇))
𝑁𝑆𝑅(𝑇) = 2.

The UDF of a leaf-spine being 2 implies that a flat network can

achieve up to 2 times the throughput of a leaf-spine when the

bottleneck is at the ToRs (and hence masking the oversubscription

to a large extent). We later show via experiments (§ 6.2) that in

some cases, a flat network comes close to having 2x throughput as

the leaf-spine.

Note that the UDF of a leaf-spine network is independent of the

number of leaf and spine switches. Keeping the number of servers

constant, if a network has fewer spines andmore leaves, the number

of servers per rack are fewer but the aggregate uplink bandwidth

at the ToRs is also smaller. These two factors cancel each other and

hence, the UDF remains constant.

3.2 A simple flat topology
We propose a simple flat topology, we call DRing. The key idea

is to have a “supergraph” consisting of𝑚 vertices (referred to as

supernodes) numbered cyclically, where vertex(𝑖) is connected to

vertex(𝑖 + 1) and vertex(𝑖 + 2) (Figure 2c). Each supernode consists

of 𝑛 ToRs and every pair of ToR switches which lie in adjacent

supernodes have a direct link in the topology. All switches in the

DRing topology are symmetric to each other and play the exact same

role in the network. DRing is also easily incrementally expandable,

by adding supernodes in the ring supergraph.

Our choice of DRing as a flat topology is to demonstrate the

existence of flat topologies (other than expanders) that outperform

leaf-spine networks. The DRing is intentionally dramatically dif-

ferent than an expander – asymptotically, its bisection bandwidth

is 𝑂 (𝑛) worse! Finding the best flat topology at small scale, across

(a) Leaf Spine

(b) Jellyfish (random graph)

(c) DRing supergaph

(d) DRing supernode

Figure 2: Topologies: each vertex in (a) and (b) represents a
router. Each node (referred to as a supernode) in supergraph
(c) consists ofmultiple ToRs (shown in (d)). Any pair of ToRs
which lie in neighboring supernodes are directly connected
in the topology. (b) and (c) are flat topologies.

multiple design axes (manageability, performance, and complexity)

remains an open question.

4 ROUTING DESIGN
We consider the following two schemes, both of which are imple-

mentable in today’s common DC hardware.

ECMP: Standard shortest path routing, commonly available on

datacenter switches.

Shortest-Union(K): Between two ToR switches 𝑅1 and 𝑅2, use all

paths that satisfy either of the following conditions:

• the path is a shortest path between 𝑅1 and 𝑅2
• the length of the path is less than or equal to 𝐾

Shortest paths do not suffice for taking full advantage of path

diversity in a flat network, as previous works have shown [15, 23]

for expander graphs. This is true of all flat networks because there is

only one shortest path between two racks that happen to be directly

connected; hence, shortest paths cannot exploit the path diversity

for adjacent racks (unlike leaf-spine networks, where racks are

never directly connected). In general, the closer two racks are to

each other, the fewer shortest paths are between them.

Shortest-Union(𝐾) routing employs non-shortest paths for pairs

of racks that are close and hence, don’t have enough shortest paths

between them. Two racks which are distant to each other have suf-

ficiently many shortest paths available between them to effectively

load balance traffic and hence no extra paths are required. We use

𝐾 = 2 in our experiments since it offers a good tradeoff between

path diversity and path length. It offers more paths than ECMP but

also uses paths that are not too much longer than shortest paths

(important for high performance for uniform traffic). For DRing,

Shortest-Union(2) provides at least (𝑛 + 1) disjoint paths between
any two racks (𝑛 = number of racks in one supernode).

Next, we show how to implement the Shortest-Union(𝐾) scheme

with BGP and VRFs, as these are available in essentially all datacen-

ter switches. We’ve prototyped Shortest-Union(2) scheme in the

GNS3 network emulator [3] on emulated Cisco 7200 routers. VRFs

gives us the power to virtualize a switch and partition the switch

interfaces across the VRFs. We partition each router into 𝐾 VRFs-

Session 2: Protocols and Architectures HotNets '20, November 4–6, 2020, Virtual Event, USA

69

(VRF 1, VRF 2 ... VRF 𝐾). The host interfaces are assigned to VRF 𝐾 .

We use a unique AS number for each router and all VRFs on one

router have that same AS number. For Shortest-Union(𝐾), 𝐾 VRFs

need to be configured at each router.

For every directed physical connection from switch R1 to R2 in

the topology (treating an undirected link as two directed links in

opposite directions), we create the following virtual connections in

the VRF graph:

(1) (VRF 𝐾 , R1) → (VRF i, R2) of cost i, for all i

(2) (VRF (i+1), R1) → (VRF i, R2) of cost 1

(3) (VRF 1, R1) → (VRF 1, R2) of cost 1

Note that the cost can be different in the two directions for the

same link. The cost of any other link not listed above is ∞. The

costs can be set via path prepending in BGP. This design is also

illustrated in Figure 3. We simply use shortest path routing in this

VRF graph, which can be done via BGP (specifically eBGP). There

are no loops in the routing paths, at the router level, since BGP

does not admit any path that contains multiple nodes belonging to

the same AS.

Theorem 1. For two routers in the topology R1 and R2 separated
by distance 𝐿, the shortest path in VRF graph between (VRF 𝐾 , R1) to
(VRF 𝐾 , R2) has length =𝑚𝑎𝑥 (𝐿, 𝐾).

Proof. Let’s say the shortest path between R1 and R2 in the

topology is (R1, 𝐴1, 𝐴2𝐴𝐿−1, R2).
Case 1: 𝐿 ≥ 𝐾 : consider the path

(
(VRF 𝐾 , R1), (VRF 1, 𝐴1), (VRF

1,𝐴2) ... (VRF 1,𝐴𝐿−𝑘+1), (VRF 2,𝐴𝐿−𝐾+2) ... (VRF 𝐾-1,𝐴𝐿−1) (VRF
𝐾 , R2)

)
, which has cost 𝐿. Since all links have cost ≥ 1, any other

shortest path between (VRF𝐾 , R1) and (VRF𝐾 , R2), which will have

at least 𝐿 hops, will also have cost at least 𝐿. Hence, the shortest

path length in the VRF graph is 𝐿.

Case 2: 𝐿 < 𝐾 : The path
(
(VRF𝐾 , R1), (VRF 𝐿−1,𝐴1), (VRF 𝐿−2,

𝐴2) ... (VRF 𝐾-1, 𝐴𝐿−1), (VRF 𝐾 , R2)
)
has cost 𝐾 (the first link has

cost 𝐾 − 𝐿, all other links have cost 1). Hence, the distance between
(VRF 𝐾 , R1) and (VRF 𝐾 , R2) is at most 𝐾 . Next we show that any

other path between (VRF 𝐾 , R1) and (VRF 𝐾 , R2) length at least 𝐾 .

If the second hop in the path belongs to VRF 𝑖 of an adjacent node

of R1, then the length of the path is ≥ 𝑖 + (𝐾 − 𝑖) = 𝐾 since at least

𝐾 − 𝑖 hops are needed to reach VRF 𝐾 of any node from VRF 𝑖 of

any node. □

In order to reach a destination host h2 in rack R2 from a source

host h1 in rack R1, a flow needs to reach (VRF k, R2) from (VRF k,

R1). If the shortest path between R1 and R2 is < k, then this design

ensures that all paths of length ≤ 𝐾 in the physical topology can

be used since they all have cost 𝐾 in the VRF graph.

We note that a simple change to BGP’s path selection process

would simplify the above routing design, removing the need of con-

figuring VRFs. Currently, in popular implementations, BGP does not

support multipath route selection with different AS lengths. This

can be done easily by allowing the two commands “bgp ignore-as-

path” and “bgp maximum-paths” to be configured simultaneously,

which is currently disallowed in common vendor implementations.

We also note that the routing configurations at each router can be

generated by a simple script to avoid errors.

Figure 3: Shortest path routing in the VRF graph. Links are
annotated with their costs. Links with arrows have different
weights for forward and reverse links. Each router consti-
tutes one AS for BGP. Not all connections are shown.

5 EXPERIMENTAL SETUP
5.1 Topologies
Leaf-spine(x,y): As per recommended industry practices [1], we

choose an oversubscription ratio = 𝑥/𝑦 = 3 with 𝑥 = 48, 𝑦 = 16
(see § 3.1 for definition), matching an actual industry-recommended

configuration [1], leading to 64 racks and 3072 servers. We chose

this recommended configuration in part because it uses leaf and

spine switches with the same line speed, making comparisons more

straightforward; we leave heterogeneous configurations to future

work, but expect similar results.

Expander graph: We use a regular random graph (RRG) [23] as

it’s a high-end expander [27]. Other expanders have similar per-

formance characteristics to the random graph [27] and hence we

expect our results to apply to all high-end expanders. We build a

random graph with the exact same equipment as the leaf-spine, by

rewiring the baseline leaf-spine topology, redistributing servers

equally across all switches (including switches that previously

served as spines) and applying a random graph to the remaining

ports.

DRing supergraph: We use a DRing supergraph with 12 supern-

odes (see § 3.2), that consists of 80 racks and 2988 servers overall,

which was closest to the leaf-spine config we picked and has about

2.8% fewer servers.

5.2 Traffic workload
Uniform/A2A: Standard uniform traffic where each flow is as-

signed a random source and destination, similar to sampled All-to-

all(A2A).

Rack-to-rack (R2R): All servers in one rack send to all servers in

another rack.

Real world TMs: We use two real-world traffic workloads (FB

skewed and FB uniform) from two 64 rack-clusters at Facebook

presented in [21], one from a Hadoop cluster comprising of largely

uniform traffic and one from a front-end cluster with significant

skew. The raw data on the traffic weights between any two racks

were obtained as in [13]. Flows are chosen between a pair of racks

in the leaf-spine network as per the rack-level weights obtained

from the Facebook data, yielding a server-level traffic matrix (TM).

FB skewed/uniform Random Placement (RP): We take the

server level TM as described in the previous entry and randomly

shuffle the servers across the datacenter. This helps in evaluating

topologies with random placement of VMs which has been shown

to be beneficial [13].

Session 2: Protocols and Architectures HotNets '20, November 4–6, 2020, Virtual Event, USA

70

A2A R2R CS skewed FB skewed FB uniform FB skewed
(RP)

FB uniform
(RP)

0.0

0.2

0.4

F
C

T
(m

s)

leaf-spine (ecmp)

DRing (shortest-union(2))

RRG (shortest-union(2))

DRing (ecmp)

RRG (ecmp)

(a) Median FCT

A2A R2R CS skewed FB skewed FB uniform FB skewed
(RP)

FB uniform
(RP)

0.0

2.5

5.0

7.5

F
C

T
(m

s)

leaf-spine (ecmp)

DRing (shortest-union(2))

RRG (shortest-union(2))

DRing (ecmp)

RRG (ecmp)

(b) 99𝑡ℎpercentile FCT

Figure 4: Flow completion times for various traffic matrices: both flat topologies namely DRing and RRG show significant
improvement over leafspine for skewed traffic and have comparable performance for uniform traffic matrices. The routing
for each scheme is shown in paranthesis. In (b), bars touching the top are all > 30 ms. C-S skewed traffic represents C=n/4,
S=n/16 in the C-S model where n represents the total number of hosts in the DC.

Flow size distribution: Flow sizes are picked from a standard

Pareto distribution with mean 100KB and scale=1.05 to mimic irreg-

ular flow sizes in a typical datacenter [6]. The number of flows are

determined according to the weights of the TM and flow start times

are chosen uniformly at random across the simulation window.

C-S model: To capture a wide range of scenarios, we pick a subset

𝐶 of hosts to act as clients and pack these clients into the fewest

number of racks while randomly choosing the racks in the DC.

Similarly, we pick a subset 𝑆 of hosts to act as servers and pack

them into the fewest number of racks possible (avoiding racks

used for 𝐶). We wish to measure the network capacity between

the sets 𝐶 and 𝑆 for all possible sizes of 𝐶 and 𝑆 . By varying the

sizes of 𝐶 and 𝑆 , this model, which we call the C-S model, captures

a wide range of patterns that commonly occur in applications,

including: (i) incast/outcast for 𝐶 = 1/𝑆 = 1, (ii) rack to rack, (iii) a

range of skewed traffic for |𝐶 | << |𝑆 |, and (iv) uniform traffic for

|𝐶 | = |𝑆 | = 𝑛/2, where 𝑛 is the total number of hosts.

5.3 Simulation setup
We use the htsim-based packet level simulator used in [18], config-

ured with TCP and 10Gbps links. We evaluate ECMP and Shortest-

Union(2) routing for the flat topologies and ECMP for leaf-spine.

6 EXPERIMENTAL EVALUATION
6.1 Flow completion times
We compare leaf-spine, DRing and RRG for TMs described in § 5.2.

We scale the TMs so that the network utlization in the spine layer

is 30%. As only a small subset of the racks participate in the rack-

to-rack and C-S traffic patterns, we further scale these TMs down

by a factor = number of racks that send traffic / total racks.

Figure 4 shows the median and 99th percentile FCT. Flat net-

works show a decent improvement with ECMP for uniform and

skewed TMs. However, performance of flat networks with ECMP

for rack-to-rack is poor. We see that the Shortest-Union(2) scheme

is effective at resolving this problem and also yields better perfor-

mance than with ECMP for skewed traffic patterns due to the higher

path diversity. However, since it uses longer paths than ECMP, in

the case of uniform traffic, performance is slightly worse but still

comparable to ECMP. Overall, both DRing and RRG with Shortest-

Union(2) routing outperform leaf-spine networks for skewed traffic

and are comparable for other TMs.

6.2 Throughput in the C-S model
Figure 5 shows the average throughput for a wide range of C-S

model TMs. To measure throughput, all flows were long-running

(similar to the setup in [23]). DRing with ECMP outperforms leaf-

spine significantly for a wide range of scenarios, but is poor at the

lower left of Figure 5(a). DRing with Shortest-Union(2) routing fixes

that problem and also improves gains across other points. Observe

that for skewed TMs (|𝐶 | ≪ |𝑆 | or vice-versa), DRing’s throughput
almost matches the 2× predicted gains, as showed in § 3.1 for flat

networks.

6.3 Effect of scale
As shown in Figure 4, DRing outperforms leaf-spine and even ran-

dom graphs for multiple classes of traffic matrices at small scale.

Figure 6 shows that this is however true only at small scale as

DRing’s performance deteriorates with increasing scale. Along the

x-axis in Figure 6, we add supernodes to obtain a larger topology.

Theoretically, the poor performance of DRing at larger scale is

Session 2: Protocols and Architectures HotNets '20, November 4–6, 2020, Virtual Event, USA

71

20 100 180 260
#servers

20

100

180

260

#
cl

ie
nt

s

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

(a) small values, ECMP

20 100 180 260
#servers

20

100

180

260

#
cl

ie
nt

s

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

(b) small values, shortest-union(2)

200 600 1000 1400
#servers

200

600

1000

1400

#
cl

ie
nt

s

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

(c) large values, ECMP

200 600 1000 1400
#servers

200

600

1000

1400

#
cl

ie
nt

s

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

(d) large values, shortest-union(2)

Figure 5: DRing vs Leaf Spine in the C-S model: Average throughput for small and large values of 𝐶, 𝑆 in the C-S model. Each
entry in the heatmap is the ratio: throughput(DRing)/throughput(leaf-spine) for that particular C-S traffic matrix (𝐶 clients
sending to 𝑆 servers). The DRing topology used in these experiments had 2988 servers and the leaf-spine had 3072 servers.

40 50 60 70 80 90
Racks

0.50

0.75

1.00

1.25

1.50

1.75

2.00

F
C

T
(D

R
in

g)
/F

C
T

(R
R

G
)

Figure 6: Effect of scale: 99%ile FCT of DRing deteriorates
at large scale in comparison to equivalent RRG for uniform
traffic. For DRing, we used 6 switches per supernode with 60
ports per switch, 36 of which were server links. Along the
x-axis, we add supernodes to obtain a larger topology.

expected since its bisection bandwidth is 𝑂 (𝑛) worse than the ex-

pander. However, this effect only shows up at large scale where the

constants don’t matter.

6.4 Key takeaways
• Efficient topologies do exist at small scales. Both RRG and

DRing provide significant improvements over leaf-spine for

many scenarios (Figure 4 and 5).

• There are flat networks (beyond expander graphs) such as

DRing that are worth considering for small- and moderate-

scale DCs. These topologies might not be good at large scale

but can be efficient for small scale.

• The Shortest-Union(2) routing scheme fixes the problems

in using flat networks with ECMP (see 4). Further, Shortest-

Union(2) is completely oblivious and can be implemented

with basic hardware tools.

7 DISCUSSION AND FUTUREWORK
Better small topologies: Performance gains of DRing at small

scale suggests that there are high performance networks beyond

Clos and expanders. Finding the best topology at small scale along

several axes (performance, ease of manageability and wiring, incre-

mental expandability, simple hardware) remains an open question.

Recent work has made efforts at topology design along these axes

for large scale [31] DCs. But as our work shows, small scale offers

new design points that are not feasible at large scale.

Coarse-grained adaptive routing: As shown in Figure 4, flat

networks with ECMP perform poorly for rack-to-rack traffic (be-

cause of lack of path diversity between adjacent racks) but perform

very well for uniform traffic (because of using shorter paths). The

Shortest-Union(2) routing scheme is a good-tradeoff between more

paths and shorter paths. However, it is not consistently better than

ECMP across all traffic patterns. This suggests that an adaptive

routing strategy (e.g. [15, 18]), even at coarse-grained scales based

on DC utilization, can provide a further performance improvement

using flat networks.

Impact of failures: How quickly can routing converge to alterna-

tive paths in the presence of failures in a flat network? What is the

impact of failures on network paths and load balancing? We leave

these questions for future work.

Dynamic Networks based on flat topologies: Several works
have proposed dynamic networks [8, 10, 12, 18–20, 24, 29, 32],

where link connections are configured dynamically based on traffic

load. However, the overhead of reconfiguring links poses a prob-

lem, especially for short flows. Opera [18] attempts to fix that by

adapting a hybrid strategy and imposing transient expander graphs

with the dynamic links while long flows wait for a direct link. Short

flows use whatever paths are available immediately since latency

is critical for short flows. Since DRing (and possibly other flat) net-

works can outperform expanders at smaller scales, it is important

to find how much improvement can be gained by reconfiguring

links to obtain another flat network instead of an expander.

Other static networks: Flat networks like Slim Fly [7] and

Dragonfly [16] which are essentially low-diameter graphs have

been shown to have high performance. We expect them to also

have high performance at small scales but practicality might be

limited since they require non-oblivious routing techniques. We

believe that other tree-based designs such as LEGUP [9], F10 [17]

and BCube [11] will have similar problems as leaf-spine because of

their non-flatness.

8 CONCLUSION
We showed that flat topologies, namely Jellyfish and a new topol-

ogy we presented called DRing, outperform the standard leaf-spine

networks at small scale. Our analysis showed that although DRing’s

performance is poor at large scale, it outperforms state-of-the-art

leaf-spine and even random graphs for multiple TMs at small scale,

thus suggesting that small-scale topology design poses different

challenges than hyperscale. Finally, we presented an oblivious high

performance routing scheme for flat networks that can be imple-

mented with basic tools in current data center switches.

Session 2: Protocols and Architectures HotNets '20, November 4–6, 2020, Virtual Event, USA

72

REFERENCES
[1] Cloud networking scale out - arista. https://www.arista.com/assets/data/pdf/

Whitepapers/Cloud_Networking__Scaling_Out_Data_Center_Networks.pdf.

[2] Github. https://github.com/netarch/expanders-made-practical.

[3] Gns3. https://gns3.com/.

[4] Al-Fares, M., Loukissas, A., and Vahdat, A. A scalable, commodity data center

network architecture. In Proceedings of the ACM SIGCOMM 2008 Conference on
Data Communication (New York, NY, USA, 2008), SIGCOMM ’08, ACM, pp. 63–74.

[5] Alizadeh, M., Edsall, T., Dharmapurikar, S., Vaidyanathan, R., Chu, K.,

Fingerhut, A., Lam, V. T., Matus, F., Pan, R., Yadav, N., and Varghese, G.

Conga: Distributed congestion-aware load balancing for datacenters. SIGCOMM
Comput. Commun. Rev. 44, 4 (Aug. 2014), 503–514.

[6] Alizadeh, M., Kabbani, A., Edsall, T., Prabhakar, B., Vahdat, A., and Yasuda,

M. Less is more: Trading a little bandwidth for ultra-low latency in the data

center. In Presented as part of the 9th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 12) (San Jose, CA, 2012), USENIX, pp. 253–266.

[7] Besta, M., and Hoefler, T. Slim fly: A cost effective low-diameter network

topology. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (Piscataway, NJ, USA, 2014), SC ’14,

IEEE Press, pp. 348–359.

[8] Chen, L., Chen, K., Zhu, Z., Yu, M., Porter, G., Qiao, C., and Zhong, S. Enabling

wide-spread communications on optical fabric with megaswitch. In 14th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 17) (Boston,
MA, 2017), USENIX Association, pp. 577–593.

[9] Curtis, A. R., Keshav, S., and Lopez-Ortiz, A. Legup: Using heterogeneity

to reduce the cost of data center network upgrades. In Proceedings of the 6th
International COnference (NewYork, NY, USA, 2010), Co-NEXT ’10, ACM, pp. 14:1–

14:12.

[10] Farrington, N., Porter, G., Radhakrishnan, S., Bazzaz, H. H., Subramanya,

V., Fainman, Y., Papen, G., and Vahdat, A. Helios: A hybrid electrical/optical

switch architecture formodular data centers. In Proceedings of the ACM SIGCOMM
2010 Conference (New York, NY, USA, 2010), SIGCOMM ’10, ACM, pp. 339–350.

[11] Guo, C., Lu, G., Li, D., Wu, H., Zhang, X., Shi, Y., Tian, C., Zhang, Y., and Lu,

S. Bcube: A high performance, server-centric network architecture for modular

data centers. In Proceedings of the ACM SIGCOMM 2009 Conference on Data
Communication (New York, NY, USA, 2009), SIGCOMM ’09, ACM, pp. 63–74.

[12] Hamedazimi, N., Qazi, Z., Gupta, H., Sekar, V., Das, S. R., Longtin, J. P., Shah,

H., and Tanwer, A. Firefly: A reconfigurable wireless data center fabric using

free-space optics. In Proceedings of the 2014 ACM Conference on SIGCOMM (New

York, NY, USA, 2014), SIGCOMM ’14, ACM, pp. 319–330.

[13] Jyothi, S. A., Singla, A., Godfrey, P. B., and Kolla, A. Measuring and under-

standing throughput of network topologies. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis
(Piscataway, NJ, USA, 2016), SC ’16, IEEE Press, pp. 65:1–65:12.

[14] Kandula, S., Katabi, D., Sinha, S., and Berger, A. Dynamic load balancing

without packet reordering. SIGCOMM Comput. Commun. Rev. 37, 2 (Mar. 2007),

51–62.

[15] Kassing, S., Valadarsky, A., Shahaf, G., Schapira, M., and Singla, A. Beyond

fat-trees without antennae, mirrors, and disco-balls. In Proceedings of the Confer-
ence of the ACM Special Interest Group on Data Communication (New York, NY,

USA, 2017), SIGCOMM ’17, ACM, pp. 281–294.

[16] Kim, J., Dally, W. J., Scott, S., and Abts, D. Technology-driven, highly-scalable

dragonfly topology. In Proceedings of the 35th International Symposium on Com-
puter Architecture (Washington, DC USA, 2008), pp. 77–88.

[17] Liu, V., Halperin, D., Krishnamurthy, A., and Anderson, T. F10: A fault-

tolerant engineered network. In Proceedings of the 10th USENIX Conference on

Networked Systems Design and Implementation (Berkeley, CA, USA, 2013), nsdi’13,
USENIX Association, pp. 399–412.

[18] Mellette, W. M., Das, R., Guo, Y., McGuinness, R., Snoeren, A. C., and Porter,

G. Expanding across time to deliver bandwidth efficiency and low latency. In

17th USENIX Symposium on Networked Systems Design and Implementation (NSDI
20) (Santa Clara, CA, Feb. 2020), USENIX Association, pp. 1–18.

[19] Mellette, W. M., McGuinness, R., Roy, A., Forencich, A., Papen, G., Snoeren,

A. C., and Porter, G. Rotornet: A scalable, low-complexity, optical datacenter

network. In Proceedings of the Conference of the ACM Special Interest Group on
Data Communication (New York, NY, USA, 2017), SIGCOMM ’17, Association for

Computing Machinery, p. 267–280.

[20] Porter, G., Strong, R., Farrington, N., Forencich, A., Chen-Sun, P., Rosing,

T., Fainman, Y., Papen, G., and Vahdat, A. Integrating microsecond circuit

switching into the data center. SIGCOMM Comput. Commun. Rev. 43, 4 (Aug.

2013), 447–458.

[21] Roy, A., Zeng, H., Bagga, J., Porter, G., and Snoeren, A. C. Inside the social

network’s (datacenter) network. In Proceedings of the 2015 ACM Conference
on Special Interest Group on Data Communication (New York, NY, USA, 2015),

SIGCOMM ’15, ACM, pp. 123–137.

[22] Singla, A., Godfrey, P. B., and Kolla, A. High throughput data center topology

design. In 11th USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI 14) (Seattle, WA, 2014), USENIX Association, pp. 29–41.

[23] Singla, A., Hong, C.-Y., Popa, L., and Godfrey, P. B. Jellyfish: Networking data

centers randomly. In Proceedings of the 9th USENIX Conference on Networked
Systems Design and Implementation (Berkeley, CA, USA, 2012), NSDI’12, USENIX

Association, pp. 17–17.

[24] Singla, A., Singh, A., and Chen, Y. OSA: An optical switching architecture for

data center networks with unprecedented flexibility. In Presented as part of the
9th USENIX Symposium on Networked Systems Design and Implementation (NSDI
12) (San Jose, CA, 2012), USENIX, pp. 239–252.

[25] Sinha, S., Kandula, S., and Katabi, D. Harnessing TCPs Burstiness using

Flowlet Switching. In 3rd ACM SIGCOMMWorkshop on Hot Topics in Networks
(HotNets) (San Diego, CA, November 2004).

[26] Uptime Institute. 2019 data center industry survey results. https://

uptimeinstitute.com/2019-data-center-industry-survey-results, 2019.

[27] Valadarsky, A., Shahaf, G., Dinitz, M., and Schapira, M. Xpander: Towards

optimal-performance datacenters. In Proceedings of the 12th International on
Conference on Emerging Networking EXperiments and Technologies (New York,

NY, USA, 2016), CoNEXT ’16, ACM, pp. 205–219.

[28] Wadhwani, P., and Gankar, S. Edge data center market report. https://www.

gminsights.com/industry-analysis/edge-data-center-market, October 2019.

[29] Wang, G., Andersen, D. G., Kaminsky, M., Papagiannaki, K., Ng, T. E., Kozuch,

M., and Ryan, M. c-through: part-time optics in data centers. SIGCOMM Comput.
Commun. Rev. 41, 4 (Aug. 2010), –.

[30] Wischik, D., Raiciu, C., Greenhalgh, A., and Handley, M. Design, implemen-

tation and evaluation of congestion control for multipath tcp. In Proceedings
of the 8th USENIX Conference on Networked Systems Design and Implementation
(Berkeley, CA, USA, 2011), NSDI’11, USENIX Association, pp. 99–112.

[31] Zhang, M., Mysore, R. N., Supittayapornpong, S., and Govindan, R. Under-

standing lifecycle management complexity of datacenter topologies. In 16th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 19)
(Boston, MA, Feb. 2019), USENIX Association, pp. 235–254.

[32] Zhou, X., Zhang, Z., Zhu, Y., Li, Y., Kumar, S., Vahdat, A., Zhao, B. Y., and

Zheng, H. Mirror mirror on the ceiling: Flexible wireless links for data centers. In

Proceedings of the ACM SIGCOMM 2012 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communication (New York, NY, USA,

2012), SIGCOMM ’12, ACM, pp. 443–454.

Session 2: Protocols and Architectures HotNets '20, November 4–6, 2020, Virtual Event, USA

73

https://www.arista.com/assets/data/pdf/Whitepapers/Cloud_Networking__Scaling_Out_Data_Center_Networks.pdf
https://www.arista.com/assets/data/pdf/Whitepapers/Cloud_Networking__Scaling_Out_Data_Center_Networks.pdf
https://github.com/netarch/expanders-made-practical
https://gns3.com/
https://uptimeinstitute.com/2019-data-center-industry-survey-results
https://uptimeinstitute.com/2019-data-center-industry-survey-results
https://www.gminsights.com/industry-analysis/edge-data-center-market
https://www.gminsights.com/industry-analysis/edge-data-center-market

	Abstract
	1 Introduction
	2 Background
	3 Topology design
	3.1 Quantifying benefit of flatness
	3.2 A simple flat topology

	4 Routing design
	5 Experimental Setup
	5.1 Topologies
	5.2 Traffic workload
	5.3 Simulation setup

	6 Experimental Evaluation
	6.1 Flow completion times
	6.2 Throughput in the C-S model
	6.3 Effect of scale
	6.4 Key takeaways

	7 Discussion and future work
	8 Conclusion
	References

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.268 x 11.693 inches / 210.0 x 297.0 mm
 Shift: move up by 3.60 points
 Normalise (advanced option): 'original'

 32

 D:20201016104519
 841.8898
 a4
 Blank
 595.2756

 Tall
 1
 0
 No
 474
 343

 Fixed
 Up
 3.6000
 0.0000

 Both
 4
 AllDoc
 4

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 0
 7
 6
 7

 1

 HistoryList_V1
 qi2base

