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ABSTRACT
Multipath transport, as embodied in MPTCP, is deployed to improve
throughput and reliability in mobile and residential access networks,
with additional use-cases including spreading load in data centers
and WANs. However, MPTCP is fundamentally tied to TCP Reno’s
legacy AIMD algorithm, and significantly lags behind the perfor-
mance of modern single-path designs. Consequently, MPTCP fails
to achieve high performance in many real-world environments.

We present MPCC, a high-performance multipath congestion
control architecture. To achieve our combined goals of fairness and
high performance in challenging environments, MPCC employs
online convex optimization (a.k.a. online learning). In experiments
with a kernel implementation on emulated and live networks, MPCC
significantly outperforms MPTCP.
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1 INTRODUCTION
Multipath transport takes advantage of Internet path diversity by
spreading traffic across multiple subflows for a single connection.
Multipath TCP (MPTCP) [21], the principal embodiment of multi-
path transport, is the subject of numerous academic studies [11, 12,
16, 24, 29, 43–45, 47], and has also seen real-world adoption [31].

A central use case for multipath transport, and MPTCP specifi-
cally, is improving access throughput and reliability of devices (e.g.,
smartphones and tablets) using both WiFi and 4G/5G cellular in-
terfaces by spreading traffic over the two network interfaces. Our
experiments with MPTCP in emulated and live networks, however,
reveal that in this scenario, which constitutes a primary motivation
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for MPTCP, and many others, MPTCP often exhibits bad perfor-
mance. This is not surprising; the leading MPTCP variants [38, 51]
are all extensions of a three-decades old congestion control scheme,
namely, single-path TCP Reno, and consequently, inherit TCP’s
well-documented performance issues, including inability to adapt
gracefully to changing network conditions, bad reaction to non-
congestion loss, bufferbloat, RTT unfairness, and more [7, 13, 15].

Multipath congestion control is challenging. As in the single-path
case, multipath congestion control must adjust sending rates in re-
sponse to the prevailing network conditions. However, a multipath
controller need also decide how to apportion its traffic among multi-
ple paths to alleviate congestion. Furthermore, subflows belonging
to the same transport-layer connection might compete with each
other on different subsets of bottleneck links, rendering the con-
gestion control challenge even more complex. Recent years have
seen a surge of interest in novel approaches to high-performance
congestion control [5, 10, 17, 18, 34], motivated by TCP’s poor
performance [17] and applications’ ever-growing demands. Lately,
researchers have also started investigating the applicability of these
approaches to multipath congestion control [19, 26, 27, 42, 60, 61].

High-performance multipath transport design is more difficult
than might first appear. First, simply running state-of-the-art single-
path congestion control (e.g., PCC [17, 18], BBR [10], or Copa [5])
on each subflow fails to achieve fairness across competing single-
path and multipath flows. Second, applying MPTCP’s innovations
to recent single-path protocols is nontrivial as MPTCP’s design is
closely tied to its congestion-window-based AIMD mechanism. We
revisit MPTCP from an online learning (also termed online opti-
mization [28]) perspective, which was recently applied to single-path
congestion control [17, 18, 55]. This approach, termed Performance-
oriented Congestion Control (PCC) in [17, 18], is compelling be-
cause it minimizes a priori assumptions about the network and has
been shown to robustly provide high performance across many chal-
lenging environments [17, 18]. We present a multipath extension of
PCC called Multipath PCC (MPCC).

An MPCC connection repeatedly selects a multidimensional real-
valued vector specifying its per-subflow rates. The implications for
performance of sending at a combination of per-subflow rates are
quantified by a utility function, which aggregates the contribution
of the individual subflows to an overall performance score. The
connection’s choice of per-subflow rates, as a function of its past
choices and derived utility values, is prescribed by an online learning
algorithm with provable guarantees.

In tackling the challenge of meeting our goals for high-performance
and fair multipath transport, we find that conventional approaches
from online learning theory fail. To address this, we present a de-
sign that enables each of a connection’s subflows to selfishly and
asynchronously optimize a local, subflow-specific utility function.
We prove that these local utility functions are sufficiently correlated
across a connection’s subflows to guarantee desired global outcomes.
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In summary, our key contributions are:

• We leverage insights from online-learning to design MPCC,
a high-performance multipath transport;

• We present theoretical analyses of MPCC establishing its
convergence and fairness;

• We implement MPCC in the Linux kernel with sender-
side changes only (the receiver-end remains legacy MPTCP),
and we release our code as open source;

• We evaluate MPCC through extensive simulations and
experiments on a network emulator. Our results show that
MPCC can achieve high link utilization even with 25% the
buffer size needed for MPTCP, MPCC achieves significantly
higher utilization than MPTCP on links with random losses,
can reduce self-induced latency by over 30%, and more
closely tracks the optimum sending rate under variable net-
work conditions;

• We evaluate MPCC through live experiments on the In-
ternet. Our results show that MPCC provides an improve-
ment (both in the mean and the median) of around 1.6× in
terms of file download speed over MPTCP, with a speedup of
up to 25× in some cases.

2 BACKGROUND AND GOALS
Single-path congestion control (e.g., TCP, BBR [10], PCC Vivace [17,
18], and Copa [5]) does not take advantage of multiple network inter-
faces and path redundancy. Multipath congestion control can achieve
higher bandwidth by utilizing multiple paths, suffer lower loss and la-
tency by shifting traffic to less congested paths, and be more resilient
to failures by shifting traffic away from inactive paths.

Multipath congestion control must achieve three objectives [58]:
(1) improve throughput; a multipath flow should provide at least as
much throughput in aggregate as the best single-path transport on
any of its paths, (2) utilize the network efficiently by shifting traffic
away from congested paths, and (3) be no more aggressive than a
single-path flow when several of its subflows share a bottleneck link.

Multipath TCP (MPTCP) [8, 58] extends TCP by introducing
changes to connection setup and management to enable multiple
subflows to utilize different network interfaces/paths. MPTCP also
extends TCP to pace the sending rates of the individual subflows via
per-subflow congestion windows [14].

Using a single-path congestion controller independently for each
subflow would induce overly aggressive behavior when several of a
connection’s subflows traverse the same bottleneck, violating objec-
tive (3). Instead, MPTCP takes into account the rates of all subflows
when changing the rate of a specific subflow. Specifically, as with
single-path TCP Reno, an MPTCP subflow’s window grows when
a packet acknowledgement (ACK) is received, and is halved in the
event of packet loss. The key difference is that instead of growing at
a rate of one packet (MSS) per RTT, the pace at which each subflow’s
congestion window grows depends on the sum of all subflows’ con-
gestion windows [58]. This “coupling” between subflows ensures
that MPTCP achieves its goals (see above) [22].

Four instantiations of MPTCP are implemented in the Linux ker-
nel [13, 20, 25, 30, 36, 52, 58]. All are based on TCP and so share its
many deficiencies. Indeed, evaluations of MPTCP variants [13–15]

reveal rate-instability and unfairness, inefficient network utilization,
and sometimes even worse performance than (single-path) TCP. Our
aim is to satisfy the requirements from multipath congestion control
within a design that addresses these issues.

3 MPCC OVERVIEW AND CHALLENGES
We next provide background on single-path online-learning transport
and then present and discuss online-learning multipath transport.

3.1 Online-Learning Single-Path Transport
Online learning provides a powerful abstraction for reasoning about
decision making under uncertainty. At time step t = 1, 2, . . ., a
decision maker selects a strategy st from a fixed set S . The impli-
cations of this choice are revealed after the fact, in the form of a
utility value ut . A rich body of literature in game theory and ML
focuses on the design of algorithms that provably provide two types
of guarantees: (1) local performance guarantees for the decision
maker that hold even when the environment is adversarial (“regret
minimization”), and (2) global desiderata such as quick convergence
to an equilibrium when multiple decision makers interact [28, 62].

Performance-oriented Congestion Control (PCC) employs online
learning [17, 18]. In PCC, time is divided into consecutive monitor
intervals (MIs). In each MI t , the traffic sender (the decision maker)
sends at a constant rate rt (its strategy) and awaits feedback from the
receiver in the form of selective acknowledgements [18] (SACKs).
SACKs are used to compute statistics such as the goodput, loss rate,
and latency, which, in turn, are aggregated into a utility value ut
reflecting the sender’s local performance metric. The sender employs
an online learning algorithm to adapt its rate in the direction, and to
the extent, that is associated with higher performance.

The most recent manifestation of this approach, PCC Vivace [18],
employs provably optimal (in the regret minimization sense) gradient-
ascent-based optimization for this purpose. PCC protocols have been
shown to significantly outperform TCP [17, 18]. Are similar perfor-
mance gains over MPTCP achievable?

3.2 Online-Learning Multipath Transport
As in single-path PCC, in MPCC, the sender repeatedly selects
sending rates, only now its choice of sending rates (strategy) is a
multidimensional vector of real values ®r = (r1, . . . , rd ) such that
each value ri represents the sending rate of the i’th of its d subflows.
We let MPCCd denote an MPCC connection with d subflows. The
sending rates are constantly adjusted to optimize the sender’s utility,
which is derived from the performance of the different subflows.

Extending PCC’s online learning scheme to the multipath context
faces two nontrivial challenges, as discussed next.

Challenge I: What utility functions induce global stability, fair-
ness, and efficiency? A utility function should capture the connec-
tion’s performance objectives, but also guarantee convergence of
competing MPCC connections to an efficient and fair outcome.

Challenge II: How should per-subflow rates be selected? Stan-
dard online-learning approaches fail. As we will show, apply-
ing standard approaches from online learning theory to adapt per-
subflow sending rates yields undesirable effects, such as slowing
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down the frequency of rate selection at all subflows to that of the
subflow with the longest RTT.

In our solution, each individual subflow optimizes a subflow-
specific utility function. These are loosely coupled, in that subflows
can adjust rates independently and asynchronously, yet are also suf-
ficiently interrelated to guarantee that their (asynchronous) joint
optimization induces desirable global outcomes. The decomposition
of connection-level optimization into individual subflow-level opti-
mizations draws inspiration from the literature on Network Utility
Maximization (NUM) (see, e.g., [37, 48]).

4 FAILED TRY: CONNECTION-LEVEL
RATE-CONTROL

Before delving into MPCC’s design we first describe our first, failed
attempt at online learning multipath transport. Examining this first
design, which reflects a more obvious online learning approach,
and the reasons for its inadequacy, is conducive for articulating our
objectives and the challenges. In addition, our theoretical analysis of
MPCC (in Section 5) builds on that presented below (in Section 4.1).

4.1 Connection-Level Utility Function
We define the following connection-level utility function, which
consists of three components: a reward for throughput and penalties
for loss and packet-delay.

Consider an multipath connection with d subflows (denoted by
[d] = {1, . . . ,d}) that sends at rate x j on subflow j ∈ [d]. Let
X = (x1, . . . ,xd ) denote the vector of sending rates on all d subflows.
Let the loss rate experienced by subflow j be denoted by Lj ∈ [0, 1]
and let the “latency gradient” [18] of subflow j, i.e., the slope of
the increase in latency in the course of the monitor interval (MI) be
denoted by d (RTTj )

dT .
Intuitively, multipath transport should divert traffic from worse

paths (paths with higher losses/delays) to better paths. This is achieved
in our formulation by penalizing the connection according to the
worst combination of loss and latency gradient across all of its
subflows. The connection-level utility function U is defined as

U = (Σj ∈[d ]x j )α − (Σj ∈[d ]x j )
(
max
j ∈[d ]

(βLj + γ
d(RTTj )

dT
)
)
, (1)

where 0 ≤ α < 1, β > 3 and γ ≥ 0. The above upper and lower
bounds on α , β , and γ are needed to establish the correctness of our
formal arguments below using our proof techniques. We leave the
investigation of to what extent these can be relaxed to future research.
Our theoretical results are proved for universal assignments of α , β ,
and γ .

This connection-level utility function provides a configurable way
(through α , β , and γ ) to balance different performance objectives.

Remark: When the number of subflows is 1 (d = 1), the connection-
level utility function coincides with PCC Vivace’s utility function [18].

4.2 Induced Network Utilization and Fairness
MPTCP theory does not mandate a specific notion of fairness. How-
ever, when several connections compete over the exact same set of
links, any reasonable notion of fairness should stipulate that they

should be allocated the same bandwidth. This is termed “resource
pooling”.

Parallel-(bottleneck)-link networks. When interaction between
connections is more intricate, the desired outcome is no longer obvi-
ous. To guide our investigation of how network capacity is shared
by multipath connections, we focus below on the class of parallel(-
bottleneck)-link networks, which contains many classical topologies
from MPTCP literature (see Section 7). We leave the analysis of
other classes of networks for future research.

In a parallel-link network two vertices are connected by multiple
(parallel) edges (links), and different multipath (and single path) con-
nections use different subsets of these links. The parallel links model
bottleneck links on which different subsets of connections compete
(with other links on the connections’ paths not being the bottleneck).
We make no restrictions on the number of connections, the number
of subflows per connection (which can vary across connections), the
subset of links used by each connection, and link capacities.

We show that, for this class of networks, our connection-level
utility function induces equilibria that are fair in the classical (lexi-
cographic) max-min fairness [6, 40, 46, 49, 50] sense.

Consider the example 3 parallel links network in Fig. 1a, in which
a multipath connection with a single subflow (MPCC1, which is
equivalent to PCC Vivace) is competing with another multipath
connection with 3 subflows (MPCC3) on a single link, and the lat-
ter has also two links to itself. All links have capacity 100Mbps.
Network capacity can be divided between the two connections in
multiple ways (e.g., the 1-subflow MPCC sending at 50Mbps and
the 3-subflow MPCC utilizing the rest of the network bandwidth).

Max-min fairness (MMF). MMF captures the desideratum that
the bandwidth share assigned to the connection that is worst off be
maximized. See [50] for a formal definition. Clearly, the 1-subflow
MPCC connection can never be assigned more than the capacity
of a single link (100Mbps). Thus, any global bandwidth allocation
in which each of the MPCC senders sends at least at 100Mbps is
MMF. This, however, includes the bandwidth allocation in Figure 1b,
which is clearly suboptimal. To remedy this, the stronger notion of
lexicographic max-min fairness (LMMF) [50] is considered.

Lexicographic max-min fairness (LMMF). Under LMMF, sub-
ject to maximizing the bandwidth assigned to the worst-off connec-
tion, the bandwidth assigned to the second-to-worst connection is
also maximized, and so on. Let us revisit Fig. 1. In both the band-
width allocation in Fig. 1b and the bandwidth allocation in Fig. 1c,
the worst-off connection (the 1-subflow MPCC) sends at 100Mbps.
Hence, both allocations are max-min fair. However, the bandwidth
allocation of Fig. 1c also maximizes the assigned bandwidth of the
second-to-worst connection (the 3-subflows MPCC, which is as-
signed 200Mbps, as opposed to 100 Mbps) and is hence LMMF.
See [50] for a formal definition of LMMF.

The connection-level utility function induces LMMF equilibria.
Consider homogeneous multipath connections interacting on a parallel-
link network. We consider the equilibria in this setting, i.e., the
global rate configurations such that no connection can improve its
local (connection-level) utility by unilaterally changing its choice of
per-subflow rates. We prove the following theorem.
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(a) Three parallel-links topology (b) Max-min fairness (c) Lexicograpic max-min fairness
Figure 1: Fairness in a three parallel-links network topology

THEOREM 4.1. In a parallel-link network, for any choice of num-
ber of multipath connections n, number of linksm, link capacities,
number of subflows di per each connection i, and assignment of
subflows to links, any equilibrium is LMMF.

See Appendix A for a sketch of the proof of Theorem 4.1.

4.3 Connection-Level Rate Selection
To select combinations of rates for its subflows, the connection can
simply apply gradient ascent to its utility function, as follows. Time
is divided into monitor intervals (MIs). In the beginning of each MI,
the connection selects a combination of per subflow sending rates
(x1, . . . ,xd ). The duration of an MI is set to be “sufficiently long”
to collect statistics (throughput, latency gradient, loss rate) for each
of the subflows. These statistics are then aggregated into a utility
value as explained in Section 4.1. The choice of next rate for each
subflow is guided by the (multi-dimensional) gradient of the utility
function for the current rates, which informs the direction and extent
to which the rate of each subflow should be adapted.

Such gradient ascent, for our choice of utility functions, induces
the desirable local guarantees (regret minimization) and global guar-
antees (convergence to LMMF equilibria). However, our evaluation
of this scheme revealed three significant deficiencies.

Obstacle I: Efficiently estimating the multidimensional gradi-
ent. Since different subflows of the same connection might share
bottleneck links, probing rates for different subflows in parallel
comes at the risk of very noisy estimations (as these potentially
interfere with each other). Doing so sequentially, however, means
spending too much time exploring rates. While theory-informed so-
lutions are applicable, our experiments indicate that a good balance
between good gradient estimation and fast reaction speed is elusive.

Obstacle II: Slow reaction. Requiring that an MI be sufficiently
long to gather statistics for all of the subflows implies that MIs are
at the timescale of the slowest RTT across all subflows.

Obstacle III: Wrong reaction. Since the connection-level utility
penalizes loss and latency according the worst-case performance
across all subflows, even if a subflow i is not experiencing high loss
or delays, if another subflow j is experiencing excessive loss/delay,
gradient ascent might prescribe that i not increase its sending rate
(and even decrease it). While these effects are transient, in the sense
that convergence to the “right” equilibrium is guaranteed, connec-
tions might exhibit erratic behavior during the convergence process.

5 MPCC DESIGN
MPCC’s rate-control enables each subflow to independently and
asynchronously optimize a local utility function, yet couples these
subflow-specific optimizations in a manner that guarantees local and
global desiderata. We next explain how this is accomplished

5.1 MPCC’s Per-Subflow Utility Functions
Consider a specific connection i, and fix the sending rates of all
subflows but subflow j, with cik denoting the sending rate of subflow
k , j (viewed as a constant). The utility function of subflow j, U (j),
as a function of subflow j’s sending rate xi j , is as follows:

U
(j)
i = (Σk,j ∈[di ]cik + xi j )

α − β(Σk,j ∈[di ]cik + xi j ) · Lj

− γ (Σk,j ∈[di ]cik + xi j ) · (
d(RTTj )

dT
) (2)

where Lj and and d (RTTj )
dT denote the loss rate and latency gradi-

ent [18] experienced by subflow j, respectively, 0 ≤ α < 1, β > 3
and γ ≥ 0.

Subflow j’s decisions depend only on its locally-perceived sta-
tistics. Optimizing the subflow-specific utility function does not
involve learning the loss rates and latency gradients experienced by
other subflows. The only information about other subflows required
to compute subflow j’s utility is their sending rates. Hence, short-
RTT subflows need not wait for statistics resulting from the choices
of rates of long-RTT subflows before adapting their rates, and so the
MIs of different subflows need no longer be synchronized.

We prove that decentralizing optimization across subflows in the
above described manner still yields desirable global outcomes.

THEOREM 5.1. In a parallel-link network, for any choice of
number of MPCC connections n, number of links m, link capacities,
number of subflows di per each connection i, and assignment of
subflows to links, any equilibrium induced by the MPCC per-subflow
utility function in (2) is LMMF.

A proof sketch for Theorem 5.1 appears in Appendix B.

5.2 MPCC’s Per-Subflow Rate Control
In the beginning of each monitor interval, the subflow selects a send-
ing rate for that MI. The MI is in the order of the RTT experienced
by the subflow. When the MI is concluded and statistics about the
performance of the subflow in that MI are gathered, the subflow’s
utility function is applied to compute the utility value correspond-
ing to that MI. The subflow transitions between three states: (1)
slow-start, (2) probing, and (3) moving.

Slow-start. In this phase, the subflow’s sending rate is doubled
in every MI until its utility decreases for the first time. Then, the
subflow reverts to the previous sending rate and begins probing.

Probing. The goal of this state is to determine whether the sending
rate should be increased or decreased, and to what extent. To this end,
the gradient of the subflow-specific utility function at the current
sending rate r is evaluated by testing a higher rate r + ω and a
lower rate r − ω. ω is not set to be a fraction of r , e.g., 1% of
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r , but of the connection’s total sending rate (sum of all subflows’
sending rates). This is because the former can empirically result
in inaccurate gradient estimations and, as a consequence, “getting
stuck” at suboptimal global outcomes. Once the direction in which
the rate should be adapted is decided, the moving phase starts.

Moving. In this phase, the subflow continuously adjusts its sending
rate in the determined direction. The increase/decrease step size
is determined based on the gradient of the utility function, which
is inferred from the rates and corresponding utility values in the
preceding two MIs. To speed up the subflow’s rate adaptation, we in-
corporate mechanisms from PCC Vivace, namely, the rate amplifier,
change bound (also expressed in terms of a fraction of the connec-
tion’s total sending rate), and swing buffer. See [18] for details.

A subflow leaves the moving phase and re-enters the probing state
when its utility function decreases for the first time.

Remark: rate-publication points. Computing the utility value of
a subflow requires knowing the sending rates of the other subflows.
To this end, each subflow “publishes”, at the beginning of each MI,
its chosen sending rate, making it available to the other subflows.
The subflow treats the other subflows’ published rates, as fed into
a subflow’s utility function, as constant throughout the gradient
estimation (even if these were updated during its gradient estimation).
This is to avoid the subflow rate-increase/decrease decisions being
affected by changes in its utility that do not pertain to the subflow’s
own performance but to changes in the rates of others.

To illustrate MPCC’s convergence, consider a variant of the
topology in Figure 1 with only two parallel links, each of capacity
100Mbps. One MPCC connection, MPCC2 uses both links, and is
competing with a PCC (single-path MPCC) connection MPCC1 on
one of its links. As discussed in Section 4.2, in the LMMF outcome,
each connection should fully utilize a different link. We plot the
convergence process for the subflows on the shared link in Figure 2.
The x axis is the rate of the subflow of MPCC2, and the y axis is the
rate of the PCC connection. The graph shows for each point (x ,y)
the gradient of the per-subflow utility functions on that link.

When the total sending rate on the shared link is below its capac-
ity, both connections increase their rates according to their gradients.
The MPCC connection derives less utility from additional bandwidth
since it already has 100Mbps from its other subflow. Thus, PCC has
a higher derivative and so increases its rate more rapidly. When the
total sending rate on the shared link exceeds the link capacity, both
connections reduce their sending rates (i.e., have negative deriva-
tives). MPCC, which loses less in terms of utility when decreasing
its rate, reduces its subflow’s sending rate more quickly than PCC
(see the diagonal downward arrows in Figure 2). In the equilibrium,
marked by the red dot, PCC fully utilizes the link.

We prove that, as illustrated above, MPCC is guaranteed to con-
verge to LMMF equilibria on parallel-link networks.

THEOREM 5.2. In a parallel-links network, for any choice of
number of MPCC connections n, number of links m, link capacities,
number of subflows di per each connection i, and assignment of
subflows to links, with utility function as in (2), MPCC converges to
a LMMF global rate-configuration.

See Appendix C for a sketch of the proof of Theorem 5.2.

Figure 2: MPCC’s and PCC’s utility derivative convergence on a
shared link

6 IMPLEMENTATION
Our kernel implementation of MPCC involves two important changes
to the MPTCP sender: (1) an MPCC congestion control kernel mod-
ule, and (2) a scheduler for pacing-based multipath transport.

No changes to the MPTCP receiver. MPCC uses SACK feedback
from standard MPTCP receivers.

The MPTCP scheduler. The MPTCP scheduler is responsible for
choosing which packets are transmitted on each of the connection’s
subflows. The scheduler is primarily intended for scenarios in which
the connection is application-limited. The default MPTCP sched-
uler [1] sticks with the subflow with the lowest RTT until its con-
gestion window is exceeded. When a connection continuously sends
traffic (that is, is not application-limited), the subflows become ACK-
clocked; once an ACK is received, a new packet is sent.

The MPTCP scheduler is incompatible with rate-based (pacing-
based) congestion control. While the MPTCP scheduler is suitable
for window-based protocols, we find that it is ill suited for rate-based
protocols (like PCC and BBR), in which the congestion controller
sets explicit rates. In PCC Vivace [18], for instance, the window is
deliberately set to be high and is not expected to be exceeded unless
something unexpected occurs. This implies that if (single path) PCC
Vivace is employed for adapting rates for each of the subflows, all
packets will be assigned by the default scheduler to the lowest-RTT
subflow (since the condition pertaining to the window will never be
met). This can, of course, result in other subflows sending at low
rates, or not at all, and so in low utilization of network capacity.

A scheduler for rate-based multipath congestion control. To ac-
commodate rate-based multipath congestion control, we changed
the default MPTCP scheduler as follows: a subflow is marked as
unavailable for sending when the subflow has at least 10% of the
packets required to maintain the current sending rate for the dura-
tion of an RTT already queued for sending. The choice of 10% was
guided by an empirical investigation. When the threshold is set to be
high, a subflow will be deemed available even if many packets are
queued for sending on that subflow. This will lead MPCC to assign
too much weight to low-RTT subflows, wasting available capacity
on other subflows. If, in contrast, the threshold is set to be too low,
subflows will become unavailable even when very few packets are
scheduled for sending on these subflows, leading to packets being
sprayed on subflows uniformly, which is undesirable for short-lived
flows. Our experiments with pacing-based protocols suggests that
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(a) Multipath connection vs. single path con-
nection (”single link MP-SP”).

(b) One Multipath connection. (c) Multipath connection vs. single-path
connection (”two links MP-SP”).

(d) Multipath connection vs. two single-path con-
nections (”two links MP-SP-SP”).

(e) Two Multipath connections.

Figure 3: Evaluated 1- and 2-link networks. Default link latencies, bandwidths, and buffer sizes are 30ms, 100Mbps and 375KB (the
BDP), respectively

setting the threshold to be 10% strikes a reasonable balance between
these two extremes. We ran experiments on the Emulab network
emulator [56] to verify that the above changes to the scheduler in-
deed yield high bandwidth utilization. In experiments with a single
multipath connection sending traffic across two parallel 100 Mbps
links using single-path BBR to adjust rate for each subflow, the
goodput increased from 148.2 Mbps (with the default scheduler) to
179.4 Mbps.

Open-sourced MPCC and scheduler kernel modules. To evalu-
ate MPCC, we have implemented it and our scheduler as MPTCP
Linux kernel modules. Our kernel implementation extends the PCC
Vivace kernel module [33] to incorporate the capabilities discussed
in Section 5.2, including specifying per-subflow utility functions,
realizing rate-publication points, and implementing probing and
change bounds that are a fraction of the sum of all subflows’ sending
rates. The code for our kernel modules is available at [2].

7 EVALUATION
7.1 Evaluation Framework
MPTCP variants. We compare MPCC to the MPTCP variants im-
plemented in the Linux kernel— Lia [51], Olia [38, 39], Balia [48,
54], and wVegas [9]—and to using single path congestion control
(namely, Reno [20], Cubic [23], and BBR [10]) for each subflow.

Two MPCC utility functions. We evaluate MPCC for two different
choices of utility functions: one with the penalty for latency increase
set to 0, which we term MPCC-loss, and one with non-zero penalty,
which we term MPCC-latency. Specifically the parameters in the
utility function for both MPCC-loss and MPCC-latency are α = 0.9
and β = 11.35. γ is set to be 0 and 1 for MPCC-loss and MPCC-
latency, respectively. These specific parameters are chosen so that
MPCC1 match the specification of PCC Vivace evaluated in [18].

Emulations and live experiments. We used Emulab [56] to emu-
late different networks. We also ran live experiments on the Internet
by downloading files from different locations in the cloud to devices
with Wifi and cellular interfaces in residential networks. We use
MPTCP kernel version 0.95 in our experiments for all of the send-
ing/receiving nodes. Our Emulab experiments used Ubuntu 16.04
running on d710/d430 machines. We used bridge nodes with ipfw to
control the link properties.

Schedulers. In our experiments, our scheduler (in Section 6) is used
for rate-based schemes (including MPCC) and the default scheduler
is used for window-based schemes (all MPTCP variants).

OS settings. To avoid flow control issues, we set the buffers at
the sender and receiver to be 300MB. We also disable the MPTCP
checksum calculation in our experimental setup to reduce the per-
packet computational overhead.

7.2 Emulab Experiments
Considered network topologies: parallel and non-parallel-link
networks. Fig. 3 presents 5 parallel-link networks emulated in our
experiments. Fig. 4 presents two considered non-parallel-link net-
works from prior studies of multipath congstion control, namely,
the “OLIA Topology” [38] and “LIA Topology” [58]. Unless stated
otherwise all link latencies, bandwidths, and buffer sizes are 30ms,
100Mbps and 375KB (the Bandwidth-Delay Product), respectively.

7.2.1 Better performance for shallow buffers. Fig. 5a plots the
average goodput of the single multipath connection in Fig. 3b in 5,
200 second long iperf3 [3] runs, with the first 30 seconds omitted
to allow for convergence to steady-state. The buffer size of link 2 is
set to be the BDP, i.e., 375KB, and the buffer size of link 1 is varied
within the range [3, 375] KB. MPCC achieves high utilization even
with buffer size as low as 9KB. Lia, Olia and Balia require about
60KB to reach the same level of network utilization. wVegas fails to
utilize the link well across the entire range of buffer sizes.

We repeat the above experiment, only now the multipath sender
competes with a single path sender (i.e., PCC Vivace for MPCC
and TCP Reno for MPTCP) on link 2, as described in Fig. 3c. We
hypothesize that when a multipath protocol fails to utilize link 1
well, this will result in it being more aggressive on link 2 and,
consequently, the single path connection achieving lower goodput.
Fig. 5b plots the throughput of the single path connection (on link
2). For all MPTCP variants, with the exception of wVegas (which
achieves very low throughput in general), the goodput of the single
path TCP connection drops when the size of the buffer on the other
link (link 1) gets too small. Observe also that even when the average
network utilization of an MPTCP variant, as plotted in Fig. 3b,
matches that of MPCC, MPTCP is still less fair.

7.2.2 Higher resilience to non-congestion loss. Congestion con-
trol protocols sometimes experience loss that is not derived from
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(a) The ”OLIA Topology” from [38].
(b) Three links topology with three Multipath connections (the ”LIA Topol-
ogy” from [58]).

Figure 4: Evaluated non-parallel topologies. Default link latencies, bandwidths, and buffer sizes are 30ms, 100Mbps and 375KB (the
BDP), respectively.
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(a) Multipath connection’s throughput in network 3b
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(b) Single path connection’s throughput in network 3c
Figure 5: Network utilization with shallow buffers (log scale). Error bars show the minimum and maximum recorded over 5 experi-
ments.
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(a) Multipath connection’s throughput in network 3b
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(b) Single-path connection’s throughput in network 3c

Figure 6: Throughput of multipath and single path senders in the presence of random loss (log scale). Error bars show the minimum
and maximum recorded over 5 experiments.
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Figure 7: The throughput of a multipath connection’s subflow on link
1 in the network in Fig. 3c under changing network conditions. The
dashed black line is the optimal throughput.
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Figure 8: The throughput of a single path connection in the network
in Fig. 3c. The dashed black line represents its fair (in the LMMF sense)
share over time.
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Figure 9: MPCC maintains lower self-induced latency as the bottle-
neck link’s buffer size increases. Error bars indicate the standard devi-
ation of the average latency.

congestion (e.g., due to handover between mobile base stations,
physical layer corruption, routing changes, and more). To capture
the resilience of different multipath protocols to non-congestion loss,
we present the results of an experiment similar to that described
in Section 7.2.1, only now instead of varying the buffer size, we
introduce random loss on link 1. As shown in Fig. 6a, Lia, Olia,
and Balia, which react to packet loss by multiplicatively decreasing
the congestion window (similarly to TCP Reno) underutilize the
network even for loss rate as low as 0.001%, dropping below 80%
utilization. wVegas fails to achieve high throughput across the entire
range of random loss rates. MPCC, in contrast, maintains higher
throughput across the entire range, and drops below 80% utilization
only upon experiencing loss rate 500 times higher than that which
has the same effect on MPTCP. As expected, the multipath connec-
tions employing a single path congestion controller, namely, Reno or
BBR, for each subflow are also quite resilient to random loss; BBR is
known to be highly resilient even to high random loss [10] whereas
single path Reno, while halving its congestion window upon loss,
increases the window more quickly than its multipath extensions
(see Section 2). Similarly to our results in Section 7.2.1, MPCC’s
consistently higher utilization on link 1 translates to being more fair
to a single path connection on link 2, as shown in Fig. 6b.

7.2.3 Better adaptation to network changes. Fig. 7 presents the
throughput of a multipath subflow on link 1 in the network in Fig. 3c.
The link’s bandwidth, latency, and loss rate are assigned random
values every 30 seconds from the ranges 10 − 100 Mbps, 10 − 100
ms, and 0.01% − 0.1%, respectively. The buffer size is 375KB. The
dashed black line in the figure represents the link bandwidth at each
point in time. As seen in Fig. 7, MPCC’s throughput approximates
this optimum better than all the other multipath protocols. Fig. 8
shows the implications for the single path connection’s throughput.
Observe that the single path PCC connection’s throughput most
closely approximates its fair share (in the LMMF sense) on the link.

7.2.4 Lower latency. Lia, Olia and Balia are loss-based. In con-
trast, MPCC-latency optimizes per-subflow utility functions that
penalize increases in latency (Section 4.1). To demonstrate the impli-
cations for performance, we evaluate MPCC and MPTCP on the net-
work in Fig. 3e. We use the ss utility [4] to sample the smoothed RTT

of each connection every 0.1 seconds for 200 seconds and present in
Fig. 9 the average latency over 5 runs of iperf3 for each sender as the
bottleneck buffer size increases. Our focus is on buffers whose sizes
exceed the BDP as our goal is to quantify the self-induced latency
when the network is fully utilized.

MPCC-latency achieves better RTTs than Lia, Olia and Balia for
all evaluated buffer sizes. We point out that this lower latency comes
at the cost of slightly lower link utilization (as will be discussed in
Section 7.2.5), since MPCC-latency avoids filling buffers. While
wVegas yields low RTTs, its utilization is extremely low, as will
be discussed in Section 7.2.5. Since BBR also incorporates latency
measurements into its decision making, the multipath connection
running BBR for each of its subflows fares better than the loss-based
protocols, though still worse than MPCC-latency.

7.2.5 Comparable convergence. As shown in Section 7.2.1, when
buffers are small, MPTCP suffers from low link utilization. In our
experiments, on links with shallow buffers, MPTCP converges to
bad stable states (low utilization, not fair), and sometimes does not
even converge. Thus, to compare MPCC and MPTCP’s convergence
we focus below on the scenario that buffers are sufficiently deep to
support MPTCP convergence. Specifically, in all of the examples
below the buffer sizes on all links match the BDP (375KB).

We evaluate convergence on 5 of the networks in Fig. 3 and
Fig. 4b, using 10 iperf3 200-seconds long runs, again omitting the
first 30 seconds. Fig. 10b plots the average ratio between the total
goodput across all connections and the total network capacity, and
Fig. 10a shows how fairly network capacity is distributed using Jain’s
fairness index [32]. The results show that even in ideal conditions
for MPTCP, MPCC provides comparable utilization and fairness.
Multipath connections that use single path (BBR/Reno) for each
connection are naturally the least fair.

In our experiments, MPCC provides comparable convergence
rates to MPTCP, but with lower rate-jitter. See Fig. 11, which depicts
the convergence of MPCC-latency and Balia on topology 3c.

Observation: Sometimes employing a single-path congestion con-
troller for each subflow is bad for performance (not only fair-
ness). As shown in Fig. 10b, running Reno or BBR independently
for each subflow provides worse overall goodput than MPCC and
even MPTCP on the OLIA and LIA topologies. To gain intuition for
this phenomenon (already observed in [14, 58]), consider the OLIA
Topology. The gootput-maximizing (and fair) outcome is the single
path connection fully utilizing Link 1 and the multipath connection
fully-utilizing Link 2. In this outcome the total goodput is 200Mbps.
However, if the two connections equally split Link 1’s bandwidth
(getting 50Mbps each) and the multipath connection takes over the
remaining bandwidth of Link 2, the overall goodput is 150Mbps.
Using single-path congestion control independently per subflow will
approximate the second outcome.

7.2.6 TCP friendliness. To investigate how the multipath proto-
cols interact with legacy TCP, we repeat the experiments in Sec-
tions 7.2.1 (for varying buffer sizes) and 7.2.2 (for varying random
loss rates), with the exception that the single-path sender is now
running TCP Cubic. Recall that in these experiments, a multipath
connection sending on two links is competing with a single-path
connection on one of these links. Since the purely loss-based PCC
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(a) Jain fairness index for different multipath protocols on the network
topologies in Fig. 3,4 (b) Comparison of the average ratio between the total goodput and the

total network capacity on the network topologies from Fig. 3,4

Figure 10: Fairness (10a) and normalized total goodput (10b) for different multipath protocols on topologies from Fig. 3 and Fig.4b.

0 50 100 150 200 250 300

Time (Sec)

0

20

40

60

80

100

120

T
h
ro

u
g
h
p
u
t 

(M
b
p
s)

MPCC-latency-MP1
MPCC-latency-MP2
MPCC-latency-SP

(a) MPCC-latency convergence on Topology 3c
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(b) Balia convergence on Topology 3c

Figure 11: Example of MPCC’s and Balia’s convergence on network 3c. The multipath’s subflow 2 (orange) is on the same link as the single path
flow (green).
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(a) Goodput of multipath connection.
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(b) Goodput of single-path Cubic.
Figure 12: Goodput of Multipath sender and single-path TCP Cubic in topology 3c when varying buffer size of link 1

Vivace (which is equivalent to the purely loss-based MPCC1) is not
friendly towards legacy TCP [18], we focus on the latency-sensitive
variant of MPCC. We aim to investigate to what extent this variant
of MPCC, shown to provide good performance in both emulated
networks (see Section 7.2.7) and live networks (see Section 7.3)
harms legacy TCP. We leave the question of how MPCC loss can be
altered to achieve TCP friendliness (without suffering too costly a
price in terms of performance) to future research. Figs. 12 and 13
show the goodput of the multipath sender and the TCP Cubic sender.
Observe that in all experiments, when competing with MPCC or any
variant of MPTCP, the single-path TCP Cubic attains well over 50%

Bandwidth (Mbps) 50 500
Latency (ms) 10 100
Loss rate 0% 0.1% 0.001%
Buffer (KB) 50 700

Table 1: Possible link parameters

of the link’s bandwidth (typically over 70%). Thus, in these scenar-
ios, competing against a multipath connection (including MPCC) is
better for single-path TCP Cubic, performance-wise, than competing
against a single-path TCP Reno.
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(a) Goodput of multipath connection.
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(b) Goodput of single-path TCP Cubic.
Figure 13: Goodput of multipath sender and single-path TCP Cubic in topology 3c for varying loss rate on link 1
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(b) MPCC compared to OLIA

Figure 14: Comparing MPCC to LIA and OLIA for varying link pa-
rameters on topology 3c.
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(b) MPCC compared to OLIA
Figure 15: Comparing MPCC to LIA and OLIA for varying link pa-
rameters on topology 3d.

7.2.7 Varying the network configuration. So far, our experi-
ments used specific, default assignments to network parameters
(link latencies, bandwidths, and buffer sizes of 30ms, 100Mbps and
375KB, respectively) as the base network configuration. To gain
further insights into the impact of changes to these parameters, we
consider the two-link MP-SP network (Fig. 3c) and compare MPCC
to LIA and OLIA for all choices of network parameters in Table 1.
This amounts to 242 = 576 different network configurations (24 dif-
ferent options for each of the two links). In Fig. 14(a) we present the
mean, median, 5th percentile and 95th percentile ratio between the
average bandwidth utilization of MPCC-latency and LIA across all
576 experiments. Fig. 14(a) also presents the ratio between MPCC-
latency and LIA in terms of the Jain fairness index. Fig. 14(b) plots
the utilization and fairness ratios for MPCC-latency and OLIA. All
results are averaged over 5 runs per network configuration.

As can be seen in the figure, MPCC achieves significantly better
utilization than both LIA and OLIA in terms of the mean, median,
and the 95th percentile. MPCC also exhibits somewhat better fair-
ness in the mean, median, and the 95th percentile. To characterize
the circumstances in which MPCC is better/worse than the two con-
sidered MPTCP variants, we examine the network configurations for
which the best/worst ratios are obtained. Not surprisingly, the best ra-
tios for MPCC, in terms of both utilization and fairness, are obtained
for high non-congestion loss on link 1 (the non-shared link). This is
consistent with our results in Section 7.2.2 above. Interestingly, how-
ever, the worst ratios for MPCC occur when the bandwidths of the
two links are non-identical. When the bandwidth of the non-shared
link (Link 1) is 500Mbps and the bandwidth of the shared link is
50Mbps, the increases to MPCC’s rate on the lower-bandwidth link,
which are set to be fraction of the total sending rate across all its
subflows (see Section 5.2), are too big, leading MPCC to often over-
shoot that link’s bandwidth. This results in packet losses and delays
that, in turn, slow down both senders on the shared link. Moreoever,
the multipath sender ends up using less bandwidth than available
on the non-shared link because the losses on the other link, which
involve many retransmits, prevent the receiver from accepting more
packets before previously lost packets are successfully re-sent.

Repeating the same set of experiments for network environ-
ment 3d yields similar results, as shown in Fig. 15. Since the mul-
tipath connection now competes with a single-path connection on
each of the links, the imbalance between its achieved throughputs on
the two links is less severe than in the previous set of experiments
(where it had one link all to itself). This accounts for the improved
utilization and fairness ratios in the 5th percentiles.

7.3 Experiments for AWS-to-Residential
A common use case for MPTCP is devices with WiFi and cellu-
lar interfaces. We test the time it takes to download a 75MB file
from cloud-based servers in various locations around the world to
computers in three home network in Israel, Boston and Illinois with
WiFi access and an additional cellular interface. In these live ex-
periments, a mobile phone provided cellular connectivity to a PC
using USB tethering, and the PC was connected to a residential
WiFi access point on another interface. The PC was configured to
create one subflow on each interface. The average of 3 runs, for
each server-home pair with the different multipath protocols run in
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Figure 16: Download times of a 75MB file from different AWS servers to residential networks in different locations. Error bars indicate minimum
and maximum times measured.
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(b) Mean normalized performance for different servers.
Figure 17: Mean performance normalized to MPCC-latency. Higher is better.
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Figure 18: Our data center testbed topology.

round-robin order, appears in Fig. 16. Fig. 17 shows an aggregated
and normalized breakdown of these results where each bar is the
ratio between MPCC’s mean download time and another protocol’s
mean download time, and so higher is thus better.

Observe that (1) MPCC-loss consistently matches or outperforms
the other protocols, achieving download times up to 25X faster than
Lia, Olia and Balia. When averaging the performance gains across all
experiments MPCC-loss is 1.59X faster than Lia, 1.58X faster than
Olia and 1.62X faster than Balia, and in the median MPCC-latency is
1.18X faster than lia, and 1.29X faster than Olia and Balia; (2) While
MPCC-latency sacrifices some throughput for improved latency, it
still does not lag far behind MPCC-loss; (3) MPCC’s performance
gains over MPTCP increase as the distance (and so the BDP) grows;
(4) Employing single-path BBR for both subflows is frequently better
than the MPTCP variants not only because single-path BBR typically
outperforms single-path TCP [10], but also because this results in
increased aggression towards competing connections. MPCC, while
also designed for fairness, still achieves high performance, and is
frequently better than BBR.

While some of MPCC-loss’ performance gains can be attributed
to its increased aggression towards persistent legacy TCP connec-
tions (see discussion in Section 7.2.6), the performance improve-
ments achieved by MPCC-latency (which exhibits TCP friendliness
in our experiments) are derived from MPCC’s online learning algo-
rithmic framework.

7.4 Experiments on a Small Data Center Testbed
Our MPCC design primarily targets scenarios like utilizing multiple
network interfaces in last-mile network environments. We do, how-
ever, take a first step towards analyzing MPCC in another common
use-case for MPTCP: data centers. Data center networks are very
different from those considered thus far, with significantly higher
bandwidths, significantly lower end-to-end latency, and support for
explicit network feedback. We conduct experiments with our imple-
mentations of MPCC-loss and MPCC-latency on a small data center
network testbed. We leave the adaptation of MPCC to data centers
and extensive evaluation of this use case to the future.

Our testbed consists of 6 switches and 6 hosts. Switches comprise
a 2-layer Clos network, as in Fig. 18, with 25Gbps DAC cables.
Hosts run on 4 dual-homed Xeon Silver processors with 128GB
RAM each. Shortest-paths are hardcoded into the switches with
ECMP hashing used to choose between them. We ran the following
experiment, which evaluates different multipath protocols under
heavy and dynamically changing load: first, 15 10GB flows and 35
10MB flows were simultaneously initiated from each host to other,
randomly chosen hosts in the network. Then, at each second of the
first minute of the experiment, each host started a single 10KB flow
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(c) FCT on 10GB flows
Figure 19: FCT (sec) measurements on our datacenter testbed.

to a randomly chosen host. We repeated this experiment 10 times.
All flows were sent via multipath connections, each with 3 subflows.

Fig 19 plots our results for flow completion time (FCT). Observe
that MPCC achieves worse FCTs for the short flows, comparable
FCTs for the medium flows, with slightly worse performance in
the tail, and better FCTs for the long flows. Thus, the benefits of
MPCC in this specific data center environment apply only to the
long flows (10GB). We conjecture that addressing this involves
tackling two issues: (1) MPCC not sufficiently ramping up its rate
at the early stages of a connection, and (2) MPCC inducing packet
retransmissions in the presence of heavy and dynamic traffic, which
primarily slows down the shorter connections.

8 RELATED WORK
In recent years, several new paradigms for overcoming TCP’s lim-
itations have been proposed. Remy [57] and PCC [17, 18] reflect
offline and online optimization approaches, respectively. BBR [10],
models the network pipe as a single (bottleneck) link and tracks that
link’s bandwidth and RTT. Copa [5] optimizes rate selection within
a model in which packet arrival at the connection’s bottleneck link
is a Poisson distribution.

MPTCP variants include Linked-Increases Algorithm (LIA) [51],
Opportunistic Linked-Increases Algorithm (OLIA) [38], Balanced
Linked Adaptation (Balia) [54], MPCUBIC [41], and wVegas. LIA,
OLIA and Balia adapt TCP Reno to the multipath context. MPCU-
BIC and wVegas [9] extend TCP Cubic and TCP Vegas, respectively.
See [59] for a survey and [13–15] for evaluation results.

Network Utility Maximization (NUM) [35] is a prominent frame-
work for TCP protocol design, which has also been applied to the
multipath context [25, 36]. In NUM, an end-to-end congestion con-
trol protocol and queuing policies at routers are derived from the
primal-dual solution to a centralized convex optimization problem.
Our decomposition of connection-level optimization into individual
per-subflow optimizations is inspired by ideas from NUM litera-
ture (see, e.g., [37, 48]). While NUM-induced schemes provably
converge to a global optimum in arbitrary network topologies, this
involves strong assumptions that are often violated in real-world
environments such as last-mile networks (MPTCP’s main use-case),
e.g., (1) all connections run the prescribed protocol, (2) all routers in
the network employ the prescribed queueing policy, (3) all connec-
tions are sufficiently long-lived for a steady state to be approximated,
and more. Online-learning-based congestion control, in contrast,
provides meaningful local performance guarantees for the individ-
ual connection (“no regret” [18]) even when treating the network

as a black box, while also reaching desired global equilibria if all
connections are long-lived and employ the protocol. See [53] for a
discussion in the context of single-path congestion control.

Recently, multipath congestion control has been revisited from
two new perspectives: (1) adapting BBR to this context [26, 27, 61],
and (2) applying reinforcement learning [19, 42, 60]. We leave the
thorough comparison of our online learning approach and these
approaches to future research. We point out, however, that, as dis-
cussed above, a key strength of our approach are its provable local
and global guarantees (no regret and global convergence). In ad-
dition, unlike our approach, the proposed reinforcement learning
approaches to multipath congestion control rely on offline training of
the multipath congestion controller on empirical data, and so involve
the standard costs associated with such approaches, including bad
performance when the training environment and operational environ-
ment differ and the high sample complexity of deep reinforcement
learning (need for many data points for effective learning).

9 CONCLUSION AND FUTURE RESEARCH
We revisited multipath congestion control and advocated its re-
examination through the lens of online learning. We presented
MPCC, a promising first step in this direction. Our evaluation of a
kernel implementation of MPCC suggests that MPCC constitutes a
promising alternative to MPTCP.

Our investigation of MPCC motivates further exploration of its
theoretical and empirical guarantees and of how our design can be
further improved. Specifically, our theoretical results leave open the
question of obtaining provable guarantees that extend beyond the do-
main of parallel-link networks. In addition, limitations of our MPCC
implementation that deserve careful attention include suboptimal
performance on network paths that greatly differ in terms of available
bandwidth (see Section 7.2.7) and suboptimal flow-completion-times
for short flows (see Section 7.4). Lastly, our evaluation (with the
exception of the experiments on the data center testbed), focused on
bulk transfers. Additional measurements of MPCC’s performance
under other traffic conditions is required to evaluate how MPCC
affects different kinds of applications.
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A PROOF SKETCH FOR THEOREM 4.1
We present below a sketch of the proof of Theorem 4.1. To simplify
exposition, consider the scenario that the multipath connections have
two subflows each and are purely loss-based, i.e., γ = 0. We later
discuss how our arguments can be extended to the general case.
Proposition: In any equilibrium, all of a connection’s subflows
experience the same loss rates. Suppose (for point of contradiction)
that in some equilibrium both of a connection’s subflows send at
non-zero rates and subflow 1 has a lower loss rate than subflow 2.
Recall that the utility function penalizes the connection according
to the maximum loss rate across subflows, i.e., subflow 2’s loss rate.
We show that, in this case, for a small enough ϵ > 0, increasing
subflow 1’s rate by ϵ and decreasing subflow 2’s rate by ϵ improves
the connection’s utility—a contradiction to this being an equilibrium.
Intuitively, this is because the connection’s total throughput remains
unchanged yet the maximum loss rate across both flows is decreased
when subflow’s 2 rate is decreased1.
Proposition: In any equilibrium, competing connections suffer
the same loss rates. Consider two connections, i and j, with sub-
flows sending at non-zero rates on the same link. Both connections’
traffic on that link experience the same loss rate. This, together with
the previous proposition, implies that all subflows of both connec-
tions experience the same loss rates.
Proposition: In any equilibrium, competing connections have
the same total sending rate. Consider again two connections, i and
j, with subflows sending at non-zero rates on the same link. By the
previous propositions, both connections experience the same loss
rates on all subflows. As this is an equilibrium, neither connection
wishes to increase or decrease its rate. We observe that the above,
combined with the structure of the connection-level utility function

1Our ability to identify such an ϵ is derived the connection-level utility functions being
continuous and strictly concave in the appropriate region.

in (1) (specifically, its strict concavity in the presence of loss) implies
that the two connections must have precisely the same total sending
rate.
Proposition: Any equilibrium is LMMF. Consider the connection
i with the lowest total sending rate in a certain equilibrium. Suppose,
to simplify exposition, that only a single such connection exists.
Observe that, by the previous proposition, that connection must be
utilizing the entire link bandwidth on each of its subflows (as no
other connection has the same total sending rate). This implies that
connection i cannot possibly be assigned more bandwidth in any
LMMF outcome, which, in turn, implies that in any LMMF outcome
the worst-off connection cannot possibly be assigned more band-
width than connection i and so the equilibrium is max-min-fair. By
removing the links traversed by i’s subflows from consideration and
repeating this argument we can establish that the bandwidth assigned
to the second-to-last worst-off connection is also maximized in the
equilibrium, and so on.
Extending the above arguments to the general case. Observe that
the above arguments did not rely on a connection having precisely
two subflows and would hold for an arbitrary number of subflows.
If connections are not purely loss based the same arguments apply
with loss substituted with the aggregate penalty for loss and latency
combined.

B PROOF SKETCH FOR THEOREM 5.1
We present below a sketch of the proof of Theorem 5.1. To simplify
exposition, consider the scenario that the multipath connections are
purely loss-based, i.e., γ = 0. We later discuss how our arguments
can be extended to the general case.
Proposition: In any equilibrium, competing connections have
the same total sending rate. Consider a global rate configuration
that constitutes an equilibrium and two connections, i and j, with
subflows sending at non-zero rates on the same link l . Let xil and x jl
denote the sending rates of the subflow of connection i sending on
link l and the subflow of connection j sending on link l , respectively.
Let Ti and Tj denote the total sending rate across all subflows of
connection i and connection j, respectively. Observe that as this is an
equilibrium, link l must be fully utilized as otherwise each subflow
on the link can achieve better utility by unilaterally increasing its
sending rate—a contradiction to the equilibrium property. Suppose,
for point of contradiction, that Ti > Tj (the argument below also
holds, by symmetry, for the case Tj > Ti ). Plugging Lr =

Cr
Sr (as

in [18]) and calculating the derivatives of the two subflows yields that
the derivative of connection j’s subflow is strictly higher. Intuitively,
this follows from the fact that our per-subflow utility function (see
Section 5.1) consists of two terms: a reward for increase in sending
rate and a penalty for increase in loss rate. Since the two subflows are
sending on the same link, an increase to the sending rate of ∆ for one
of them yields the same change to loss rate and so the same penalty.
However, such an increase yields higher reward for connection j’s
subflow (since connection j’s total sending rate is lower and α < 1).
However, as this is an equilibrium, the derivatives of both subflows
must equal 0—a contradiction to Ti > Tj . We conclude that Ti = Tj .
Proposition: Any equilibrium is LMMF. The proof of this propo-
sition is as in the identical proposition in the proof sketch for Theo-
rem 4.1 in Appendix A.

https://doi.org/10.1109/VTCFall.2018.8690919
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Extending the above arguments to the general case. If connec-
tions are not purely loss based the same arguments apply with loss
substituted with the aggregate penalty for loss and latency combined.

C PROOF SKETCH FOR THEOREM 5.2
We present below a sketch of the proof of Theorem 5.2. We view
the interaction of the different subflows of the different connections
as a non-cooperative game in which each individual subflow is a
player, the strategy of the subflow is its sending rate, and the subflow
selfishly optimizes its local, subflow-specific utility function (as in
MPCC). To simplify exposition, we focus below on the scenario
that connections are purely loss-based. We then explain how our
arguments can be extended to latency-sensitive connections.
Claim: Without loss of generality, no two subflows of the same
connection share the same link. We observe that when two or more
subflows of the same connection share the same link, the utility value
of all these subflows at every point in time is identical (as it depends
on the sum of sending rates across all of the connection’s subflows
and as all subflows on the same link experience the same loss rate
and latency). Moreover, the same change in rate translates to the
same change in utility function for all. Thus, w.l.o.g., all subflows
belonging to the same connection that run on the same link will
always reach the same decision. We thus henceforth assume that
each of a connection’s subflows runs on a different link.
Proposition: From some point in time onwards, every link in
the network is fully utilized. Specifically, let Sr be the aggregate
traffic across link r with capacity cr . We show that from some point
in time onwards Sr is always within the interval (cr , cr · (1 + 1

β−2 )],
where β is the coefficient in the subflow’s utility function, as in 2.
This follows from analyzing the gradient of the utility function of a
subflow on that link. Trivially, if Sr < cr then the subflow can always
benefit from increasing its rate, as for a small enough increment to
the rate this can improve its throughput without inducing loss. We
show that the derivative of the utility is always negative in the region
if Sr > cr · (1 + 1

β−2 ). Intuitively, this is because the linear gain in
throughput is no longer worth the superlinear penalty for the increase
in loss rate.
Proposition: From some point in time onwards, the loss rate
on each link r is within the interval (0, 1

β−1 ]. This proposition
immediately follows from the previous proposition and the function
for loss rate on a link r , Lr = 1 − cr

Sr .
Proposition: When the subflows of two connections compete
over the same link, the less the connection is sending in total
the higher the derivative of its per-subflow utility for that link.
Consider two connections, i and j, with subflows sending at non-
zero rates on the same link l . Let the total sending rates of i and j
across all their subflows be Xi and X j , respectively, and suppose that
Xi < X j . The fact that the derivative of connection i’s subflow is
higher than that of connection j’s subflow is immediately derived

from the formulas of the derivatives
∂U (l )

i
∂X l

i
and

U (l )
j

∂X l
j

.

Iterative convergence. The proof now follows from the following
observation. Consider the connection with the minimal goodput (sum
of bandwidths utilized by this connection across all its subflows).
Observe that when the goodput of this connection can only increase
with time as, by the previous proposition, its utility-gradient is higher

on all its links than than of each of its competitors. Thus, the mini-
mum goodput across all connections will constantly increase until
it stabilizes. Once this happens, the same arguments apply to the
second-to-last goodput, etc. Once the rates stabilize, it holds for each
connection and each of its links, that either the link is fully-utilized
by the connection or the connection is only competing on the link
with connections that have the same total sending rate. Arguments
similar to those in Theorem 4.1 establish that this final state must be
an LMMF equilibrium.
Extending the above arguments to the general case. If connec-
tions are not purely loss based the same arguments apply with loss
substituted with the aggregate penalty for loss and latency combined.
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