
Robustifying Network Protocols with Adversarial
Examples

Tomer Gilad
Hebrew University of Jerusalem
tomer.gilad1@mail.huji.ac.il

Nathan H. Jay
University of Illinois at
Urbana-Champaign
njay2@illinois.edu

Michael Shnaiderman
Open University of Israel
mickey946@gmail.com

Brighten Godfrey
University of Illinois at
Urbana-Champaign
pbg@illinois.edu

Michael Schapira
Hebrew University of Jerusalem

schapiram@cs.huji.ac.il

ABSTRACT
Ideally, network protocols (e.g., for routing, congestion con-
trol, video streaming, etc.) will perform well across the entire
range of environments in which they might operate. Unfor-
tunately, this is typically not the case; a protocol might fail
to achieve good performance when network conditions devi-
ate from assumptions implicitly or explicitly underlying its
design, or due to specific implementation choices. Identify-
ing exact conditions in which a specific protocol fares badly
(though good performance is feasible to attain) is, however,
not always easy as the reasons for protocol suboptimality or
misbehavior might be elusive.

We make two contributions: (1) We present a novel frame-
work that leverages reinforcement learning (RL) to generate
network conditions inwhich a given protocol fails to perform
well. Our framework can be used to assess the robustness
of a given protocol and to guide changes to the protocol for
making it more robust. (2) We show how our framework for
generating adversarial network conditions can be used to en-
hance the robustness of RL-driven network protocols, which
have gained substantial popularity of late. We demonstrate
the usefulness of our approach in two contexts: adaptive
video streaming and Internet congestion control.

ACM Reference Format:
Tomer Gilad, Nathan H. Jay, Michael Shnaiderman, Brighten God-
frey, and Michael Schapira. 2019. Robustifying Network Protocols
with Adversarial Examples. In The 18th ACM Workshop on Hot Top-
ics in Networks (HotNets ’19), November 13–15, 2019, Princeton, NJ,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
HotNets ’19, November 13–15, 2019, Princeton, NJ, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-7020-2/19/11. . . $15.00
https://doi.org/10.1145/3365609.3365862

USA. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/
3365609.3365862

1 INTRODUCTION
Designing protocols for Internet environments is an incred-
ibly difficult task due the vast range of possible network
conditions a protocol might potentially encounter. Consider,
for instance, the perennial topic of Internet congestion con-
trol. Despite almost roughly three decades of research and
deployment, the right paradigm for designing protocols that
robustly provide high performance remains the subject of
contention [1, 3, 6, 22]. Other examples include the design
of intradomain and interdomain routing protocols, video
streaming protocols, and more.

The huge diversity of possible network conditions implies
that even a protocol that works well across a wide variety
of network conditions may suffer from bad performance on
other networks [29]. Thus, enhancing the robustness of pro-
tocols is clearly desirable. This typically involves identifying
scenarios that result in poor performance by the protocol
and using these scenarios for debugging and for guiding
changes to the protocol. Unfortunately, even finding such
scenarios can be challenging, for the following reasons: (1)
Merely identifying conditions under which a protocol fares
badly is typically easy (e.g., no congestion control protocol
is expected to achieve high performance when almost ev-
ery packet is dropped). However, such trivial examples are
not interesting because even an optimal algorithm would
perform poorly. Instead, meaningful examples should in-
volve network conditions in which a protocol performs far
from optimally. (2) The search for challenging network con-
ditions must be customized for the specific protocol under
consideration. Conditions under which one protocol fails
miserably might be quite good for other protocols. (3) Bad
protocol behavior might be triggered by complex sequences
of changes in network conditions, making identifying such
examples challenging. (4) Ideally, network conditions that
have been shown to induce bad performance for a protocol

85

https://doi.org/10.1145/3365609.3365862
https://doi.org/10.1145/3365609.3365862
https://doi.org/10.1145/3365609.3365862

HotNets ’19, November 13–15, 2019, Princeton, NJ, USA T. Gilad, N. Jay, M. Shnaiderman, B. Godfrey, and M. Schapira

will also contain hints regarding where the problem lies, i.e.,
the demonstrated problem should be explainable.

Our first main contribution is a novel framework for find-
ing challenging network scenarios for a given protocol. Our
framework leverages Reinforcement Learning (RL) to gen-
erate adversarial network traces for an input protocol by
observing protocol behavior and adaptively changing its
network conditions to harm its performance relative to the
optimal. We apply our framework to adaptive video stream-
ing protocols as a way to assess their robustness. We also
apply our framework to the relatively new BBR congestion
control protocol [3] and show that the generated adversarial
network traces demonstrate a specific weakness in BBR.
Our second main contribution is showing that adversar-

ial network traces generated by our adversarial framework
can be leveraged to train more robust RL-based protocols.
RL-based network protocols have recently been applied to
improve decision making in adaptive video streaming [17],
congestion control [15], routing [26], and more. While RL
may be valuable for developing new protocols, the resulting
protocols, which often leverage deep learning, can be more
difficult to understand, making the scenarios in which they
fail potentially harder to characterize and to identify in the
real world. We show that the adversarial network traces gen-
erated by our framework for RL-based protocols not only
expose scenarios in which these protocols might fail to pro-
vide the desired performance, but can also be incorporated
into the training of such protocols, a promising direction for
improving robustness.

2 HIGH-LEVEL APPROACH
2.1 On Generating Adversarial Traces
RL-based adversaries. We formulate the problem of cre-
ating challenging network conditions as an RL problem. In
RL, an agent repeatedly observes the environment’s state,
performs an action, and then observes the reward for the
performed action [25]. Our goal is to use RL to train an adver-
sary to output network traces that trigger and exploit flaws
in existing protocols, ideally in a way that aids in fixing those
flaws. Thus, we not only need to induce poor performance in
the target protocols, we need to do so in a repeatable fashion,
and hopefully in a manner that provides some insight into
what protocol flaw is being exploited. We consider two pos-
sible approaches for formulating our RL-driven adversary:
trace-based and online.
Trace-based vs. online adversaries. A trace-based adver-
sary generates an entire trace (a time-ordered list of network
conditions like bandwidth, latency and loss rate) as a single
output, and is evaluated by running the target protocol on
that trace and quantifying its performance. This type of ad-
versary’s output would also make results easy to reproduce
in testing; simply re-run a trace produced by the adversary
and if the adversary has chosen good traces, the protocol

will likely perform poorly. However, this approach has two
significant drawbacks: (1) depending on the length of trace
required to observe the flawed behavior of a protocol, this
might result in a very long training process since each trace
constitutes only a single data point; and (2) as the adversary
cannot react to the protocol at a very fine granularity, it
may be difficult to understand what actions by the protocol
precipitated certain aspects of the adversary’s output.

In contrast, an online adversary takes actions against a pro-
tocol by observing the protocol’s behavior during operation
(in our examples, adversaries make observations every video
chunk in video streaming and every 30ms in congestion con-
trol), and producing only the next network conditions (e.g., a
single tuple of bandwidth, latency and loss rate). As a result,
an online adversary can collect training data much faster
(because inputs and outputs take less time to evaluate). How-
ever, replicating the results of an online adversary might
be more difficult; whereas a trace-based adversary should
produce traces on which a protocol’s average performance
is poor, an online adversary might generate a sequence of
network conditions that resulted in poor performance only
because of a specific sequence of actions that it observed
during the run. This may mean that replicating an online
adversary’s results requires re-running the adversary every
time.
In this exploratory study, we use online adversaries for

both adaptive video streaming and congestion control. We
discuss the specifics of the adversaries at the beginning of
each evaluation. We show that traces from these adversaries
are sufficient to reproduce flawed performance in a variety
of target protocols without having to re-run the adversary.
Quantifying proximity to the optimum. When training
a RL agent, the definition of the reward function has a sig-
nificant impact on the end result. In our case, we would like
to find an example where the performance of a protocol
drops significantly. This scenario can be easily achieved by
a network which drops every packet, which is a trivial and
uninteresting example. Thus, we would like the adversary
find a network where the protocol could have achieved bet-
ter performance than it actually got. This means the reward
should reflect the difference between the reward the protocol
received, and the optimal reward it could have gotten.
Seeking explainable examples. Consider a congestion
control protocol that performs badly on a network trace in
which network bandwidth, end-to-end latency, and packet
loss rate vary within specific ranges of values. Suppose, how-
ever, that the same effect could have been achieved by only
varying one of these network parameters (e.g., loss rate)
and leaving the other network parameters fixed. While both
network traces might induce the same effect in terms of de-
graded performance, the second is more useful for exposing
the underlying weakness. Indeed, some protocols, like TCP
Cubic [11], are vulnerable to packet losses but not to jitter
in latency, whereas other protocols, like BBR [3], exhibit the

86

Robustifying Network Protocols with Adversarial Examples HotNets ’19, November 13–15, 2019, Princeton, NJ, USA

opposite behavior. Thus, intuitively, the adversary should
only introduce changes to the environment if these trigger
bad behavior and avoid injecting unnecessary noise. This is
captured in our framework by penalizing the adversary for
“non-smoothness” of the network trace.
Remark:Relation toGenerativeAdversarialNetworks
(GANs).When the input protocol being tested is itself based
on an RL agent, our approach bears similarities to GANs in
that two ML schemes train to defeat each other. But our goal
is substantially different; GANs are typically useful for gen-
erating new data that is indistinguishable from an existing
dataset. In our context, we do not already possess traces of
challenging network conditions to which GANs might be
applied, but aim to create such challenging traces.

2.2 Our Adversarial RL Framework
Given the above considerations, we next describe our RL-
based adversarial framework.

Each time step t represents a certain time period in which
network conditions remain fixed. At the beginning of time
step t , the RL agent (the adversary) observes a state st that
reflects its past interaction with the target protocol. The
adversary then chooses an action at that specifies the fixed
network conditions at that time step, and receives a reward
for the protocol’s resulting performance. We elaborate on
the states, actions, and rewards, below.
Actions. Actions are tuples of network parameters (e.g.,
bandwidth, latency loss rate) that influence the target pro-
tocol’s inputs. The ranges of values from which these pa-
rameters are drawn might be constrained so as to reflect
real-world conditions, or to investigate the behavior of a
protocol under specific network conditions. We refer to a
sequence of such tuples generated by the adversary as a
trace.
States. States can depend on previously produced tuples
of network parameters, past inputs to the target protocol,
and the protocol’s produced actions. The collection of state
values observed by the adversary are often referred to as the
input features.
Rewards. The adversary’s reward is as follows:

radversary = ropt − rprotocol − psmoothinд (1)

Equation 1 captures the adversary’s goal of outputting net-
work conditions for which the performance of the target
protocol rprotocol is far from the optimal performance ropt .
The psmoothinд term penalizes the adversary for producing
noisy or high-variance traces, which may be less explainable
and thus less useful for protocol development. Each of the
three reward termswill be defined later as appropriate for the
application domain (adaptive video streaming or congestion
control).

2.3 Learning from Adversarial Traces
Training a new network protocol using machine learning
(ML) typically requires a large dataset of network traces
to train on that have a similar properties to environments
the protocol will encounter in the real world. Our goal is to
utilize our adversarial framework to augment these traces
with adversarial traces in the training of RL-based protocols,
thereby improving the protocols’ robustness to unseen con-
ditions. Conceivably, this approach may apply to many ML-
based control systems, like Internet congestion control [15],
routing [26], data center network optimization [4, 21, 28],
compute resource allocation [7], and more. In this paper,
we demonstrate our by enhancing the robustness of Pen-
sieve [17], a recent RL-based protocol for adaptive video
streaming.

To avoid over-fitting to adversarial examples, which might
be edge cases, we suggest incorporating the generated traces
late into the training of a protocol. Our overall training pro-
cess is as follows: (1) train the protocol of interest, (2) train
an adversary against it, (3) use the trained adversary to gen-
erate traces, and (4) continue the protocol’s training with
the new adversarial traces in its training dataset.

3 ADAPTIVE VIDEO STREAMING
Video streaming is one of the most significant uses of today’s
Internet [5]. Adaptive Bit Rate (ABR) protocols repeatedly
download chunks of the video at the resolution (bitrate) ex-
pected to maximize the user’s Quality of Experience (QoE).
QoE must balance considerations such as sending at high
bitrates (which take longer to download per chunk), avoid-
ing rebuffering time, and avoiding frequent changes of bi-
trates [17].
Our adversary is realized by a neural network with two

fully connected hidden layers, the first with 32 neurons and
the second with 16 neurons. We chose this simple architec-
ture as it fared well in our experiments. Experiments with
even simpler architectures (with only one layer or less neu-
rons per layer) yielded lower rewards. Each action of the ad-
versary is a choice of bandwidth in the range of 0.8-4.8Mbps,
which, together with the bitrate, determines the time it takes
the targeted protocol to download a chunk. The adversary
observes the bitrate chosen by the protocol for the previ-
ous chunk, the client buffer occupancy, the possible sizes of
the next chunk, the number of remaining chunks, and the
throughput and download time for the last downloaded video
chunk. The adversary’s state is the history of the last 10 ob-
servations. The reward for the adversary is as in Equation 1,
where ropt is the highest possible QoE over the last 4 network
changes, rprotocol is the QoE of the protocol over the last 4
network changes, and psmoothinд is the absolute difference
between the last two chosen bandwidths. The QoE metric
chosen is the linear QoE used in MPC [30]: for a video with
n chunks, QoEl in =

∑n
i=1 Ri − 4.3

∑n
i=1Ti −

∑n−1
i=1 |Ri − Ri+1 |

87

HotNets ’19, November 13–15, 2019, Princeton, NJ, USA T. Gilad, N. Jay, M. Shnaiderman, B. Godfrey, and M. Schapira

0.5 1.0 1.5 2.0 2.5
QoE

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

pensieve

mpc

bb

(a) Traces targeting MPC.

0.5 1.0 1.5 2.0 2.5
QoE

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

pensieve

mpc

bb

(b) Traces targeting Pensieve.

0.5 1.0 1.5 2.0 2.5
QoE

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

pensieve

mpc

bb

(c) QoE CDF on random traces.

Figure 1: Performance of different ABR algorithms for traces by adversary trained against MPC (a), against Pen-
sieve (b), and on randomly generated traces (c).

Pensieve/MPC
MPC traces

MPC/Pensieve
Pensieve traces

Pensieve/MPC
random traces

MPC/Pensieve
random traces

0.0

0.5

1.0

1.5

2.0

2.5

Q
oE

ra
ti

o

mean

95th percentile

max

Figure 2: Our adversarial framework generates bad ex-
amples for different protocols where a better QoE is
attainable.

where Ri is the bitrate of video chunk i , and Ti is the re-
buffering time caused by chunk i . The training algorithm
used was PPO [23], with the default arguments of the stable-
baselines [12] implementation except for the learning rate,
which is a constant. We trained the adversary for 600k steps
and used the simulator of [17] for training and testing.

3.1 Generating Adversarial Traces
We trained our adversarial framework against a pre-trained
model of Pensieve, provided by its authors, and against a
re-implementation of the MPC ABR protocol [30], and pro-
duced 200 traces for each of the two protocols. We also tested
against a re-implementation of a buffer-based (BB) approach,
as described in [13], but in all of our experiments it per-
formed worse than all other protocols. As a baseline, we
used 200 random traces generated using the same action
space as the adversary. Figure 1 shows the per-video QoE
CDF using traces targeting MPC and Pensieve, and on the
random traces. As expected, the adversary, which is trained
to sabotage a specific protocol, does not do that by making
the network hostile for all protocols. Figure 1 also shows that

0 50 100 150

2000

4000

bi
t

ra
te

se
le

ct
io

n
(k

bp
s) bb Offline Optimum

0 50 100 150

20

40

bu
ff

er
si

ze
(s

ec
)

0 50 100 150
time (sec)

2

4

ba
nd

w
id

th
(m

bp
s)

Figure 3: BB running on an adversarial trace.

while some randomly generated network traces can cause a
protocol to misbehave, these traces do not necessarily allow
another protocol to succeed.
Figure 2 plots the QoE values of different protocols on

these traces. Our adversary found traceswhereMPC achieves
1.38× the QoE provided by Pensieve, and traces where Pen-
sieve achieves 2.55× the QoE provided by MPC. For both
protocols, in over 75% of the adversary’s traces, the targeted
protocol (MPC or Pensieve) performed worse than the other
protocol (Pensieve or MPC), showing that the adversary is
effective at finding targeted suboptimal performance. The
results over the randomized traces indicate that finding bad
examples by using randomly generated traces is harder and
the resulting examples are not as bad as those generated by
our framework.

88

Robustifying Network Protocols with Adversarial Examples HotNets ’19, November 13–15, 2019, Princeton, NJ, USA

Broadband training
Broadband testing

Broadband training
3G testing

3G training
3G testing

3G training
Broadband testing

0.0

0.5

1.0

1.5

2.0

2.5

3.0

M
ea

n
Q

oE

Without Adv.

Adv. at 90%

Adv. at 70%

Broadband training
Broadband testing

Broadband training
3G testing

3G training
3G testing

3G training
Broadband testing

−5

−4

−3

−2

−1

0

5t
h

p
er

ce
nt

ile
Q

oE

Without Adv.

Adv. at 90%

Adv. at 70%

Figure 4: Improvements in QoE with adversarial train-
ing in the mean (top) and in the 5th percentile (bot-
tom).

3.2 Finding Weaknesses in Buffer-Based
To illustrate how our adversarial framework can be utilized
for pointing out weaknesses in protocols, we trained the
adversary against BB. Figure 3 shows the outcome of running
BB on the adversarial network trace. This can be interpreted
as follows: The adversary identified that BB tries to maintain
a playback buffer at the client of size at least 10 seconds, and
that BB changes its rate when the buffer size is in the range
of 10-15 seconds. The trace outputted by the adversary keeps
the buffer in this range, causing BB to constantly change its
choice of bitrate and pay a price in smoothness and quality.
Note that the best strategy for this network environment is
using a low bitrate at the start and gradually increase it.

3.3 A Better Pensieve
We use the training process described in 2.3 to show how
Pensieve can be made more robust to unseen network traces.
We train Pensieve once on the FCC broadband traces [8]
and once on the 3G/HSDPA mobile dataset of traces col-
lected in Norway [19]. We pause the training after 90% of the
training iterations, add the traces generated adversarially to
the partially-trained model into the training set of Pensieve,
and continue its training. We also show results when the
adversarial traces are introduced after 70% of the training
iterations instead of 90%.

Figure 4 shows the improvement in QoE when training
Pensieve with adversarial traces, comparing to Pensieve
trained without these traces on the same dataset. Training
using the adversarial traces improved the QoE across all test
sets. The most notable improvement is when training on the
FCC broadband traces and testing on the 3G Norway traces,
which reflects how the FCC dataset lacks the challenges
found in 3G networks. Incorporating the adversary earlier in
the training helped to generalize better as Pensieve had more
iterations to adjust itself. The main improvement in the QoE
was at the bottom 5th percentile, e.g., 1.22× improvement
when training and testing on the broadband dataset. This is
consistent with the adversary having produced particularly
challenging examples for Pensieve.

4 INTERNET CONGESTION CONTROL
Congestion control determines how much data each commu-
nication endpoint injects into the network and how quickly.
Despite decades of effort, robustly providing high perfor-
mance in congestion control remains unsolved [1, 3, 6, 29].
TCP congestion control variants like Cubic, Reno and

HTCP all share a trivial weakness to packet loss even as
low as 1%. However, recently proposed protocols such as
BBR [3], PCC Vivace [6], and Copa [1] do not not have as
clear weaknesses. We take BBR as a case study. We devise
an adversary whose action space is entirely within BBR’s
intended design range and show that such an adversary can
still create patterns of network conditions on which BBR
performs poorly.

After testing several neural network architectures for the
adversary (including up to three hidden layers and up to 32
neurons wide), we chose a simple neural network with only
one hidden layer of 4 neurons, on the grounds that the the
simplest neural network that works well is best to illustrate
our methods. We feed the adversary two inputs: current link
utilization and current queuing delay. The adversary is given
control over link bandwidth, latency and random loss rate
at a granularity of 30 milliseconds. The available choices of
each parameter are shown in Table 1. The adversary’s reward
is 1−U − L − 0.01 · S , whereU is the link utilization, L is the
loss rate chosen by the adversary, and S is a smoothing factor
computed based on the difference between the current band-
width and latency, and an exponentially-weighted moving
average of both bandwidth and latency. We implement our
adversary in a modified version of Mahimahi [18], which re-
lies on an event-based approach to packet delivery. Because
this environment is not designed for precise timing, and the
events that drive Mahimahi are packet deliveries, our traces
are not usually identical when played multiple times. Still,
we show that our adversary learns to significantly reduce
BBR’s throughput. We train our adversary using PPO [23]
for around 600k action/observation pairs of 30 ms each, split
into 200 training iterations.

89

HotNets ’19, November 13–15, 2019, Princeton, NJ, USA T. Gilad, N. Jay, M. Shnaiderman, B. Godfrey, and M. Schapira

Bandwidth Latency Loss rate

6-24 Mbps 15-60 ms 0-10%
Table 1: Range of link parameters produced by adver-
sary.

0 10 20 30
0

5

10

15

20

25

R
at

e
(m

bp
s)

Throughput

Bandwidth

Figure 5: The BBR congestion control protocol run-
ning on a 30-second adversarial trace.

Despite the constraints on our adversary in Table 1, which
are clearly within BBR’s expected design range, our adver-
sary can reduce BBR’s average throughput to just 45 − 65%
of link capacity by exploiting a critical weakness in BBR: the
infrequent, but performance-critical probing.

Figure 5 shows a trace of BBR’s performance against a 30-
second adversarial trace. BBR starts with high link utilization
and suddenly begins sending much more slowly. We can use
an action trace of the adversary running online (instead of
as a trace) to help us understand why. When running online,
our adversary’s actions are derived from direct observation
of the protocol, which is useful for identifying weaknesses.
Figure 6 shows the adversary’s deterministic actions (i.e.,
before exploration noise from training is added) over a 30
second trace, split into 1000 intervals of 30ms. The rapid
fluctuations in bandwidth and latency correspond exactly
to the probing phases of BBR, and cause BBR to choose
a very low sending rate. Note that the raw actions of the
adversary may appear to be outside of the parameter range,
but exploration and clipping done by PPO will return the
actions to the acceptable range.

The trace of BBR’s performance combined with the action
trace of the adversary can already tell us a great deal about
a weakness in BBR, even without looking at the code. This
tool is clearly preliminary, and additional information taken
from the source code of BBR would obviously be necessary
to engineer a more robust version, but even rudimentary

2.75

3.00

3.25

B
an

dw
id

th

2.75

3.00

L
at

en
cy

0 200 400 600 800 1000
Time (30ms intervals)

−0.05

0.00

0.05

L
os

s
R

at
e

Figure 6: The actions of the BBR adversary over 30 sec-
onds (1000 intervals of 30ms) without training noise.
Every 10 seconds, when BBR runs its probing phase,
the adversary suddenly varies bandwidth and latency.

knowledge of how BBR operates and our automatically gen-
erated trace could point a developer in the right direction.

5 DISCUSSION
Our work presents an early effort to use ML as a way to
generate test inputs for network protocols and even train
more robust ML-driven protocols. However, this early effort
leaves open many questions, as discussed below.
Constraining Adversaries: To generate useful adversar-
ial traces, our adversaries had action spaces constrained to
realistic values, and we included the smoothing factor in
the adversary reward to avoid unnecessary fluctuations in
network conditions. Having a more sophisticated way of con-
straining an adversary to actions similar to those recorded
in the real world might help us create more realistic, but
still challenging conditions. Developers might also be inter-
ested in constraining adversaries relative to a particular set
of traces, e.g., to making only small changes to an existing
test case.
Different adversarial goals: Our work uses QoE and link
utilization as the basis for adversary reward in adaptive bit
rate video streaming and congestion control, respectively,
but the adversary’s goals can be related to any behavior of
the protocol. For example, the congestion control adversary
could be given a goal of finding conditions in which the
protocol causes the highest amount of congestion. Likewise,
an ABR adversary could be created with the specific goal of
causing rebuffering or low bit-rate playback. Specific goals
like these might yield better insights about protocol behavior
than general goals, like minimizing QoE. Adversaries trained
in other contexts to cause route flapping, BGP leaks, or incast
might be useful since such problems generally occur rarely,
but represent a significant problem when they do occur.

90

Robustifying Network Protocols with Adversarial Examples HotNets ’19, November 13–15, 2019, Princeton, NJ, USA

Guiding protocol development: We think that there are
rich possibilities for using RL adversaries to assist humans
in protocol development. Consider the case of continuous
integration, where the protocol is changed over time, but it
is desirable that all previously-fixed problems remain fixed.
In such a case, using an adversary to create inputs that cause
the exact problem in question, instead of running a fixed set
of traces that caused problems in an earlier version of the
code, would help developers create a more robust fix.

6 RELATEDWORK
Testing the performance of network protocols has long been
an important part of networking, because applications using
the network rely on high performance to meet key qual-
ity metrics like latency, rebuffering and download time. As
a result, a vast collection of simulators [14, 20] and emu-
lators [18, 27] provide a means to test many network pro-
tocols. Pantheon [29] runs a variety of congestion control
algorithms on real-world paths and emulated paths intended
to reflect real world scenarios. However, Pantheon does not
identify conditions that cause undesirable behavior in as-yet-
unobserved circumstances. In addition, when undesirable
behavior is observed in Pantheon, it may not be as easy to
understand what part of a trace was important to the bad
behavior. Running algorithms in the real world as Pantheon
does may also significantly slow down the development of
RL-based algorithms like Pensieve [17], which can be trained
much faster in a simulator or against an adversary. In general,
our work should not be seen as a replacement for running
real-world tests or trace-based tests in simulation or emu-
lation. Instead, our work should be regarded as a way to
generate a broader set of test cases to improve robustness
and understand a protocol’s flaws.
Using ML to generate complex test input (such as a net-

work trace, in our case) is not a new idea. For example, recent
work has integrated ML and test input generation in the do-
main of fuzz testing for PDF parsers [9]. UsingML to generate
tests for software dates back more than a decade [24]. [2]
uses supervised learning to aid in testing network protocols
for security flaws. While such an approach may work when
researchers have a reasonably universal way to model all
possible implementations of a protocol, as in an extremely
constrained security context, it does not extend well to cases
where protocols may be implemented in a wide variety of
ways. Additionally, this method can be used to test correct-
ness, but does not appear to have a straightforward extension
for testing performance.

Our approach bears similarities to both generative adver-
sarial networks (GANs) [10], and to competitive multi-agent
environments [16]. GANs are similar to our approach for
enhancing the robustness of ML-based protocols in that two
ML schemes train to defeat each other with the ultimate goal
of producing just one successful scheme. GANs, however,
represent a supervised learning approach, and it is not clear

how this can be extended to our context (problems to be
solved include proper choice of loss and contending with
delayed rewards). Our approach can involve two interact-
ing RL-based agents (the adversary and the target RL-based
protocol). In this respect, our work is more similar to ideas
like self-play in competitive multi-agent learning, in which
two agents sequentially act. However, we train the adversary
only as a means to improve the RL-based protocol.

7 CONCLUSION
Our work presents a novel framework for testing network
protocols on adversarial traces produced via RL. We showed
that these traces can be used in several interesting ways,
including identifying conditions in which a protocol per-
forms poorly, gaining insights into algorithmic weaknesses
of existing protocols, and improving RL-based algorithms.
We thank the Israel Science Foundation and Huawei for

support of our work.

REFERENCES
[1] Venkat Arun and Hari Balakrishnan. 2018. Copa: Practical delay-based

congestion control for the Internet. In 15th USENIX Symposium on
Networked Systems Design and Implementation. 329–342.

[2] L. C. Briand. 2008. Novel Applications ofMachine Learning in Software
Testing. In 2008 The Eighth International Conference on Quality Software.
3–10. https://doi.org/10.1109/QSIC.2008.29

[3] Neal Cardwell, Yuchung Cheng, C. Stephen Gunn, Soheil Hassas
Yeganeh, and Van Jacobson. 2016. BBR: Congestion-Based Conges-
tion Control. Queue 14, 5, Article 50 (Oct. 2016), 34 pages. https:
//doi.org/10.1145/3012426.3022184

[4] Li Chen, Justinas Lingys, Kai Chen, and Feng Liu. 2018. AuTO: Scaling
Deep Reinforcement Learning for Datacenter-scale Automatic Traffic
Optimization. In Proceedings of the 2018 Conference of the ACM Special
Interest Group on Data Communication (SIGCOMM ’18). ACM, New
York, NY, USA, 191–205. https://doi.org/10.1145/3230543.3230551

[5] Cisco. 2016. Cisco Visual Networking Index: Forecast and methodol-
ogy, 2016-2021. https://www.cisco.com/c/en/us/solutions/collateral/
service-provider/global-cloud-index-gci/white-paper-c11-738085.
html. (2016).

[6] Mo Dong, Tong Meng, Doron Zarchy, Engin Arslan, Yossi Gilad,
Brighten Godfrey, and Michael Schapira. 2018. PCC Vivace: Online-
Learning Congestion Control. In 15th USENIX Symposium on Net-
worked Systems Design and Implementation. 343–356.

[7] F. Farahnakian, P. Liljeberg, and J. Plosila. 2014. Energy-Efficient
Virtual Machines Consolidation in Cloud Data Centers Using Re-
inforcement Learning. In 2014 22nd Euromicro International Confer-
ence on Parallel, Distributed, and Network-Based Processing. 500–507.
https://doi.org/10.1109/PDP.2014.109

[8] Federal Communications Commission. 2016. Raw Data
- Measuring Broadband America 2016. https://www.fcc.
gov/reports-research/reports/measuring-broadband-america/
raw-data-measuring-broadband-america-2016. (2016).

[9] Patrice Godefroid, Hila Peleg, and Rishabh Singh. 2017. Learn&Fuzz:
Machine Learning for Input Fuzzing. In Proceedings of the 32nd
IEEE/ACM International Conference on Automated Software Engineering
(ASE 2017). IEEE Press, Piscataway, NJ, USA, 50–59. http://dl.acm.org/
citation.cfm?id=3155562.3155573

[10] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014.

91

https://doi.org/10.1109/QSIC.2008.29
https://doi.org/10.1145/3012426.3022184
https://doi.org/10.1145/3012426.3022184
https://doi.org/10.1145/3230543.3230551
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.html
https://doi.org/10.1109/PDP.2014.109
https://www.fcc.gov/reports-research/reports/measuring-broadband-america/raw-data-measuring-broadband-america-2016
https://www.fcc.gov/reports-research/reports/measuring-broadband-america/raw-data-measuring-broadband-america-2016
https://www.fcc.gov/reports-research/reports/measuring-broadband-america/raw-data-measuring-broadband-america-2016
http://dl.acm.org/citation.cfm?id=3155562.3155573
http://dl.acm.org/citation.cfm?id=3155562.3155573

HotNets ’19, November 13–15, 2019, Princeton, NJ, USA T. Gilad, N. Jay, M. Shnaiderman, B. Godfrey, and M. Schapira

Generative adversarial nets. In Advances in neural information process-
ing systems. 2672–2680.

[11] Sangtae Ha, Injong Rhee, and Lisong Xu. 2008. CUBIC: a new TCP-
friendly high-speed TCP variant. ACM SIGOPS operating systems
review 42, 5 (2008), 64–74.

[12] Ashley Hill, Antonin Raffin, Maximilian Ernestus, Adam Gleave, Rene
Traore, Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex
Nichol, Matthias Plappert, Alec Radford, John Schulman, Szymon
Sidor, and Yuhuai Wu. 2018. Stable Baselines. https://github.com/
hill-a/stable-baselines. (2018).

[13] Te-Yuan Huang, Ramesh Johari, Nick McKeown, Matthew Trunnell,
and Mark Watson. 2015. A buffer-based approach to rate adapta-
tion: Evidence from a large video streaming service. ACM SIGCOMM
Computer Communication Review 44, 4 (2015), 187–198.

[14] Teerawat Issariyakul and Ekram Hossain. 2010. An Introduction to
Network Simulator NS2. Springer Publishing Company, Incorporated.

[15] Nathan Jay, Noga Rotman, Brighten Godfrey, Michael Schapira, and
Aviv Tamar. 2019. A Deep Reinforcement Learning Perspective on
Internet Congestion Control. In International Conference on Machine
Learning. 3050–3059.

[16] Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and
Igor Mordatch. 2017. Multi-agent actor-critic for mixed cooperative-
competitive environments. In Advances in Neural Information Process-
ing Systems. 6379–6390.

[17] Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh. 2017. Neural
adaptive video streaming with Pensieve. In Proceedings of the Confer-
ence of the ACM Special Interest Group on Data Communication. ACM,
197–210.

[18] Ravi Netravali, Anirudh Sivaraman, Somak Das, Ameesh Goyal, Keith
Winstein, James Mickens, and Hari Balakrishnan. 2015. Mahimahi:
Accurate Record-and-Replay for HTTP. In USENIX Annual Technical
Conference 2015. Santa Clara, CA.

[19] Haakon Riiser, Paul Vigmostad, Carsten Griwodz, and Pål Halvorsen.
2013. Commute path bandwidth traces from 3G networks: analysis
and applications. In Proceedings of the 4th ACM Multimedia Systems
Conference. ACM, 114–118.

[20] G.F. Riley and T.R. Henderson. 2010. The ns-3 Network Simulator.
(2010).

[21] Saim Salman, Christopher Streiffer, Huan Chen, Theophilus Benson,
and Asim Kadav. 2018. DeepConf: Automating Data Center Network
Topologies Management with Machine Learning. In Proceedings of the
2018 Workshop on Network Meets AI & ML. ACM, 8–14.

[22] Michael Schapira and KeithWinstein. 2017. Congestion-control throw-
down. In Proceedings of the 16th ACM Workshop on Hot Topics in Net-
works. ACM, 122–128.

[23] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and
Oleg Klimov. 2017. Proximal policy optimization algorithms. arXiv
preprint arXiv:1707.06347 (2017).

[24] G. Shu and D. Lee. 2007. Testing Security Properties of Protocol
Implementations - a Machine Learning Based Approach. In 27th In-
ternational Conference on Distributed Computing Systems (ICDCS ’07).
25–25. https://doi.org/10.1109/ICDCS.2007.147

[25] Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning:
An introduction. MIT press.

[26] Asaf Valadarsky, Michael Schapira, Dafna Shahaf, and Aviv Tamar.
2017. A Machine Learning Approach to Routing. CoRR abs/1708.03074
(2017). arXiv:1708.03074 http://arxiv.org/abs/1708.03074

[27] Brian White, Jay Lepreau, Leigh Stoller, Robert Ricci, Shashi Gu-
ruprasad, Mac Newbold, Mike Hibler, Chad Barb, and Abhijeet Joglekar.
2002. An integrated experimental environment for distributed systems
and networks. ACM SIGOPS Operating Systems Review 36, SI (2002),
255–270.

[28] Xiaojie Zhou, Kun Wang, Weijia Jia, and Minyi Guo. 2017. Rein-
forcement learning-based adaptive resource management of differ-
entiated services in geo-distributed data centers. In 2017 IEEE/ACM
25th International Symposium on Quality of Service (IWQoS). 1–6.
https://doi.org/10.1109/IWQoS.2017.7969161

[29] Francis Y. Yan, Jestin Ma, Greg D. Hill, Deepti Raghavan, Riad S.
Wahby, Philip Levis, and Keith Winstein. 2018. Pantheon: the train-
ing ground for Internet congestion-control research. In 2018 USENIX
Annual Technical Conference (USENIX ATC 18). USENIX Association,
Boston, MA, 731–743. https://www.usenix.org/conference/atc18/
presentation/yan-francis

[30] Xiaoqi Yin, Abhishek Jindal, Vyas Sekar, and Bruno Sinopoli. 2015. A
control-theoretic approach for dynamic adaptive video streaming over
HTTP. In ACM SIGCOMM Computer Communication Review, Vol. 45.
ACM, 325–338.

92

https://github.com/hill-a/stable-baselines
https://github.com/hill-a/stable-baselines
https://doi.org/10.1109/ICDCS.2007.147
http://arxiv.org/abs/1708.03074
http://arxiv.org/abs/1708.03074
https://doi.org/10.1109/IWQoS.2017.7969161
https://www.usenix.org/conference/atc18/presentation/yan-francis
https://www.usenix.org/conference/atc18/presentation/yan-francis

	Abstract
	1 Introduction
	2 High-Level Approach
	2.1 On Generating Adversarial Traces
	2.2 Our Adversarial RL Framework
	2.3 Learning from Adversarial Traces

	3 Adaptive Video Streaming
	3.1 Generating Adversarial Traces
	3.2 Finding Weaknesses in Buffer-Based
	3.3 A Better Pensieve

	4 Internet Congestion Control
	5 Discussion
	6 Related Work
	7 Conclusion
	References

