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ABSTRACT
The trend towards simple datacenter network fabric strips most net-
work functionality, including load balancing, out of the network core
and pushes it to the edge. This slows reaction to microbursts, the
main culprit of packet loss in datacenters. We investigate the opposite
direction: could slightly smarter fabric significantly improve load
balancing? This paper presents DRILL, a datacenter fabric for Clos
networks which performs micro load balancing to distribute load as
evenly as possible on microsecond timescales. DRILL employs per-
packet decisions at each switch based on local queue occupancies
and randomized algorithms to distribute load. Our design addresses
the resulting key challenges of packet reordering and topological
asymmetry. In simulations with a detailed switch hardware model
and realistic workloads, DRILL outperforms recent edge-based load
balancers, particularly under heavy load. Under 80% load, for ex-
ample, it achieves 1.3-1.4× lower mean flow completion time than
recent proposals, primarily due to shorter upstream queues. To test
hardware feasibility, we implement DRILL in Verilog and estimate
its area overhead to be less than 1%. Finally, we analyze DRILL’s
stability and throughput-efficiency.
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1 INTRODUCTION
Modern datacenter topologies such as Clos networks (Figure 1) are
overwhelmingly constructed with large path diversity [4, 17, 19, 41,
42, 50, 51, 57]. A critical issue is the efficient balancing of load
among available paths. While ECMP is extensively used in practice
[42, 48, 64], it is known to be far from optimal [19, 27, 42]. A study
of 10 datacenters, for instance, indicates a significant fraction of
core links regularly experience congestion even while there is spare
capacity elsewhere [23].

Many recent proposals address this need. Aligned with the recent
trend of moving functionality out of the network fabric [28], many
proposals strive to delegate load balancing to centralized controllers
[18, 25, 32, 59], to the network edge [19], or even to end-hosts
[27, 42]. These entities serve as convenient locations for collecting
global or end-to-end information about congestion. A notable ex-
ample is CONGA [19], in which switches at the edge (leafs in Clos
networks) gather and analyze congestion feedback from remote leafs
and spines to inform forwarding decisions. Planck [61], MicroTE
[25], Mahout [32] and Hedera [18] collect global load information.
All these approaches are based on the thesis that non-local conges-
tion information is necessary to evenly balance load.

We explore a different direction: What can we achieve with deci-
sions local to each switch? We call this approach micro load balanc-
ing because it makes “microscopic” decisions within each switch,
sans global information; and because this in turn allows decisions
on microsecond (packet-by-packet) timescales.

Micro load balancing offers hope of an advantage because load
balancing systems based on global traffic information have control
loops that are significantly slower than the duration of the majority
of congestion incidents in datacenters, which are short-lived [23, 45].
The bulk of microbursts responsible for most packet loss, for in-
stance, last for a few microseconds in measurements of [24]. Sys-
tems that collect and react based on global congestion information
typically have orders of magnitude slower control loops [19, 61].
For example, even though CONGA adds hardware mechanisms to
leaf and spine switches, its control loop still typically requires a few
RTTs, by which time the congestion event is likely already over.

Our realization of micro load balancing is DRILL (Distributed
Randomized In-network Localized Load-balancing). Like ECMP,
DRILL presumes that a set of candidate (least-cost) next-hops for
each destination have been installed in each switch’s forwarding
table by a routing protocol, and in the data plane acts entirely locally
without any coordination among switches or any controllers. Un-
like ECMP, DRILL makes forwarding decisions that are load-aware
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and independent for each packet. Even within a single switch, im-
plementing this idea can be nontrivial. To accommodate switches
with multiple forwarding engines, DRILL uses a scheduling algo-
rithm inspired by the “power of two choices” paradigm [53]: each
engine compares queue lengths of two random ports plus the previ-
ously least-loaded port, and sends the packet to the least loaded of
these. We extend the classic theory to accommodate a distributed
set of sources (forwarding engines), showing that the key stability
result holds (§3.2.4). We show how to optimize DRILL’s parame-
ters to avoid damaging synchronization effects where many engines
choose the same ports. We further investigate if DRILL’s load-based
scheduling algorithms within a switch could result in instability and
hence low throughput [52], proving stability and a 100% throughout
guarantee for all admissible independent arrival processes (§3.2.4).

This design raises a key challenge: how can we deal with packet
reordering that results from load balancing at sub-flow granularities?
Interestingly, we find that in Clos datacenter networks, even with
failures, DRILL balances load so well that packets nearly always
arrive in order despite traversing different paths. Regardless, occa-
sional reorderings could still be undesirable for certain applications.
Hence, similar to prior work [35, 42], we optionally deploy a buffer
in the host GRO layer to restore correct ordering.

A second challenge is to handle asymmetric topologies: splitting a
flow across asymmetric paths could cause serious problems for TCP
due to reordering and differential loss rates. To handle asymmetry,
DRILL partitions network paths into symmetric groups and applies
micro load balancing inside each partition. We show that this results
in bandwidth efficiency for admissible traffic (§3.4) and short flow
completion times even under multiple failures (§4).

To evaluate DRILL, we simulate a detailed switch hardware
model and a variety of topologies and workloads to compare DRILL
with ECMP, CONGA, and Presto. Compared to ECMP, DRILL’s fine
granularity and load awareness make it substantially more effective
in preserving low latency particularly under load, e.g., under 80%
load, it cuts the mean flow completion times (FCT) of ECMP by
1.5×. Compared to CONGA’s use of “macroscopic” information,
DRILL’s micro load balancing enables it to instantly react to load
variations as the queues start building up. DRILL results in dra-
matically shorter tail latencies, especially in incast scenarios (2.1×
reduction in the 99.99th percentile of FCT compared to CONGA)
and under heavy load (1.4× shorter 99.99th percentile of FCT com-
pared to CONGA under 80% load). Plus, DRILL offers a simpler
switch implementation than CONGA since it does not need to detect
flowlets or send and analyze feedback.

Presto [42] offers an interesting comparison. It moves load balanc-
ing to the edge, but is congestion-oblivious: hosts source-route their
traffic across all shortest paths, at the granularity of flow-cells. Thus
it has finer granularity than ECMP, but DRILL has even finer granu-
larity and is load-sensitive. We find that these factors yield higher
performance for DRILL, but the degree depends on the nature of
workload dynamics. The difference is greatest in bursty workloads,
e.g., , 2.6× improvement in tail FCT in an incast scenario (§4).

Finally, we implement DRILL in Verilog to test its hardware
feasibility (§4). Our analysis of required logical units and their
layout shows at most 1% overhead compared to a reference switch.

In summary, our results show that micro load balancing in Clos
datacenter fabric is practical and achieves high performance, even
outperforming schemes that use network-wide information.

2 BACKGROUND
Clos topologies enable datacenter providers to build large scale net-
works out of smaller, and significantly cheaper, commodity switches
with fewer ports connected with links of less capacity than in tra-
ditional designs [41, 49]. Today, most datacenter and enterprise
topologies are either built as one two-stage folded Clos, also called
leaf-spine topologies (one example is shown in Figure 1) [19] or
incorporate Clos subgraphs in various layers in their design. Clos
networks or variants thereof are used in [49] and in various genera-
tions of datacenter at Google, for instance [64]. As another example,
the VL2 network [41] is composed of a Clos network between its
Aggregation and Intermediate switches.

  

Spine 
layer

Leaf 
layer

Figure 1: A leaf-
spine: an example
of a folded Clos.

A key characteristic of Clos networks is
having multiple paths between any source
and destination hosts. The common prac-
tice in datacenters today for balancing load
among these paths is ECMP [48]. When
more than one “best path”, commonly se-
lected to minimize the number of hops of
each path, is available for forwarding a packet towards its destina-
tion, each switch selects one via hashing the 5-tuple packet header:
source and destination IPs, protocol number, and source and destina-
tion port numbers. This path selection mechanism enables ECMP to
avoid reordering packets within a TCP flow without per-flow state.
All the examples of the Clos networks given above deploy ECMP
[41, 49, 64].

ECMP, however, is routinely reported to perform poorly and
cause congestion when flow hash collisions occur [19, 24, 42, 64].
Datacenter measurement studies, for instance, show that a significant
fraction of core links regularly experience congestion despite the
fact that there is enough spare capacity elsewhere to carry the load
[23]. Many proposals have tried to enhance ECMP’s performance
by balancing finer-grained units of traffic. Aligned with the recent
trend of moving functionality out of the network fabric [28], these
proposals strive to delegate this task to centralized controllers [18,
25, 32, 59, 61], to the network edge [19], or even to end-hosts
[27, 42]. In Presto, for instance, end-hosts split flows into flowcells,
TSO (TCP Segment Offload) segments of size 64KB; the network
balances flowcells, instead of flows, in a load-oblivious manner [42].
Presto is built on the premise that the per-flow coarse granularity
of ECMP combined with the existence of large flows in datacenters
is the primary deficiency of ECMP, and in any Clos network with
small flows, ECMP is close to optimal [42]. In CONGA, as another
example, each edge switch balances flowlets [19] based on cross-
network load information. Its central thesis is that not only the
fine granularity of the load to balance, but also that global load
information is essential for optimal load balancing and reacting to
congestion. Presto and CONGA balance granularities coarser than
packets to reduce reordering.

While improving ECMP, these proposals cannot effectively sup-
press short-lived congestion events that tend to persist for only
sub-millisecond intervals [1, 13], sometimes called microbursts
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[3, 13, 14, 23], as even the fastest ones have control loops with
10s of millisecond to a few second delays [19, 25, 61]. However,
microbursts are responsible for a majority of packet loss in dat-
acenters according to the measurements of [23]. In today’s data-
centers, despite the reportedly low average link utilizations (1% to
20-30% at various stages [62, 64]), the highly bursty nature of traf-
fic [19, 25, 62] makes very short-lived periods of buffer overrun
and consequently high loss rates the norm rather than the excep-
tion. The buffer utilization statistics at a 10-microsecond granularity
from Facebook datacenters for switches connecting web servers and
cache nodes, for instance, demonstrate a persistent several orders of
magnitude difference between the maximum and the mean queue
occupancies [62]. Plus, the maximum buffer occupancy in these
Facebook web server racks is reported to approach the configured
limit for approximately three quarters of the 24-hour measurement
period, even though the mean link utilization for the same rack is
only 1% [62]. These ephemeral high buffer occupancies are corre-
lated with high drop rates [62]. The inherent traffic burstiness also
results in high congestion drop rates in Google datacenters as utiliza-
tion approaches 25%, so the utilization is typically kept below that
level [64]. Given the pervasiveness of microbursts and their adverse
impact on the performance, in terms of low flow completion times
and high throughput, our first goal is to provide high performance
especially when microbursts emerge.

Despite ECMP’s suboptimality in handling congestion, its ex-
treme simplicity and scalability effectively has turned it into the de
facto load balancing practice in datacenters [41, 62, 64]. Notably,
the fact that it is local to each switch in the sense that, for forwarding
packets, each switch autonomously selects among available paths,
irrespective of the load and choices of other switches, makes it eas-
ily deployed in conjunction with most routing protocols. Once the
global topological information is gathered, each switch makes local
forwarding decisions. Networks are therefore relieved of the burden
of complex mechanisms for gathering global load information either
via distributed algorithms (as in CONGA [19]) or in a centralized
manner (as in Planck [61]). Ideally, we would want to share ECMP’s
scalability and simplicity. Hence, in designing DRILL, our second
goal is to make load balancing decisions local to each switch.

3 DESIGN AND ALGORITHMS
3.1 Design overview
An ideal fluid-model approach for symmetric Clos networks. To
provide intuition that we can build upon, we begin with a simplified
model where traffic is a fluid. With the goal of modeling a short
moment in time, we assume hosts inject fluid at fixed rates, and the
network’s goal is to balance the amount of fluid directed through
parallel paths.1 Furthermore, for now assume a symmetric leaf-spine
data center.

In this model, consider a scheme we call Equal Split Fluid
(ESF): at each switch with n least-cost paths to a destination, the
switch sends exactly 1/n of the fluid traffic to that destination along
each path. ESF produces precisely optimal load balance regardless
1This model intentionally does not deal with packets or end-host control loops. If the
fluid directed to some port exceeds its capacity, one can assume the excess is simply
discarded in equal proportion on all flows; however, this is not relevant to the intuition
we want to provide, and one can simply assume that the volume of fluid is within the
capacity of each port.

of the traffic demands. To see why, consider the first leaf on a path:
all its traffic can be sent with equal cost to any of the n spines, so
each “upward” port receives exactly 1/n of each flow entering that
leaf. Hence, the incoming traffic to any spine (from all leafs) includes
1/n of every end-to-end flow. Since the spines’ incoming traffic is
identical, their outgoing “downward” traffic to any specific leaf is
also identical. In the end, of course, not all ports have the same load;
hosts and leafs will vary in how much flow they send and receive.
But if we consider any two hosts, all shortest paths between them
will have the same flow volume (and mix of individual flows!) at
corresponding hops along the paths; we refer to these as symmetric
paths.2 This intuition extends to more general Clos networks (see
Theorem 4 in [37]) and is essentially the fluid-model intuition behind
Valiant load balancing (VLB) [68].

While optimal, ESF is merely a theoretical fluid-model ideal that
the switching fabric needs to approximate in a real discrete world. We
can interpret several existing load balancing schemes as attempting
to approximate ESF. ECMP is similar to ESF in that across long
timescales, on average, it will equally split traffic on all equal-cost
outgoing ports. But it is a poor approximation at the small timescales
that matter, because it makes decisions (a) in very coarse-grained
chunks of whole flows, and (b) uniform-pseudorandomly without
regard to load, resulting in occasional unlucky load collisions. Presto
[42] shrinks the unit of discretization to the 64 KB flowcell, and
uniformly spreads these flowcells using end-host source routing,
partially mitigating problem (a). One could imagine going a step
further to what we call Per-packet Random which sends each packet
through a uniform-random intermediate (spine) switch. This design
was avoided in [42] to reduce end-host CPU overhead and packet
reordering. But regardless, Per-packet Random would help problem
(a) but not (b), and we will see empirically that both problems are
important.

DRILL as a near-optimal approximation of ESF. The previ-
ous discussion helps us frame the problem in a way that provides
a direction forward: Can we approximate ESF even more closely?
If we could, the ESF approach could achieve our goals of high per-
formance even at microsecond timescales, and using a switch-local
algorithm. But approximating the theoretical ideal is nontrivial. To
achieve this, DRILL first chooses the smallest practical unit of dis-
cretization, i.e., single packets. This is also a decision unit that is
simple for switches to deal with statelessly (and avoids the concern
mentioned in [42] of overhead of per-packet forwarding decisions at
endhosts, by having switches make the decisions). Second, DRILL
does not forward traffic uniform-randomly. Instead, DRILL lever-
ages switch-local load information, sampling some or all outgoing
queues when making each packet’s forwarding decision and placing
the packet in the shortest of these queues. Intuitively, this minimizes
the “error” between the ideal fluid-based ESF and actual packet
forwarding. In particular, we prove in §3.2 that DRILL is stable and
can deliver 100% throughput for all admissible independent arrival
processes.

2More precisely, let Li be the set of hosts attached to leaf ℓi and f (s, t ) be the flow
volume from host s to host t . All paths from host h1 ∈ L1 to host h2 ∈ L2 take the form
h1 → ℓ1 → some spine→ ℓ2 → h2. Regardless of which spine is used, they have the
same flow

∑
t,h1 f (h1, t ) on the first link, the same flow 1

n
∑
s∈L1

∑
t<L1 f (s, t ) on

the second link, the same flow 1
n
∑
s<L2
∑
t∈L2 f (s, t ) on the third link and the same

flow
∑
s,h2 f (s, h2 ) on the last one.

227



SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA S. Ghorbani et al.

Together, these mechanisms achieve a significantly better approx-
imation of ESF than past designs. However, two key challenges
remain, which we discuss next.

Packet reordering. DRILL’s fine grained per-packet load balanc-
ing based on potentially rapidly changing local load information
raises concern about reordering that could imperil TCP throughput.
We show in §3.2 and §3.3 that under this algorithm, the load is so
well balanced that even under heavy load, the probability of reorder-
ing is very small—in most cases, well below the degree that damages
TCP throughput, and indeed well below the degree that can be re-
solved by recent proposals for handling reordering at the end hosts
by modifying the Generic Receive Offload (GRO) handler [35, 42].
While DRILL can employ such techniques to avoid reordering, in
many environments, it provides a substantial benefit even without
them.

Topological asymmetry. In asymmetric networks, the world is
no longer as simple. Naively splitting traffic equally among all paths,
as in ESF, does not optimally balance load. And if TCP flows are
split across paths of unequal available capacity, they will back off due
to losses on the slower path, leaving some capacity unused. (These
problems would carry through to Presto and per-packet Random as
well.) Furthermore, if we split flows packet-by-packet among a set
of paths with different load, and hence different queueing delay, we
can expect a high degree of packet reordering.

To deal with asymmetric Clos networks, DRILL’s control algo-
rithms decompose the set of paths at each switch into a minimal
number of groups, such that the paths within each group are symmet-
ric. In the data plane, it hashes flows to a group (like ECMP), and
then performs per-packet load-aware micro load balancing across the
paths within each group (as described above for the symmetric case).
Thus, as the network becomes more asymmetric, DRILL becomes
more similar to ECMP. Note that this approach is not intended to
handle fully arbitrary networks or alternative topologies like random
graphs [65]. The primary environment we target for DRILL is sym-
metric leaf-spine or Clos data centers, which are likely to become
asymmetric through occasional failures. Our approach essentially
offers a graceful degradation from DRILL to ECMP.

Summary. In the spectrum of strictly load-oblivious schemes
(ECMP, Presto) to globally load-aware schemes (CONGA [19],
Planck [61]), DRILL occupies middle ground: it retains most of
the simplicity and scalability of the first class, but leverages a small
amount of additional local load information and negligible amount
of state independent of the number of flows to achieve better perfor-
mance than the state of the art in either class (§4). In the rest of this
section, we present DRILL’s design in more detail, beginning with
the symmetric case (§3.2), and then handling reordering (§3.3) and
asymmetry (§3.4).

3.2 DRILL in a symmetric Clos
DRILL in a symmetric Clos begins by using a standard control plane
— OSPF with the ECMP extension in our prototype — to construct a
global topology map, select routes, and install an equal-cost group
in the forwarding table. DRILL’s new mechanisms are in the data
plane, which we focus on here.

In a symmetric Clos, our mission is to get as close to ESF as
possible. Before presenting the algorithms, we provide a high level
overview of the switching hardware that might affect load balancing.

3.2.1 Switching hardware. Switches have forwarding engines
that make forwarding decisions for packets. While many of the sim-
ple switches deployed in datacenters have one centralized engine [8],
higher-performance switches invariably have multiple forwarding
engines [6, 26, 31, 67]. Very high performance switches might have
multiple engines on each interface card [31]. These engines make
parallel and independent forwarding decisions. Cisco 6700 Series
[5], Cisco 6800 Series [5], Cisco 7500 Series [7], Cisco Catalyst
6500 backbone switch series [5], and Juniper MX Series [9] are
some examples of switches that support multiple forwarding engines.
In Cisco switches, for example, multiple Distributed Forwarding
Card (DFC) are installed for line cards. The forwarding logic is
then replicated on each DFC-enabled line card, and each card makes
forwarding decisions locally and independent of other cards. Some
switches have constant access to queue depth, typically as a means
for micro-burst monitoring [1, 10, 12–14]. This feature allows the
network provider to monitor traffic on a per-port basis to detect
unexpected data bursts within a very small time window of µsec
[13]. Our discussions with [8] indicate that while this information
is easily accessible for packet forwarding, it is not always precise:
the queue length does not include the packets that are just entering
the queue until after they are being fully enqueued. Our simulator
models this behavior. It is possible that in some switches, queue
information would be even more imprecise or delayed; we leave a
study of such switches to future work.

3.2.2 DRILL(d,m) scheduling policies. Here we present
DRILL’s algorithm for scheduling packets in each switch in a sym-
metric Clos. We assume that a set of candidate next-hops for each
destination has been installed in the forwarding tables of each engine
of the switch, using well-known mechanisms such as the shortest
paths used by ECMP. DRILL is essentially a switch-local scheduling
algorithm inspired by the seminal work on power of two choices
[22] that, whenever more than one next hop is available for the
destination of a packet, decides which hop the packet should take.

The DRILL(d,m) algorithm operates as follows at each switch.
Upon each packet arrival, the packet’s forwarding engine randomly
chooses d out of N possible output ports, finds the one with the
current minimum queue occupancy between these d samples andm
least loaded samples from previous time slots, and routes its packet
to that port. Finally, the engine updates its m memory units with the
identities of the least loaded output queues among the samples.

This algorithm has time complexity O (d +m). Our experiments
with Clos networks with various sizes, switches with diverse number
of engines, and different load show that (a) having a few choices and
few units of memory is critical to the efficiency of our algorithms,
e.g., DRILL(2,1) significantly outperforms Per-packet Random
and RR, and (b) increasing d beyond 2 andm beyond 1 has less of
an impact on DRILL’s performance, and in some cases may degrade
performance due to a synchronization effect. We explain each point
in turn.

3.2.3 The pitfalls of choice and memory. To inform our
choice of d and m, we evaluate DRILL(d,m)’s performance and
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Figure 2: (a) 80% load. (b) 30% load. Adding a choice and a memory
unit improves performance dramatically.

compare it with ECMP, per-packet Random, and RR using the fol-
lowing methodology: We build Clos datacenters of different sizes
in a packet level simulator (details in §4), draw flow sizes and inter-
arrival times from [62], and scale the interarrival times to emulate
various degrees of network load. Given that the dominant source
of latency in datacenters is queueing delay [20], in this section, our
goal is to minimize queue lengths. (§4 will measure higher level
metrics such as flow completion times and throughput.) An ideal
load balancer should balance the load across uplink queues of each
leaf switch as well as across the spine layer’s downlink queues con-
nected to the same leaf switch. Hence, as the performance metric,
at every 10µsec during the 100 sec experiments, we measure the
standard deviation (STDV) of uplink queue lengths for each leaf
switch and the STDV of queue lengths of all downlinks of spine
switches connected to each leaf switch. ESF would theoretically
keep this metric constantly zero, and we strive to get close to zero.

Small amounts of choice and memory dramatically improve
performance. Our experiments show that in networks with different
sizes, deploying switches with different number of engines, and
under high and low load, adding a slight amount of choice and
memory, e.g., DRILL(2,1) instead of per-packet Random or RR,
significantly improves the load balancing performance especially
under heavy load. In networks with 48 spines and 48 leafs each
connected to 48 hosts, for instance, under 80% load, DRILL(2,1)
reduces the avg. STDV of queue lengths by over 65% compared to
per-packet Random, irrespective of the number of engines in each
switch (Figure 2 (a)). per-packet Random, in turn, improves upon
ECMP by around 94% as a result of its finer grained, per-packet
operations. DRILL’s improvement upon RR is more pronounced for
switches with large number of engines, but even with single-engine
switches under load, DRILL achieves more balanced queues as its
load sensing based on queue sizes allows it to balance out the packet
size variances. When the network is less loaded and switches have
more engines, the improvement is less dramatic. As an example,
under 30% load, DRILL(2,1) outperforms per-packet Random
and RR by around 20% if the network is built out of 48 engine
switches, and by over 75% with single-engine ones (Figure 2 (b)).

Too much memory and too many choices may degrade per-
formance. While a few choices and units of memory improve per-
formance dramatically, excessive amounts of them degrade the per-
formance for switches with large number of engines (more than 6
in our experiments) under heavy load. Figures 3 shows an example
for a network with 48-engine switches under 80% load. While the
first extra choice, i.e., DRILL(1,2) vs. DRILL(1,1) reduces
the mean queue length STDV by 11%, having 20 choices, i.e.,
DRILL(1,20), increases this metric by 8%. The reason is that
the larger number of random samples or memory units makes it
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Figure 3: Excessive choices & memory cause sync effect.

more likely for a large number of engines to simultaneously select
the same set of output ports which will in turn cause bursts of pack-
ets at those ports. We call this phenomenon synchronization effect.
The resulted load imbalance may cause more queueing delays, e.g.,
while the 99.999th percentile of queue lengths is below 1 under
DRILL(1,2) (i.e., the queues are almost always empty), the 99th

percentile of queue lengths under DRILL(1,20) is slightly larger
than 1, i.e., under DRILL(1,20), in 1% of the cases, packets expe-
rience some queueing latency because of the synchronization effect.
For other cases (under light load or having fewer engines), setting
d ≫2 and m ≫1 results in more balanced load, but the impact on
queue lengths is marginal given that the queues are already almost
perfectly balanced under DRILL(2,1). With one engine switches
under 80% load, for example, while the mean queue length STDV is
lower in DRILL(12,1) compared to DRILL(2,1), the 99.999th

percentile of queue lengths is under 1 for both, i.e., packets rarely
experience any queueing delays.

3.2.4 DRILL guarantees stability. A system is stable if the
expected length of no queue grows without bound [52]. We con-
sider an M × N combined input output queued switch with FIFO
queues in which the arrivals are independent and packets could be
forwarded to any of the N output ports. We assume traffic admis-
sible, i.e.,

∑M
i=1 δi ≤

∑N
i=1 µi , where δi is the arrival rate to input

port i and µ j is the service rate of output queue j. We place no re-
striction on the heterogeneity of arrival rates or service rates. These
rates can be different and could dynamically change over time. Par-
ticularly, we focus on the more interesting and more challenging
case where service rates could vary over time because of various
reasons such as failures and recoveries that are common in data cen-
ters [39]. We first prove that purely randomized algorithms without
memory, e.g., DRILL(d,0), are unstable then prove the stability
of DRILL(d,m) form > 0.

Pure random sampling is unstable. First, we consider
DRILL(d,0), i.e., the algorithm in which every forwarding en-
gine chooses d random outputs out of possible N queues, finds the
queue with minimum occupancy between them and routes its packet
to it. Theorem 1 proves that such algorithm is unstable.

Theorem 1. For admissible independent arrival processes,
DRILL(d,0) cannot guarantee stability for any arbitrary num-
ber of samples d < N .

Proof. For a switch with F forwarding engines, let γi be the
arrival rate to engine i, and µ j be the service rate of output queue j.∑F
i=1 γi=

∑M
i=1 δi . Now consider output queue I . For any forwarding

engine, the probability that it chooses I as a sample is d
N . I will

receive the maximum arrival rate if any engine that samples it also
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selects it3. So its maximum arrival rate is d
N ×

∑F
i γi . Thus, the

minimum arrival rate to the remaining N -1 output queues is ζ =∑F
i γi −

d
N ×
∑F
i γi = (1− d

N )×
∑F
i γi . Clearly, if ζ is larger than the

sum of the service rates of these N -1 queues, the system is unstable.
Note that the argument does not hold: (a) when there are some

restrictions on arrival or service rates, e.g., when the service rates are
equal, or (b) when d=N . These special cases, however, are of little
interest, since the former opts out some admissible traffic patterns,
and the latter nullifies the benefit of randomization and may cause a
synchronization effect (§3.2.3). Our experiments show that DRILL
performs well with d≪N .

Random sampling with memory is stable. We showed above
that randomized policy cannot guarantee stability without using unit
of memory. Similar to [52] and using the results of Kumar and Meyn
[47], we prove that DRILL’s scheduling algorithms are stable for
all uniform and nonuniform independent arrival processes up to a
maximum throughput of 100%. Note this result shows maximum
throughput achieveable by any packet scheduling algorithm, but
throughput may still be limited by routing sub-optimality.

Theorem 2. For all admissible independent arrivals,
DRILL(1,1) is stable and achieves 100% throughput.

To prove that the algorithm is stable, we show that for a
M×N switch scheduled by DRILL(1,1), there is a negative ex-
pected single-step drift in a Lyapunov function, V. In other words,
E[V (n + 1) −V (n) |V (n)] ≤ ϵV (n) + k , where k, ϵ >0 are some con-
stants. We do so by definingV (n)=V1 (n)+V2 (n),V1 (n)=

∑N
i=1V1,i (n),

V1,i (n)=(q̃i (n)−q∗ (n))2,V2 (n)=
∑N
i=1 q

2
i (n). qk (n), q̃i (n), and q∗ (n)

represent the lengths of the k-th output queue, the output queue
chosen by the engine i, and the shortest output queue under
DRILL(1,1) at time instance n. Details of the proof are in [37].

3.3 Packet reordering
DRILL makes forwarding decisions for each packet, independent
of other packets of the same flow, based on the local and potentially
volatile switch load information. One might expect this to cause
excessive degrees of packet reordering that could degrade TCP per-
formance by triggering its duplicate ACK mechanism, one of the
primary means of TCP for detecting packet loss. As explained in
RFC 2581 [21], when a segment arrives out of order, the receiver
immediately sends a “duplicate ACK” to the sender. The sender
uses the TCP retransmission threshold, the arrival of three duplicate
ACKs, as an indication of packet loss and congestion. It reacts by re-
transmitting the packet perceived lost and reducing its transmission
rate. Reordering may also increase CPU overhead as optimizations
such as GRO that merge bursts of incoming packets depend on in-
order delivery [35, 42]. Wary of these issues, the majority of load
balancing schemes, from ECMP to CONGA [19] to Presto [42],
avoid reordering by balancing coarser units of traffic.

However, it turns out DRILL causes minimal reordering. This
may be somewhat surprising, but using multiple paths only causes re-
ordering if the delays along those paths differ by more than the time
between packets in a flow. Queueing delay is famously the dominant
source of network delay in datacenters [20], and DRILL’s well-
balanced load and extremely low variances among queue lengths

3This happens if I ’s length is not larger than the other samples of the engine, e.g., if
µI≫
∑M
i=1 δi , I ’s length=0 and always equal or shorter than all queues.
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Figure 4: (a) L0-S0 link failure makes the topology asymmetric.
L3→L1 traffic (heavy green lines) experience more congestion at S1 and
S2, where they collide with L0→L1 traffic (dashed orange lines) than S0.
(b) Partial Quiver. L0→L1 paths add edges from S1 and S2 to L1 (dashed
lines), but not from S0 to L1. So the path via S0→ L1 (with the orange
stripes pattern) is asymmetric with those with the green plaid pattern.

(Figure 2) imply that packets experience almost identical queueing
delays irrespective of the paths they take. So even though flows’ pack-
ets take divergent paths at very fine granularity, they should not be
reordered frequently. Our experiments, using the actual TCP imple-
mentations taken from Linux 2.6, confirm this hypothesis and show
that TCP performance is not significantly impacted (§4). However,
for certain legacy or specialized applications it may be desirable to
eliminate all reordering. This can be accomplished using recent tech-
niques for building reordering-resilient network stacks via adding
an end-host shim layer [35, 42]. In §4 we evaluate both variants of
DRILL, with the shim and without.

3.4 Handling asymmetry
Until now, DRILL’s design has assumed a symmetric network. An
initially symmetric network may experience failures that cause asym-
metry, for example if a link from a leaf to a spine fails. When this
occurs, two key problems arise.

First, load balancers that split individual flows among available
paths may waste bandwidth because of their interactions with TCP’s
control loop, as noted in [19]. This happens because the asymmetric
paths available to a flow may have different and varying capacities
for it (depending on the load of other flows that use those paths).
Flow rates on each path are controlled by TCP to avoid congestion.
So splitting the load of the flow equally among asymmetric paths
effectively limits its rates on each path to the rate of the most con-
gested path. This implies that the paths with more capacity will be
left underutilized even if the flow has a demand for their bandwidth.

As a simple example, consider Figure 4 (a) where hosts under
leaf switches L0 and L3 have infinite TCP traffic demands to send
to those under L1. Assume that the L0-S0 link fails and that all links
have 40Gbps capacity. Under local schemes such as ESF, this link
failure can cause collateral damage to the flows going through other
links. This happens because the flows from L0 and L3 sent to S1 and
S2 share the bottleneck links S1→L1 and S2→L1. Assuming that the
number of these flows are equal and they are all in the steady state,
TCP does not allow the rate of the flows from L3 that take either
of these two paths P1:L3→S1→L1 and P2:L3→S2→L1, to increase
beyond 20Gbps to avoid congestion on S1→L1 and S2→L1. Now
if the load balancer tries to keep the load on path P0:L3→S0→L1
equal to that on paths P1 and P2, it keeps the rate on P0 also equal to
20Gbps, despite the fact that P0 can serve traffic at 40Gbps. In other
words, 50% of P0’s capacity will be left idle. Without its mechanism
for handling asymmetry, DRILL will have the same deficiency —
by balancing the queues, L3 effectively limits P0’s utilization to half
of its capacity. Note that some other local load balancers also suffer
from this problem. Presto’s failover mechanism [42], for example,
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prunes the spanning trees affected by the failure and uses a static
weighted scheduling algorithm, similar to WCMP [73], over the
remaining paths. In this example, since P0, P1, and P2 have static
capacity of 40Gbps each, their associated weights will be equal and
Presto continues to equally spread L3→L1’s load across them.

Note that changing weights in a load-oblivious manner does not
solve this problem since optimal weights depend on the load from
other sources—a potentially rapidly evolving parameter. In the above
example, for instance, optimal weights are w (P0) = 2 and w (P1) =
w (P2) = 1 for the given scenario, but if L0 stops sending traffic to
L1, those weights leave P1 and P2 underutilized.

In addition to this bandwidth inefficiency in the asymmetric case,
schemes such as Presto and DRILL that split flows across asym-
metric paths may cause excessive packet reordering. In the example
above, packets traversing P1 experience higher queueing delay than
those traversing P0 since S1 is more congested than S0, and thus may
arrive out of order with respect to packets sent along P0.

We observe that rather than being a fundamental deficiency of
local load balancers, both problems are rooted in imposing rate
dependencies across asymmetric paths, e.g., keeping the rates on
Pi ∈{0,1,2} equal in the example above. Intuitively, to solve these
problems, DRILL needs to break these dependencies. To achieve
this, DRILL introduces control plane and data plane changes. We
first present DRILL’s control and data plane algorithms for handling
asymmetry in multi-stage topologies with homogeneous links in
each stage, before showing how to handle heterogeneous links.

3.4.1 Control plane operations. DRILL’s control plane iden-
tifies symmetric path groups, and hands these groups over to the
data plane for micro load balancing within each group. This may be
performed locally at each switch utilizing OSPF’s link state data-
base, or centrally in an SDN network. In either case, the algorithm
proceeds as follows.

Defining symmetry precisely: DRILL does not need the entire
topology to be symmetric in every way. What functionally affects
DRILL is its choice between alternate paths: downstream, the paths
should be similar in terms of their queueing, regardless of the current
traffic pattern. But queueing along a path depends on traffic from
other source-destination pairs that collides with it. In Fig. 4(a), for
instance, the path L3S1L1 may have higher queueing than L3S0L1
because only the former shares a link with L0 → L1 traffic.

With this in mind, we define two links ℓ1, ℓ2 as symmetric, written
ℓ1 ∼ ℓ2, if they are traversed by the same set of source-destination
pairs, according to the paths selected by the routing protocol. Now
consider two paths P and Q consisting of links p1, . . . ,pn and
q1, . . . ,qm , respectively. We define P and Q as symmetric, written
P ∼ Q , if they have the same number of hops (i.e., n = m) and the
corresponding links are symmetric (i.e., ∀i ∈ (1, . . . ,n),pi ∼ qi ).4

To understand this definition, consider two examples. First, it is
easy to see that in regular Clos-based datacenters, i.e., all shortest
paths from a source to a destination are symmetric; and now suppose
a link from a host h to its top-of-rack switch fails. Then symmetry is

4Note that while sufficient for approximating similar queueing behavior across paths,
this condition is not necessary; it is possible that two asymmetric paths (e.g., have
different number of hops) still have overall similar delays. Detecting such similarities,
however, would require exchanging load information and coordinating forwarding deci-
sions between switches. DRILL does not take this approach as it would fundamentally
add to its latency and weaken its capability to react to microbursts.

still satisfied because flow to and from h is removed equally from
all links. In practice, the routing protocol’s mechanisms will purge
the failed entries from forwarding tables and DRILL continues to
distribute traffic among the remaining paths using its mechanisms
as presented earlier. Thus, not all failures cause asymmetry. Next,
consider the earlier example of Figure 4. P1 and P2 are symmetric,
but P0 and P1 are asymmetric because (S0, L1)≁(S1,L1) due to only
the latter carrying L0 → L1 traffic.

Theorem 3 in [37] shows that, for admissible independent traffic,
performing micro load balancing only among symmetric paths is suf-
ficient to guarantee DRILL’s stability and 100% throughput in Clos
networks. Thus, we have a natural way for DRILL to decompose
irregular Clos networks into symmetric components, and balance
load locally. Next, we compute these components.

Step 1: Building a Quiver: We construct a labeled multidigraph
(a directed graph with labeled edges where edges are permitted
to have the same end vertices and labels) that we call the Quiver.
For each switch in the network, we create a node in the Quiver.
We then compute shortest paths between all pairs of leafs in the
network. For every link from switches a to b which is on a shortest
path p from leafs src to dst, we add to the Quiver a directed edge
from a to b labeled (src,dst). Computing all labels of the link can
be done in polynomial time — with |L| leafs and V vertices, it
requires O ( |L|2V 2) because for every |L|2 pair of leafs, checking if
the link appears on shortest paths between them can be checked in
O (V 2) with the Dijkstra algorithm. Figure 4(b) demonstrates this by
showing part of the Quiver that results from the network of Figure
4(a); links that have the same labels are shown in the same color.

Step 2: Decomposing the network into symmetric compo-
nents: After building the Quiver, each source switch decomposes
its set of shortest paths towards a destination, dst, into components:
largest subsets that contain only paths that are symmetric with each
other. For faster path symmetry checks, DRILL uses a hash func-
tion which maps sets of edges from vertex a to b in the Quiver to a
numerical value that we call the score of (a,b). The score of path p,
p.score, is then the list of its links’ scores. In the previous example,
assuming that hash(L3, S1)=1 and hash(S1,L1)=2, P1.score is <1,2>.
Two paths are symmetric if their scores are equal. In addition to
computing the score of a path p, DRILL also computes its capacity,
p.cap, which is the capacity of p’s slowest link. The complexity
of p.score and p.cap computations is O (d ), where d is p’s length.
After these computations, DRILL iterates over unassigned, the set of
paths that are not yet assigned to any component (it initially includes
all the shortest paths towards dst). At each iteration, it assigns all
symmetric paths in unassigned to a component and removes them
from unassigned. In the example above, the set of L3→L1 paths is
decomposed into two components: {P0} and {P1, P2}.

DRILL also assigns a weight to each component which is pro-
portional to the aggregate capacity of its paths. In the example
above, P0≤i≤2.cap=40Gbps. Hence: {P0}.w=1 and {P1, P2}.w=2.
This weight assignment is similar to the path weight assignments
in [42, 73] and can be implemented in switches with the techniques
discussed in [46].

The complexity of decomposing a set is O ( |P |d ), where |P | and d
are respectively the number of paths in that set and the maximum
path length. Note that the decomposition of a set does not affect
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Figure 5: Han-
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other sets’ decomposition, which makes the computation easy to
parallelize if necessary.

An example in a multi-stage topology: Figure 5 shows a
schematic example of a Clos-based network deployed in Facebook
[2] where a pod consists of a number of server racks and fabric
switches. A folded Clos connects ToRs and fabric switches in each
pod. Pods are interconnected via spine planes. Each fabric switch of
each pod connects to each spine switch within its local plane, i.e.,
the first fabric switch of each pod connects to all the switches of
the first spine plane. If link (R0, F0) fails, the R5 → R1 paths travers-
ing the first spine plane, Q0 = R5F2S0F0R1 and Q1 = R5F2S1F0R1,
and those that traverse the second plane, Q2 = R5F3S2F1R1 and
Q3 = R5F3S3F1R1, are asymmetric as some links in Q2 and Q3, un-
likeQ0 andQ1, can also carry traffic from Pod 2 to R0 and have extra
edges in the Quiver; F3→R1 paths by contrast are all symmetric.

3.4.2 Data plane operations. After detecting the symmetric
components, each switch follows a two step process for forwarding
each packet: Flow classification: By hashing the 5-tuple header of
each packet like ECMP, DRILL assigns it to a component consid-
ering the weights set in the previous step. Intra-component micro
load balancing: DRILL uses DRILL(d,m) to balance the load
across its symmetric paths.

3.4.3 Handling heterogeneous devices. In addition to fail-
ures, heterogeneous links (same stage links with different capacities)
and imbalanced striping [73] (unequal number of links from a leaf
to spines) make the topology asymmetric. As an example, in Figure
4(a), if L0 is connected to S0 and L1 is connected to S0 with either
one 40Gbps link or four 10Gbps links while all other pairs of leaf
and spine switches are connected with one 10Gbps link, then some
paths including those from L0 → L1 are asymmetric and splitting
flows across them may cause reordering and bandwidth inefficiency.

In general, with heterogeneous devices, queueing at switch a to-
wards b is a function of not just the flows that traverse (a,b), but also
the rate the flows send traffic to a and a’s rate of sending that traffic
to b. To capture these two additional criteria, we define the capacity
factor c f (). For path p from src to dst that traverses (a,b), cf(a,b,p)
is defined as the input rate of this path divided by its output rate:
capacity(src,a)/capacity(a,b), where capacity(a,b) and
capacity(src,a) are, respectively, the capacity of the link from
a to b and the capacity of p from src to a, i.e., the capacity of the
bottleneck link from src to a on this path. It models the rate at which
the src→dst traffic builds a queue at a towards b if src only uses p
towards dst. For the source vertex, we consider the capacity factor
to be∞, i.e., if a=src, then cf(a,b,p)=∞. An edge label in the Quiver
then also includes its capacity factor: when building the Quiver, for
each (a,b) link on path p between src and dst, we add a directed
edge from a to b to the Quiver labeled (src,dst,cf(a,b,p)). Other steps
of the control and data plane algorithms are exactly as before. Our
stability and 100% throughput results cover this case (Theorem 3
in [37]). As an example, in Fig. 4(a) if L0-S0, L0-S1, and L1-S0 links

are 40Gbps and other links are 10Gbps, among the L0→L1 paths
H0 = L0S0L1, H1 = L0S1L1, and H2 = L0S2L1, we have H0 ∼ H2
but H0 ≁ H1.

4 EVALUATION
We evaluate DRILL in detailed simulations. We find that DRILL
achieves high performance, for example 1.3×, 1.4×, 1.6× lower
mean FCT than Presto, CONGA, and ECMP, respectively, under
80% load. Both our fine granularity and load-awareness are impor-
tant factors in that performance, with the second becoming more
important in highly bursty traffic patterns such as incast, and with
link failures. DRILL is especially effective in handling incast as it
is the most agile load balancer to react to spontaneous load bursts;
it results in 2.1× and 2.6× lower 99.99th percentile of FCT com-
pared to CONGA and Presto, respectively. We also show DRILL
has minimal packet reordering, and explore the effect of failures,
synthetic traffic patterns, scaling out, and scaling up. Finally, we
implemented DRILL in Verilog to evaluate deployability. Details of
these evaluations follow.

Performance evaluation methodology. To test DRILL’s perfor-
mance at scale, we measure flow completion times (FCT) and
throughput under DRILL, and compare it with CONGA, Presto,
and ECMP via simulation. We use the OMNET++ simulator [16]
and the INET framework [11], with standard Ethernet switches’ and
hosts’ networking stacks. We port real-world TCP implementations
from Linux 2.6 via the Network Simulation Cradle library [15]. For
DRILL, unless stated otherwise, we use single engine switches under
DRILL(2,1). We use 2 and 3 stage Clos networks with various
sizes, without failures and with multiple link failures, under a set of
realistic and synthetic workloads, and an incast application.

In a symmetric Clos, DRILL reduces mean and tail latencies.
We use trace-driven workloads from real datacenter traffic for flow
sizes, flow interarrival times, and traffic pattern from [62], and use
a Clos with 4 spine and 16 leaf switches, each connected to 20
hosts. The links connecting spines and leafs are 40Gbps and those
between hosts and leafs are 10Gbps. To emulate various degrees of
the offered load, we scale flow interarrival times. Under this setting
(Fig. 6), we find the load balancing granularity to be a key player in
the effectiveness of the load balancer. DRILL achieves lower FCT
compared to Presto which in turn has lower FCT than CONGA.
(Later, we will see that load-awareness is important too even in the
symmetric case.) The difference is larger under heavy load, e.g.,
under 80% load, DRILL reduces the mean latency of Presto and
CONGA by 1.3× and 1.4×, respectively (Figure 6). We also test
a strawman “per-flow DRILL” which makes load-aware decisions
for the first packet of a flow and then pins the flow; this marginally
improves the tail latency of Presto and CONGA while being coarser
grained than both.

To see where this improvement comes from, we measure queueing
time at each hop (Fig. 6(c)): leaf upward to spine (Hop 1), spine
downward to leaf (Hop 2), and leaf to host (Hop 3). At 10% load,
queueing happens mostly at the last hop, e.g., under ECMP, the
last hop queuing time accounts for 97.6% of a packet’s end-to-end
queueing time. At Hop 3, there is no path choice and none of the
load balancing schemes offer noticeable benefits — the mean FCT
improvements of DRILL, CONGA, and Presto over ECMP are less
than 9% — but in any case, the total queueing time is almost invisibly
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Figure 6: DRILL improves (a) mean and (b) tail latency in a symmetric Clos. (c) It shortens upstream queues under load.
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Figure 7: DRILL handles scaling-out gracefully.

tiny. At 50% and 80% load, we see there is negligible queueing
at hop 2 and very little difference among schemes at Hop 3. The
load balancers’ benefit in this scenario stems primarily from shorter
upstream queues (i.e., Hop 1): under ECMP the mean upstream
queue delay comprises 54% of the overall queueing delay of a packet
with 80% load. DRILL, Presto, and CONGA cut Hop 1 queueing
time by 2.3×, 1.7×, and 1.6× respectively.

Datacenters today experience high congestion drops as utilization
approaches 25% [64]. Thus, the average load is kept around 25%
to control the latency [62, 64]. We note that compared to ECMP,
DRILL allows the providers to use 10% more of their bandwidth
capacity while keeping the 99.99th percentile of FCT lower than
ECMP’s under 25% load. That is, DRILL supports 1.4× higher load
with the same tail FCT performance compared with ECMP, 1.3×
higher than CONGA, and 1.2× higher than Presto.

DRILL scales out and up gracefully. We study the impact of
applying the “scale-out” approach, i.e., we use a larger number of
less capable switches, instead of fewer but more powerful ones,
to build a network with identical overall core capacity. Figure 7
shows the result for a network with 16 spines and 16 leafs, each
connected to 20 hosts where all links are 10Gbps. Note that this
network provides identical core capacity as the previous experiment
while using switches with slower links. We apply the same load
and observe that the performance of all schemes, including DRILL,
degrades. This is because with slower links, queues drain more
slowly; hence the negative impact of suboptimal load balancing
decisions is greater. However, DRILL’s gain over other schemes is
more pronounced in this case. That is, DRILL handles scaling out
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Figure 8: Scale-out topology with (a) 30% load (b) 80% load.
DRILL’s improvement is greater under heavy load.

more gracefully. The difference is greater under heavy load, e.g.,
under 80% load, it cuts the mean latency of ECMP, CONGA, and
DRILL by 2.1×, 1.6×, and 1.4× respectively. Figure 8 shows the
FCT CDFs for 30% and 80% load.

We see no significant performance differences in networks with
different sizes and oversubscription ratios, but with identical load
and link speeds. Figure 9(a) and 9(b) show 2 examples of CDFs
of FCT for 2 networks with, respectively, 20 spines, 16 leafs each
connected 20 hosts (i.e., over-subsection ration of 1:1), and 12 spines,
16 leafs each connected 20 hosts (i.e., over-subsection ration of 5:3)
where all links are 10Gbps and the load is 80% in both cases.

We also test DRILL’s ability to balance load in Clos topologies
with more than 2 stages such as VL2 [41] and fat-tree [49]. Figure 10
shows the result of an experiment with a VL2 network with 16 ToR
switches, each connected to 20 hosts via 1Gbps links, 8 Aggregate
switches, and 4 Intermediate switches. Core links are 10Gbps5. We
put 20% and 70% load on the network. Figure 10 shows that DRILL
is effective in keeping the FCT short in such networks.

We also tested the effect of scale in terms of number of forwarding
engines in each switch and find its impact to be negligible on FCT
for DRILL(2,1), e.g., we find less than 1% difference in the mean
FCT between 1- and 48-engine switches under 80% load (no plot).

DRILL has minimal packet reordering. The previous figures
show that FCT is low despite reordering, but next we dig deeper
to see why. Figure 11 (a) shows amount of reordering measured in

5All CONGA switches send load feedback, ToR and Aggregate ones apply
CONGA’s load balancing decisions; cores apply ECMP.
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Figure 9: (a) 1:1 and (b) 5:3 oversubscription ratios.

terms of the number of TCP duplicate ACKs under 80% load, using
the same setup as our first experiment in this section. ECMP and
CONGA, unlike DRILL and Presto, do not cause reordering. As a
strawman comparison, we also show the amount of reordering in
Per-packet Random (which forwards each packet along indepedent-
random shortest paths) and Per-packet Round Robin (RR) (which
fowards each packet round-robin along shortest paths), both with no
load-awareness, along with Presto measured prior to its shim layer.
We note two important conclusions. First, Per-packet Random, RR,
and DRILL have identical granularity of load balancing but DRILL
has dramatically lower packet reordering. This demonstrates how
local load awareness keeps queues extremely well-balanced across
paths.

Second, the degree of reordering under DRILL rarely reaches the
TCP retransmission threshold even under heavy load. Under 80%
load, for example, only 0.4% of flows have any duplicate ACKs.
This is 8×, 7.3×, and 3.3× lower than Per-packet Random, RR, and
Presto before its shim. Plus, under DRILL, only 0.02% of flows
have more than the typical TCP retransmission threshold of 3. Note
that compared to Per-packet Random and RR, Presto causes reorder-
ing for fewer flows, but increases the number of flows that trigger
excessive (e.g.>3) duplicate ACKs. This is because Presto’s coarser-
grained flowcell forwarding shields most flows from reordering—the
majority of flows fit in a single flowcell [42]. However, on the oc-
casion that flowcells are reordered, their larger number of packets
causes more duplicate ACK generations compared to the per-packets
schemes. Under low load, very few flows receive any duplicate
ACKs, e.g., under 20% load, less than 0.8% of flows receive any
duplicate ACKs under any of these schemes. This minimal degree
of reordering shows why DRILL with and without the shim layer
have very similar performance.

Reordering can also increase receiver host CPU overhead. Operat-
ing systems usually perform optimizations such as Generic Receive
Offload (GRO) to merge bursts of incoming packets to reduces per-
packet processing overhead [35, 42]. GRO performs per-flow packet
batching by merging a flow’s packets as long as they arrive in-order
and the batch’s size is below a threshold (64KB). If the batch’s size
exceeds that threshold or if an out of order packet is received, GRO

 0

 0.25

 0.5

 0.75

 1

 0  0.2  0.4  0.6  0.8  1

C
D

F

FCT [ms]

ECMP
CONGA
Presto
DRILL

 0

 0.25

 0.5

 0.75

 1

 0  1  2  3  4

C
D

F

FCT [ms]

ECMP
CONGA
Presto
DRILL

Figure 10: A VL2 network under (a) 20% and (b) 70% load.

sends the batch to the higher layer. Hence, excessive reordering in-
creases the number of batches and consequently the CPU overhead.
However, since DRILL seldom causes reordering even under load, it
has negligible effect on GRO’s performance. Under 80% load, for
example, DRILL increases the number of batches by less than 0.5%.

DRILL gracefully handles failures. Even though high scale dat-
acenters show high reliability [39], with the majority of links having
higher than four 9’s of reliability [39], there is still a high probabil-
ity of at least one failure at each point in time [40, 73]. Therefore,
handling failures gracefully is imperative for any load balancer. We
test the performance of DRILL under 3 failure scenarios: (a) one
single leaf-spine link failure, as single failures are the most common
failure cases in datacenters [39], (b) 10 randomly selected leaf-spine
link failures. (b) presents a rare, but still possible, case. Even in
large scale datacenters, big groups of correlated link failures are
rare with only 10% of failure groups (failures with downtimes either
simultaneous or close together in time) containing more than four
failures [39]. We load the system up to 90% of the available core
capacity. We observe that DRILL and Presto are most effective at
handling a single failure while DRILL and CONGA are most effec-
tive in handling multiple failures (Figures 11 (b,c) and 12). This is
because CONGA shifts the load towards the parts of the topology
with more capacity, and DRILL breaks the rate interdependencies
between asymmetric paths, effectively allowing flows to grab the
available bandwidth, increase their rates, and finish faster. Note that
in all these cases, DRILL’s performance with and without the shim
layer that reorders the out-of-order packets (from [42]) are almost
identical, since its degree of reordering is so low that it rarely reaches
TCP’s retransmission threshold (§3.3).

Since DRILL relies on OSPF to learn about topological changes,
it is limited by the reaction and propagation delay of this protocol to
react to topological changes. In our experiments, the impact of this
delay is negligible. In an experiment under 70% load and with 5 link
failures, ideal-DRILL, an idealized variant of DRILL that learns and
reacts to failures instantaneously, achieves a median FCT of 3.49
ms, indicating an improvement of less than 0.6% over DRILL.
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Figure 11: (a) Less than 0.1% of flows with DRILL hit TCP retrans. threshold, (b,c) DRILL handles single link failure.
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Figure 12: DRILL handles 10 link failures.

DRILL is efficient in asymmetric topologies with heteroge-
neous devices. As explained in §3.4, DRILL can operate in asym-
metric topologies, e.g., those with heterogeneous links and imbal-
anced striping [73]. Figure 13 shows the result of an experiment with
a topology with 16 leafs, Li ∈{0, ...,15} , each connected to 48 hosts via
10Gbps links, and 16 spines, Si ∈{0, ...,15} . Each leaf Li is connected
to spines Si(mod)16 and S (i+1)(mod)16 via two 10Gbps links and to
every other spine with one 10Gbps link. In addition to CONGA and
Presto, we compare DRILL with WCMP [42] which is designed
to improve ECMP’s performance in asymmetric Clos. We observe
that DRILL and CONGA are more effective in such topologies and
achieve lower FCT than Presto and WCMP.

DRILL reduces the tail latency in incast scenarios. A common
and vexing traffic pattern in datacenters is incast [20, 64] which is
responsible for excessive congestion and packet loss [64]. With the
exception of a recent study from Google that reports incast-induced
packet drops at various layers [64]6, most of the works on incast

6 [64] reports that in Google’s “Saturn” fabric, 62.8% of drops occur at
the last hop, i.e., into the host. DRILL offers little to no benefit at the last
hop, since multipath flexibility only appears at earlier hops. However: (1)
There is still opportunity for significant improvement in the remaining 37%
of drops. (2) [64] reports implementing various special enhancements to
reduce drops, e.g., enabling ECN on switches, optimizing the host stack
response to ECN signals, and bounding TCP windows (§6.1 in [64]). Some
of these techniques, e.g., link-level pauses at ToRs, specifically target the
uplink queues’ congestion. DRILL is a simpler design that may present an
alternative way of achieving some of the same benefits. An evaluation of
DRILL applied to Saturn would be interesting, but more immediately, Saturn
does not appear to be broadly representative of most datacenter fabrics.
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Figure 13: DRILL is efficient in heterogeneous topologies.

study the problem within a cluster (hosts connected via one switch
or a tree topology), and naturally focus exclusively on overrun of
the last hop buffer (connected to the receiver) [29, 30, 33, 43, 55,
60, 69–72]. Our experiments show that in multi-rooted topologies,
the incast traffic pattern triggers buffer overruns at other layers as
well. Furthermore, our results underscore the fact that this problem
is interwoven with load balancing and can be mitigated by an agile
load balancer capable of reacting to microbursts. Figs. 14(a, b) show
an example for a network similar to our first experiment in this
section under the typical load of 20% and 35%, respectively, where
hosts run an incast application similar to [69], and 10% of them
send simultaneous requests for 10KB flows to 10% of the other
hosts (all randomly selected). The background traffic and interarrival
times are drawn from [62] as before. DRILL significantly reduces
the tail latency, e.g., under 20% load, it has 2.1× and 2.6× lower
99.99th percentile of FCT than CONGA and Presto, respectively.
This happens because as this highly bursty traffic pattern causes
microbursts at the first hop, DRILL can swiftly divert the load and
mitigate congestion on hotspots. By better balancing the load across
the spine, it also alleviates the risk of hotspots forming in spines.
Fig. 14(c) shows where queueing and packet loss happen. DRILL
almost eliminates the first hop queueing and drops, and significantly
reduces those metrics in the second hop.

Synthetic workloads. In addition to the trace-driven workload,
similar to previous works [18, 42, 49, 61], we use a set of synthetic
workloads, known to either appear frequently in datacenters or to
be challenging for load balancing designs [18]: Stride(x) in which
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Elephant throughput 1.55 1.71 1.8 1.46 1.62 1.78 1 1.1 1.1
Mean FCT 0.51 0.41 0.21 0.71 0.63 0.45 0.95 0.91 0.86
99.99th percentile FCT 0.2 0.15 0.04 0.22 0.18 0.08 0.86 0.79 0.68

Table 1: Mean elephant flow throughput and mice FCT normalized to
ECMP for the synthetic workloads.

server[i] sends flows to server[(i+x) mod number of servers], Ran-
dom where each server communicates with a random destination
not under the same leaf as itself. We use Stride(8), and Shuffle in
which each server sends flows to all other servers in a random order.
Similar to [42], we use 1GB “elephant” flows, and in addition we
send 50 KB “mice flows” every 100 ms. We use a Clos with 4 leaf
and 4 spine switches with each leaf connected to 8 hosts where all
links have 1Gbps capacity. Table 1 reports the mean and 99.99th

percentile of FCT for mice and mean flow throughput for elephants,
all normalized by ECMP. For the Random and Stride workloads,
DRILL significantly reduces mice latencies particularly in the tail
and achieves higher throughout for the elephant flows. None of the
tested schemes improve ECMP much for the shuffle workload since
it is mainly bottlenecked at the last hop.

Hardware and deployability considerations. We implemented
DRILL in Verilog in less than 400 lines of code. We estimate
DRILL’s area overhead using Xilinx Vivado Design Suite 2014.4
and the area estimation from [56, 58]. DRILL is estimated to require
0.04mm2 of chip area. Using the minimum chip area estimate of 200
mm2 in [38], similar to [66], we estimate this to be less than 1% of
the area of a typical switch chip. This demonstrates the feasibility
and ease of implementing DRILL in hardware. DRILL involves
two additional components. In the case of topological asymmetry,
switches need to calculate the weights of traffic for each symmetric
component; this can be done in control software local to the switch
(if topology information is available via the routing algorithm) or
through a central controller. Optionally, DRILL can employ a shim
layer, deployed in a hypervisor as in [42]. As we have shown, this is
not always necessary, and [42] showed its feasibility.

5 RELATED WORK
Recent works attribute the poor performance of ECMP to (a) its lack
of global congestion information, or (b) hash collision when there
are large flows. In the first group, Planck presents a fast network
measurement architecture that enables rerouting congested flows
in milliseconds [61]. Fastpass [59] posits that each sender should
delegate control to a centralized arbiter to dictate when and via
which path each packet should be transmitted. Hedera [18], MicroTE

[25], and Mahout [32] re-route large flows to compensate for the
inefficiency of ECMP hashing them onto the same path.

In the second category, Presto [42] argues that in a symmetric Clos
where all flows are small, ECMP provides near optimal load balance,
and therefore divides flows into “flowcells” which are source-routed
so they are striped across all paths, without load-awareness. A cen-
tralized controller helps respond to failures. Other efforts in this
category include balancing “flowlets” [19, 44] or per-packet spread-
ing of traffic in a round robin fashion [27, 34]. We have compared
with Presto in design and evaluation elsewhere in this paper.

CONGA [19] takes a hybrid approach by both splitting traffic
into flowlets and using in-network congestion feedback mechanisms
to estimate load and route flowlets. Our experiments indicate that
DRILL’s micro load balancing outperforms CONGA.

DRILL’s queueing algorithm is inspired by “power of two choices”
load balancing [53]. [54] and [63] study the impact of using mem-
ory of past choices. These models have one arbiter responsible for
placing incoming tasks. Our multiple arbiters (forwarding engines)
produce distinct behavior (Figure 3). This has led us to experimen-
tally optimize parameter choice, but a theoretical analysis of our
model may be valuable in the future.

Our earlier workshop paper introduced the micro load balanc-
ing concept [36]. We contribute new algorithms to handle failures,
extensive simulations, and a Verilog switch implementation.

6 CONCLUSION
Contrary to the pervasive approach of load balancing based on macro-
scopic view of traffic, we explore micro load balancing: enabling
the fabric to make decisions at µsec timescales based on traffic in-
formation local to each switch, solving challenges of this approach
including hardware feasibility, packet reordering, and asymmetry.
Our experiments show that our simple provably-stable switch sched-
uling algorithm, DRILL, outperforms state-of-the-art load balancers
in Clos networks, particularly under high load and incast. DRILL
adapts to asymmetry by decomposing the network into symmetric
parts. Interesting avenues of future work include studying micro
load balancing in other topologies, and the effect of delayed queue
information in switches with multiple forwarding engines.
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