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Abstract— Peer-to-peer distributed storage systems pro-
vide reliable access to data through redundancy spread over
nodes across the Internet. A key goal is to minimize the
amount of bandwidth used to maintain that redundancy.
Storing a file using an erasure code, in fragments spread
across nodes, promises to require less redundancy and
hence less maintenance bandwidth than simple replication
to provide the same level of reliability. However, since
fragments must be periodically replaced as nodes fail, a key
question is how to generate a new fragment in a distributed
way while transferring as little data as possible across the
network.

In this paper, we introduce a general technique to
analyze storage architectures that combine any form of
coding and replication, as well as presenting two new
schemes for maintaining redundancy using erasure codes.
First, we show how to optimally generate MDS fragments
directly from existing fragments in the system. Second, we
introduce a new scheme called Regenerating Codes which
use slightly larger fragments than MDS but have lower
overall bandwidth use. We also show through simulation
that in realistic environments, Regenerating Codes can
reduce maintenance bandwidth use by 25% or more com-
pared with the best previous design—a hybrid of replication
and erasure codes—while simplifying system architecture.

I. INTRODUCTION

The purpose of distributed file storage systems such
as OceanStore [19], Total Recall [2], and DHash++ [6]
is to store data reliably over long periods of time using
a distributed collection of disks (say, at various nodes
across the Internet). Ensuring reliability requires the
introduction of redundancy, the simplest form of which
is straightforward replication.

Several designs [18], [2], [6] use erasure codes instead
of replication. A Maximum-Distance Separable (MDS)
erasure code stores a file of size M bytes in the form
of n fragments each of size M/k bytes, any k of which
can be used to reconstruct the original file.

However, a complication arises: in distributed storage
systems, redundancy must be continually refreshed as
nodes choose to leave the system and disks fail, which
involves large data transfers across the network. How do
we efficiently create new encoded fragments in response
to failures? A new replica may simply be copied from
any other node storing one, but traditional erasure codes
require access to the original data to produce a new

encoded fragment. How do we generate an erasure
encoded fragment when we only have access to erasure
encoded fragments?

In the naive strategy, the node which will store the
new fragment—which we will call the newcomer—
downloads k fragments and reconstructs the file, from
which a new fragment is produced. Thus, M bytes are
transferred to generate a fragment of size only M/k.

To reduce bandwidth use, one can adopt what we call
the Hybrid strategy [20]: one full replica is maintained in
addition to multiple erasure-coded fragments. The node
storing the replica can produce new fragments and send
them to newcomers, thus transferring just M/k bytes for
a new fragment. However, maintaining an extra replica
on one node dilutes the bandwidth-efficiency of erasure
codes and complicates system design. For example, if the
replica is lost, new fragments cannot be created until it is
restored. In fact, one study comparing the Hybrid strat-
egy with replication in distributed storage systems [20]
argued that in practical environments, Hybrid’s reduced
bandwidth is limited, and may be outweighed by its
drawbacks, in part due to the added complication of
maintaining two types of redundancy.

It is thus natural to pose the following question:
is it possible to maintain an erasure code using less
bandwidth than the naive strategy, without resorting to
an asymmetric strategy like Hybrid? More deeply, what
is the minimal amount of data that must be downloaded
in order to maintain an erasure code?

In this paper we show how network coding can help
for such distributed storage scenarios. We introduce a
general graph-theoretic framework through which we
obtain lower bounds on the bandwidth required to main-
tain any distributed storage architecture and show how
random linear network coding can achieve these lower
bounds.

More specifically, we determine the minimum amount
of data that a newcomer has to download to generate an
MDS or nearly-MDS fragment, a scheme which we call
Optimally Maintained MDS (OMMDS). In particular, we
prove that if the newcomer can only connect to k nodes
to download data for its new fragment, then the M-
byte download of the naive strategy is the information-
theoretic minimum. Surprisingly, if the newcomer is



allowed to connect to more than k nodes, then the total
download requirement can be reduced significantly. For
example, if k = 7 (the value used in DHash++ [6]),
n = 14, and a newcomer connects to n − 1 nodes, a
new fragment can be generated by transferring 0.27M
bytes, or 73% less than the naive strategy. However, the
associated overhead is still substantial, and it turns out
that Hybrid offers a better reliability-bandwidth tradeoff
than OMMDS. To improve on Hybrid, we must therefore
look beyond MDS codes.

With this perspective in mind, we introduce our sec-
ond scheme, Regenerating Codes (RC), which minimize
amount of data that a newcomer must download subject
to the restriction that we preserve the “symmetry” of
MDS codes. At a high level, the RC scheme improves
on OMMDS by having a newcomer store all the data
that it downloads, rather than throwing some away. As
a consequence, RC has slightly larger fragments than
MDS, but very low maintenance bandwidth overhead,
even when newcomers connect to just k nodes. For
example, if k = 7, a newcomer needs to download only
0.16M bytes—39% less than OMMDS and 84% less
than the naive strategy. Moreover, our simulation results
based on measurements of node availability in real
distributed systems show that RC can reduce bandwidth
use by up to 25% compared with Hybrid when k = 7.
RC improves even further as k grows.

We emphasize that there are still tradeoffs between
RC and other strategies. For example, users wishing to
reconstruct the file pay a small overhead due to RC’s
larger fragments. Nevertheless, RC offers a promising
alternative due to its simplicity and low maintenance
bandwidth.

In summary, the contributions of this paper are as
follows.

• We introduce a framework to analyze the bandwidth
requirements of redundancy schemes for distributed
storage systems.

• We characterize the minimum bandwidth necessary
to produce an MDS fragment directly from frag-
ments on other nodes.

• We introduce a non-MDS scheme, Regenerating
Codes, and show through simulation that it requires
substantially lower maintenance bandwidth than the
best previous erasure code-based scheme (Hybrid)
while preserving the symmetry of MDS codes.

This paper is organized as follows. We discuss rele-
vant background and related work from coding theory
and distributed storage systems in Section II. In Sec-
tion III we introduce our analysis technique and use it
to determine how to optimally maintain MDS codes in
Section III-B. We introduce Regenerating Codes in Sec-
tion IV. Finally, Section V compares Hybrid, OMMDS,
and RC using measured traces of node availability and
discusses qualitative tradeoffs between the strategies.

II. BACKGROUND AND RELATED WORK

A. Erasure codes

Erasure Coding is a generalization of replication that
divides the initial data object into k fragments (or
blocks) which are then used to generate n encoded
fragments. MDS (Maximum-Distance Separable) erasure
codes have the property that any k (or slightly more)
out of the n encoded fragments suffice to recover the
original k data fragments. Good (i.e MDS or nearly
MDS) erasure codes yield much higher probabilities
of recovery compared to replication schemes but also
introduce higher computational complexity. One way to
theoretically quantify that benefit is the coupon collec-
tor problem: It is necessary to obtain k ln k randomly
selected fragments to collect all k original data, and in
that sense erasure coding saves an ln k factor. Reducing
encoding and decoding complexity for erasure codes
has been studied extensively, and currently essentially
optimal erasure codes exist with linear encoding and
decoding complexity [17], [23]. Fountain codes [16],
[23] (also called rateless codes) allow the creation of
each encoded fragment independently and are therefore
useful for many scenarios, such as distributed storage
systems, which need to create new fragments continu-
ously as nodes join and leave the system.

B. Network Coding

Ahlswede et al [1] introduced the fundamental idea
of Network Coding—combining packets instead of just
routing—and showed that it achieves the minimum of the
min-cuts for multicasting Later it was shown that linear
operations over finite fields are sufficient [15] to achieve
the network coding capacity. See [9] for an up-to-date
survey of the area.

For distributed storage, the idea of using network
coding was introduced in [8] in a sensor network sce-
nario. Many aspects of coding for storage were further
explored [14], [30], [26] for sensor network applications.

Network coding was proposed for peer-to-peer content
distribution systems [10] where random linear operations
over packets are performed to improve downloading.
Random network coding was also recently proposed
for P2P network diagnosis [29]. Our paper is based
on similar ideas but the storage systems have different
performance metrics that need to be analyzed.

C. Distributed storage systems

A number of recent studies [4], [18], [7], [21], [2], [27]
have designed and evaluated large-scale, peer-to-peer
distributed storage systems. Redundancy management
strategies for such systems have been evaluated in [28],
[3], [2], [20], [27], [5], [25], [11].

Among those, [28], [2], [20] compared replication
with erasure codes in the bandwidth-reliability trade-
off space. The analysis of Weatherspoon and Kubia-
towicz [28] showed that erasure codes could reduce
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bandwidth use by an order of magnitude compared
with replication. Bhagwan et al [2] came to a similar
conclusion in a simulation of the Total Recall storage
system.

Rodrigues and Liskov [20] arrived at a different result:
in high-churn (i.e., high rate of node turnover) envi-
ronments, erasure codes provide a large benefit but the
bandwidth cost is too high to be practical for a P2P dis-
tributed storage system. In low-churn environments, the
reduction in bandwidth is negligible. In moderate-churn
environments, there is some benefit, but this may be
outweighted by the added architectural complexity that
erasure codes introduce (discussed further in Section V-
E). These conclusions were based on an analytical model
augmented with parameters estimated from traces of real
systems. Compared with [28], [20] used a much smaller
value of k (7 instead of 32) and the Hybrid strategy to
address the code regeneration problem.

In Section V, we repeat the evaluation of [20] to mea-
sure the performance of the two redundancy maintenance
schemes that we introduce.

III. FUNDAMENTAL LIMITS ON BANDWIDTH

A. Information flow graph

Our analysis is based on a particular graphical repre-
sentation of a distributed storage system, which we refer
to as an information flow graph G. This graph describes
how the information of the data object travels through
time and storage nodes and reaches reconstruction points
at the data collectors. More precisely, it is a directed
acyclic graph consisting of three kinds of nodes: a single
data source S, storage nodes xin

i, xout
i and data collectors

DCi. The single node S corresponds to the source of the
original data. Storage node i in the system is represented
by a storage input node xin

i, and a storage output node
xout; these two nodes are connected by a directed edge
xin

i → xout
i with capacity equal to the amount of data

stored at node i. See Figure III-A for an illustration.
Given the dynamic nature of the storage systems that

we consider, the information flow graph also evolves in
time. At any given time, each vertex in the graph is either
active or inactive, depending on whether it is available in
the network. At the initial time, only the source node S

is active; it then contacts an initial set of storage nodes,
and connects to their inputs (xin) with directed edges of
infinite capacity. From this point onwards, the original
source node S becomes and remains inactive. At the
next time step, the initially chosen storage nodes become
now active; they represent a distributed erasure code,
corresponding to the desired steady state of the system.
If a new node j joins the system, it can only be connected
with active nodes. If the newcomer j chooses to connect
with active storage node i, then we add a directed edge
from xout

i to xin
j , with capacity equal to the amount of

data that the newcomer downloads node i. Note that in
general it is possible for nodes to download more data

than they store, as in the example of the (14, 7)-erasure
code. If a node leaves the system, it becomes inactive.
Finally, a data collector DC is a node that corresponds to
a request to reconstruct the data. Data collectors connect
to subsets of active nodes through edges with infinite
capacity.

Fig. 1. Illustration of an information flow graph G.
Suppose that a particular distributed storage scheme
uses an (4, 3) erasure code in which any 3 fragments
suffice to recover the original data. If node x4 becomes
unavailable and a new node joins the system, then
we need to construct new encoded fragment in x5.
To do so, node x5

in is connected to the k = 3 active
storage nodes. Assuming that it downloads α bits from
each active storage node, of interest is the minimum
α required. The min-cut separating the source and the
data collector must be larger than 3 for reconstruction
to be possible. For this graph, the min-cut value is
given by 2 + α, implying that α ≥ 1, so that the
newcomer has to download the complete data object
if he connects to only k = 3 storage nodes.

An important notion associated with the information
flow graph is that of minimum cuts:

Definition 1: A cut in the graph G between the source
S and a fixed data collector node DC is a subset C of
edges such that, there is no path starting from S to DC

that does not have one or more edges in C. The minimum
cut is the cut between S and DC in which the total sum
of the edge capactities is smallest.

B. Bounds

To obtain bounds on the how much each storage node
has to download, we start with the following simple
lemma.

Lemma 1: A data collector DC can never reconstruct
the initial data object if the minimum cut in G between
S and DC is smaller than the initial object size.

Proof: The information of the initial data object is
flowing from the source to the particular data collector.
Every link in the information flow graph can only be
used at most once (since it corresponds to communica-
tion of nodes over time), and since the point-to-point
capacity is less than the file size, communication of the
initial data object is impossible.
The next claim, which builds on known results from
network coding, shows that there exist linear network
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codes which can match this bound for all data collectors
simultaneously, and also that simple linear mixing of
packets using random independent coefficients over a
finite field (randomized network coding [13]) will be
sufficient with high probability.

Proposition 1: Assume that for some distributed stor-
age scheme, we construct the G graph and place all the
possible

(

n

k

)

data collectors where n is the number of
active nodes. If the minimum of the min-cuts separating
the source with each data collector is larger or equal
to the data object size M, then there exists a linear
network code such that all data collectors can recover
the data object. Further, randomized network coding
guarantees that all collectors can recover the data object
with probability that can be driven arbitrarily high by
increasing the field size.

Proof: The reconstruction problem described is
equivalent to the multicasting problem, with a single
source sending its data to all of the data collectors.
It is known [1] that network coding can achieve the
associated min-cut/max-flow bound and from [15] we
know that a linear network code will exist (see also
Section II).

Ho et al. [13] show that the use of random linear
network codes at all storage nodes suffices to achieve
the bound with probability that can be pushed arbitrarily
high by increasing the field size. (See in particular
Theorem 3 in the paper [13], which ensures that the
probability is at least (1 − d

q
)N , where d is the number

of data collectors and N is total number of storage nodes
in G and q is the field size.) As in all the the work that
uses network coding, the field size can be made very
large easily since it is exponential in the number of bits
used to represent field elements.

The above results allow us to provide a complete
characterization of the bandwidth cost associated with
maintaining an MDS erasure code:

Proposition 2: Assume the data object is divided in
k fragments, an (n, k)-MDS code is generated and one
encoded fragment is stored at each node. Suppose a new-
comer creates a new encoded fragment by downloading
α percent of a fragment from each of n−1 active storage
nodes. Then α ≥ 1

n−k
is necessary and sufficient for

successful reconstruction.

Proof: Consider the information flow graph G
for this storage system. Suppose that any newcomer
connects to n−1 storage nodes and downloads a portion
α of the fragment from each storage node, where α is
to be determined. A data collector is connected to the
newcomer and k− 1 other storage nodes. The minimum
cut in this newly formed G is given by k−1+(n−1−(k−
1))α; so using proposition 1, successful reconstruction
is possible if and only if this cut is larger or equal to
k. So α ≥ 1

n−k
is the minimum possible bandwidth to

required maintain an MDS code.

Note that the information flow graph can be used to find
the bandwidth requirements in the more general case
where the newcomer connects to h ≤ n−1 nodes and it
is not hard to verify that when h = k the whole file needs
to be downloaded to create a new encoded fragment. In
the special case of the (n, k) = (14, 7) erasure code
considered in our motivating example, Proposition 2
verifies the earlier claim that the newcomer needs to
download only 1

7
≈ 0.14Mb from each of the n−1 = 13

active storage nodes. We refer to MDS codes maintained
in this procedure specified by Proposition 2 as Optimally
Maintained MDS, or OMMDS for short.

IV. REGENERATING CODES

The OMMDS scheme of the previous section is
a significant improvement over the naive scheme of
downloading the entire file to generate a new fragment.
However, the associated overhead is still substantial, and
our experimental evaluation in Section V reveals that the
Hybrid scheme still offers a better reliability-bandwidth
tradeoff than the OMMDS. Moreover, as established in
Proposition 2, an MDS code cannot be maintained with
less bandwidth than OMMDS. Therefore, we can only
hope to use less bandwidth with a coding scheme other
than an MDS code.

With this perspective in mind, this section introduces
the notion of a Regenerating Code (RC). Subject to the
restrictions that we preserve the “symmetry” of MDS
codes (detailed in Section IV), we derive matching lower
and upper bounds on the minimal amount of data that a
newcomer must download. In contrast with OMMDS,
the RC approach has very low bandwidth overhead,
even when newcomers connect to just k nodes. At a
high level, the RC scheme improves on OMMDS by
having a newcomer store all the data that it downloads,
rather than throwing some away. As a consequence, RC
fragments are slightly larger than MDS fragments, by
a factor βRC = k2/(k2 − k + 1) (see Figure 2 for an
illustration), and any data collector that reconstructs the
file downloads βRC times the size of the file. However,
note that βRC → 1 as k → ∞. Notice that for MDS
codes, if we fix the rate of the code R = k/n, the
bandwidth overhead is βMDS = n−1

n−k
→ 1

1−R
(which

is constant) as k, n → ∞. Therefore, MDS codes have
a constant multiplicative overhead in bandwidth, but are
optimal in storage for any n, k. The surprising fact is that
regenerating codes, by sacrificing an (asymptotically)
negligible factor βRC in storage, also achive asymptoti-
cally negliglible overhead in maintenance bandwidth.

Regenerating codes minimize the required bandwidth
under a “symmetry” requirement over storage nodes.
Specifically, we require that any k fragments can recon-
struct the original file; all fragments have equal size αM;
and a newcomer produces a new fragment by connecting
to any k nodes and downloading αM/k bits from each
(In this paper we fix the number of nodes where the
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Fig. 2. The overhead β is the number of bytes down-
loaded to produce a fragment, divided by the size of an
MDS fragment. For the naive strategy, βnaive = k; for
OMMDS in which newcomers connect to n−1 nodes,
βMDS = n−1

n−k
; for RC in which newcomers connect to

just k nodes, βRC = k2/(k2 − k + 1). Moreover, RC
fragments are βRC times larger than MDS fragments,
so that the data collector must download βRC times the
size of the original file.

newcomer connects to to be k (the minimum possible)
to simplify the scheme). The free parameter α will be
chosen to minimize bandwidth.

Assume that newcomers arrive sequentially, and that
each one connects to an arbitrary k-subset of previous
nodes (including previous newcomers). The following
result characterizes the bandwidth requirements of the
RC scheme:

Theorem 1: Assume all storage nodes store αM bits
and newcomers connect to k existing nodes and down-
load 1

k
αM bits from each. Then, define

αc =
1

k
×

1

1 − 1

k
+ 1

k2

. (1)

If α < αc then reconstruction at some data collector who
connects to k storage nodes is information theoretically
impossible.

If α ≥ αc there exists a linear network code such that
any data collector can reconstruct. Moreover, random-
ized network coding at the storage nodes will suffice
with high probability.

Proof: We will show that if α < αc the minimum
cut from some k subset of storage nodes to the source S

will be less than M and therefore reconstruction will be
impossible. In addition when α ≥ αc the minimum cut
will be greater or equal to M. Then by Proposition 1 a
linear network code exists so that all data collectors can
recover. Further randomized network coding will work
with probability that can be driven arbitrarily high by
increasing the field size.

Therefore it suffices to find the minimum αc such that
any k subset of storage nodes has a minimum cut from
the source equal to M. We proceed via induction on n,
the number of storage nodes. We refer to any subgraph
of G with k inputs and j ≥ k outputs as a box; a box is

called good if every k out of the j outputs can support an
end-to-end flow of M. The base case of the induction
is trivial if we assume that there are k storage nodes
initially.

For the inductive step, assume we have a good box
denoted Bj−1 and a newcomer Xi connects to any k
outputs of Bj−1 with edges that have capacity αM

k
(see

figure IV). One needs to show that the new graph with
the outputs of Bj−1 plus the output of the storage node
Xi will be a good box Bj . Let N(Xi) denote the storage
nodes where Xi connected to. Consider a data collector
that connects to y1 nodes in N(Xi)

c and y2 nodes in
N(Xi), and also to the newcomer (all data collectors that
do not connect to the newcomer receive enough flow by
the induction hypothesis). We therefore have y1 + y2 =
k − 1 and also the minimum cut for this data collector
is

y1αM + y2αM + (k − y2)
αM

k
. (2)

To ensure recovery this has to work for every data
collector, i.e.

y1αM + y2αM + (k − y2)
αM

k
≥ M, (3)

∀y1, y2, y1 + y2 = k − 1. (4)

It is easy to see that y1 = 0 is the worst case, and from
there one obtains that

α ≥
1

k(1 − 1

k
+ 1

k2 )
=: αc (5)

is necessary and sufficient for reconstruction.

Fig. 3. Illustration of the inductive step. The internal
box is good and we want to show that the external
box is also good if the newcomer downloads 1/kαM
from the existing nodes the big box is also good.

V. EVALUATION

In this section, we compare Regenerating Codes with
other redundancy management schemes in the context
of distributed storage systems. We follow the evaluation
methodology of [20], which consists of a simple analyt-
ical model whose parameters are obtained from traces
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of node availability measured in several real distributed
systems.

We begin in Section V-A with a discussion of node dy-
namics and the objectives relevant to distributed storage
systems, namely reliability, bandwidth, and disk space.
We introduce the model in Section V-B and estimate real-
istic values for its parameters in Section V-C. Section V-
D contains the quantitative results of our evaluation. In
Section V-E, we discuss qualitative tradeoffs between
Regenerating Codes and other strategies, and how our
results change the conclusion of [20] that erasure codes
provide limited practical benefit.

A. Background: node dynamics and objectives

In this section we introduce some background and
terminology which is common to most of the work
discussed in Section II-C.

We draw a distinction between permanent and tran-
sient node failures. A permanent failure, such as the
permanent departure of a node from the system or a disk
failure, results in loss of the data stored on the node. In
contrast, data is preserved across a transient failure, such
as a reboot or temporary network disconnection. We say
that a node is available when its data can be retrieved
across the network.

Distributed storage systems attempt to provide two
types of reliability: availability and durability. A file is
available when it can be reconstructed from the data
stored on currently available nodes. A file’s durability
is maintained if it has not been lost due to permanent
node failures: that is, it may be available at some point
in the future. Both properties are desirable, but in this
paper (as in [20]) we report results for availability only.
Specifically, we will show file unavailability, the fraction
of time that the file is not available.

As discussed in the introduction, achieving higher
availability (or durability) implies a greater amount
of redundancy, and hence uses more disk space, and
more bandwidth to replace redundancy as nodes fail.
Since bandwidth is generally considered a much more
constrained resource than disk space in wide-area envi-
ronments, we do not show the disk space used by the
schemes we compare. However, disk usage would be
proportional to bandwidth for all schemes we evaluate
below, with the exception of OMMDS.

B. Model

We use a model which is intended to capture the
average-case bandwidth used to maintain a file in the
system, and the resulting average availability of the file.
With minor exceptions,1this model and the subsequent

1In addition to evaluating a larger set of strategies and using a
somewhat different set of traces, we count bandwidth cost due to
permanent node failure only, rather than both failures and joins. Most
designs [2], [27], [5] can avoid reacting to node joins. Additionally,
we compute probabilities directly rather than using approximations to
the binomial.

estimation of its parameters are equivalent to that of [20].
Although this evaluation methodology is a significant
simplification of real storage systems, it allows us to
compare directly with the conclusions of [20] as well as
to calculate precise values for rare events.

The model has two key parameters, f and a. First,
we assume that in expectation a fraction f of the nodes
storing file data fail per unit time, causing data transfers
to repair the lost redundancy. Second, we assume that
at any given time while a node is storing data, the
node is available with some probability a. Moreover, the
model assumes that the event that a node is available is
independent of the availability of all other nodes.

Under these assumptions, we can compute the ex-
pected availability and maintenance bandwidth of var-
ious redundancy schemes to maintain a file of M bytes.
We make use of the fact that for all schemes except
OMMDS (even Hybrid [20]), the amount of bandwidth
used is equal to the amount of redundancy that had to
be replaced, which is in expectation f times the amount
of storage used.

Replication: If we store R replicas of the file, then
we store a total of R ·M bytes, and in expectation we
must replace f · R · M bytes per unit time. The file is
unavailable if no replica is available, which happens with
probability (1 − a)R.

Ideal Erasure Codes: For comparison, we show
the bandwidth and availability of a hypothetical (n, k)
erasure code strategy which can “magically” create a
new packet while transferring just M/k bytes (i.e., the
size of the packet). Setting n = k ·R, this strategy sends
f · R · M bytes per unit time and has unavailability

probability Uideal(n, k) :=
∑k−1

i=0

(

n
i

)

ai(1 − a)n−i.

Hybrid: If we store one full replica plus an (n, k)
erasure code where n = k · (R−1), then we again store
R ·M bytes in total, so we transfer f · R ·M bytes per
unit time in expectation. The file is unavailable if the
replica is unavailable and fewer than k erasure-coded
packets are available, which happens with probability
(1 − a) · Uideal(n, k).

OMMDS Codes: A (k, n) OMMDS Code with re-
dundancy R = n/k stores RM bytes in total, so
f · R · M bytes must be replaced per unit time. But
replacing a fragment requires transferring over the net-
work βOMMDS = (n − 1)/(n − k) times the size of the
fragment (see Section III-B), even in the most favorable
case when newcomers connect to n−1 nodes to construct
a new fragment. This results in f ·R ·M·βOMMDS bytes
sent per unit time, and unavailability Uideal(n, k).

Regenerating Codes: A (k, n) Regenerating Code
stores M · n · βRC bytes in total (see Section IV). So
in expectation f · M · n · βRC bytes are transfered per
unit time, and the unavailability is again Uideal(n, k).
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Trace Length Start Mean # f a
(days) date nodes up (fraction failed per day)

PlanetLab 527 Jan. 2004 303 0.017 0.97
Microsoft PCs 35 Jul. 6, 1999 41970 0.038 0.91

Skype 25 Sept. 12, 2005 710 0.12 0.65
Gnutella 2.5 May, 2001 1846 0.30 0.38

TABLE I: The availability traces used in this paper.

C. Estimating f and a

In this section we describe how we estimate f , the
fraction of nodes that permanently fail per unit time, and
a, the mean node availability, based on traces of node
availability in several distributed systems.

We use four traces of node availability with widely
varying characteristics, summarized in Table I. The
PlanetLab All Pairs Ping [24] trace is based on pings
sent every 15 minutes between all pairs of 200-400
nodes in PlanetLab, a stable, managed network research
testbed. We consider a node to be up in one 15-minute
interval when at least half of the pings sent to it in
that interval succeeded. In a number of periods, all or
nearly all PlanetLab nodes were down, most likely due
to planned system upgrades or measurement errors. To
exclude these cases, we “cleaned” the trace as follows:
for each period of downtime at a particular node, we
remove that period (i.e. we consider the node up during
that interval) when the average number of nodes up
during that period is less than half the average number
of nodes up over all time. The Microsoft PCs [4] trace
is derived from hourly pings to desktop PCs within
Microsoft Corporation. The Skype superpeers [12] trace
is based on application-level pings at 30-minute intervals
to nodes in the Skype superpeer network, which may
approximate the behavior of a set of well-provisioned
endhosts, since superpeers may be selected in part based
on bandwidth availability [12]. Finally, the trace of
Gnutella peers [22] is based on application-level pings
to ordinary Gnutella peers at 7-minute intervals.

We next describe how we derive f and a from
these traces. It is of key importance for the storage
system to distinguish between permanent and transient
failures (defined in Section V-A), since only the former
requires bandwidth-intensive replacement of lost redun-
dancy. Most systems use a timeout heuristic: when a
node has not responded to network-level probes after
some period of time t, it is considered to have failed
permanently. To approximate a storage system’s behav-
ior, we use the same heuristic. Node availability a is
then calculated as the mean (over time) fraction of
nodes which were available among those which were
not considered permanently failed at that time.

The resulting values of f and a appear in Table I,
where we have fixed the timeout t at 1 day. Longer
timeouts reduce overall bandwidth costs [20], [5], but
begin to impact durability [5] and are more likely to
produce artificial effects in the short (2.5-day) Gnutella

trace.
We emphasize that the procedure described above only

provides an estimate of f and a which may be biased
in several ways. Some designs [5] reincorporate data on
nodes which return after transient failures which were
longer than the timeout t, which would reduce f . Ad-
ditionally, even placing files on uniform-random nodes
results in selecting nodes that are more available [25]
and less prone to failure [11] than the average node.
Finally, we have not accounted for the time needed to
transfer data onto a node, during which it is effectively
unavailable. However, we consider it unlikely that these
biases would impact our main results since we are
primarily concerned with the relative performance of the
strategies we compare.

D. Quantitative results

Figure 4 shows the tradeoff between mean unavail-
ability and mean maintenance bandwidth in each of the
strategies of Section V-B using the values of f and a
from Section V-C and k = 7. Figure 5 shows the tradeoff
for k = 14. Points in the tradeoff space are produced by
varying the redundancy factor R.

We show OMMDS in the two Skype plots where
the trends are clearly visible. To reduce clutter we
omit similar results for the other traces. In all cases,
OMMDS obtains worse points in the tradeoff space than
Hybrid.

In the more stable environments, Regenerating Codes
obtain a substatantial benefit over Hybrid strategy. For
example, in the PlanetLab trace with k = 7, RC has
about 25% lower bandwidth for the same availability,
or more than 3 orders of magnitude lower unavailability
with the same bandwidth. The difference is even greater
for k = 14.

RC’s reduction in bandwidth compared with Hybrid
diminishes as the environment becomes less stable; in
the most extreme case of the Gnutella trace, RC can
actually be very slightly worse. The reason can be seen
by comparing the two schemes with Ideal Erasure Codes.
For fixed k and n, both RC and Hybrid have roughly
the same availability (Hybrid is slightly better due to
the extra replica). However, in terms of bandwidth as
we scale n, RC has a small constant factor overhead
compared with Ideal Erasure codes, while Hybrid has a
rather large but only additive overhead due to the single
extra replica. For large enough n, such as is necessary
in Gnutella, the additive overhead wins out.
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Fig. 4: Availability-bandwidth tradeoff for k = 7 with parameters derived from each of the traces.

This is unlikely to make Hybrid a lower-bandwidth
choice, for two reasons. First, as demonstrated by Fig-
ure 5, a larger value of k diminishes RC’s overhead
sufficiently that it is better than Hybrid in all cases that
we tested. Second, as discussed in [20], more stable
environments are the more likely deployment scenario in
any case. Taking numbers from the Gnutella trace with a
target unavailability of 0.01, nodes are unlikely to want
to use 20 KB/sec of bandwidth (a significant fraction of
typical endhost uplink bandwidth) just to reliably store a
1 GB file (a very small fraction of today’s hard disks). In
PlanetLab, the same 1 GB can be maintained with 100×
lower unavailability using about 58× less bandwidth.

E. Qualitative comparison

In this section we discuss two questions: First, is RC
an overall win over Hybrid? Second, do our results affect
the conclusion of Rodrigues and Liskov [20] that erasure
codes offer too little improvement in bandwidth use to
clearly offset the added complexity that they add to the
system?

The results of Section V-D suggest that in practical
scenarios RC provides a significant reduction in main-
tenance bandwidth over Hybrid, as well as simplifying

system architecture since only one type of redundancy
needs to be maintained. This addresses the two principal
disadvantages of using erasure codes discussed in [20].

However, RC still has some drawbacks. First, con-
structing a new packet, or reconstructing the entire file,
requires communcation with k nodes rather than one (in
Hybrid, the node holding the single replica). This adds
overhead that could be significant for sufficiently small
files or sufficiently large k. Perhaps more importantly, as
discussed in Section IV, there is a factor βRC increase in
total data transferred to read the file, roughly 14% for
k = 7 but diminishing to 7.1% for k = 14 and 3.1%
for k = 32 (see Figure 2). Thus, if the frequency that
a file is read is sufficiently high and k is sufficiently
small, this inefficiency could overwhelm the reduction
in maintenance bandwidth.

If the target application is archival storage or backup,
files are likely to be large and infrequently read. We
believe this is one case in which RC is likely to be a
significant win over both Hybrid and replication.
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