
Minimizing Churn in
Distributed Systems

Brighten Godfrey
Scott Shenker

Ion Stoica

SIGCOMM 2006

1

introduction

Churn: an important factor for most distributed systems

Turnover causes dropped requests, increased bandwidth, ...

Would like to optimize for stability

Select which nodes to use

Can’t prevent a
node from
failing , but we
can select which
nodes to use

2

introduction

Past work uses heuristics for specific systems

Our goal: a general study of minimizing churn

How can we select nodes to minimize churn?

Can we characterize how existing systems select nodes
and the impact on their performance?

...applicable
to a wide
range of
systems

3

contents

• an example system

• evaluation of node selection strategies

(how can we minimize churn?)

• applications

(how do existing systems select nodes?)

• conclusions

4

example: overlay multicast

Join:

•Consider m random nodes
with # children < max

•Pick one as parent to
minimize latency to root

root

X

Interruption

5

example: overlay multicast

 0

 400

 800

 1200

 1600

 1 4 16 64 256

La
te

nc
y

to
 ro

ot
 (m

s)

Nodes considered when picking parent (m)

6

example: overlay multicast

 0

 400

 800

 1200

 1600

 1 4 16 64 256
 0

 1

 2

 3

 4

 5

 6

La
te

nc
y

to
 ro

ot
 (m

s)

In
te

rru
pt

io
ns

 p
er

 n
od

e
pe

r d
ay

Nodes considered when picking parent (m)

+86%

7

example: overlay multicast

In terms of interruption rate,

Random Replacement
of parent

(m=1)

better
than

Preference List
selection
(large m)

Why?

8

contents

• an example system

• evaluation of node selection strategies

(how can we minimize churn?)

• applications

(how do existing systems select nodes?)

• conclusions

9

the core problem

Node selection task

n nodes available

pick k to be “in use”

when one fails, pick a replacement

Minimize churn: rate of change in set of in-use nodes

10

defining churn
For each node:

Intuition: when a node joins or leaves a DHT,
1/k of stored objects change ownership

...then divide by runtime

in use

down available

join
leavefail churn += 1

k

k = # of nodes
in use

11

node selection strategies

Predictive

Agnostic

•Longest uptime
•Most available

•Max expectation
•...

•Random
Replacement

•Preference List

12

agnostic selection strategies

Random Replacement

Passive Preference List

Active Preference List

Select random available
node to replace failed node

...and switch to more preferred
nodes when they join

Rank nodes (e.g. by latency);
Select most preferred as replacement

Pref List is:
(1) essentially
static across time
(2) essentially
unrelated to churn

13

evaluation

Longest Uptime, Max Expectation

churn

Passive PL

Active PL

1.2-3×
2.5-8×

Random Replacement

1.2-2.2×

Why such
a difference?

...even
though
neither uses
history?

14

evaluation
5 traces of node availability

PlanetLab [Stribling 2004-05]

Web sites [Bakkaloglu et al 2002]

Microsoft PCs [Bolosky et al 2000]

Skype superpeers [Guha et al 2006]

Gnutella peers [Saroiu et al 2002]

Main conclusions held in all cases
15

evaluation: PlanetLab trace

 0

 0.2

 0.4

 0.6

 0.8

 1

10.01 0.1

Ch
ur

n
(tu

rn
ov

er
 p

er
 d

ay
)

Fraction of nodes in use

Active PL
Passive PL

RR
Max Exp

16

intuition: PL

uses the top k nodes in the preference list

preference list unrelated to stability

failure rate is about mean node failure rate

<--- becomes
more and more
true for
Passive as k
increases

17

intuition: RR

RR like picking a node at a random time

Long sessions occupy more time (trivially)

So, RR biased towards landing in longer sessions

Failure rate can be arbitrarily lower than mean

Time

selected
TTF

An example of
the classic
“inspection
paradox”

X X X X X X

but it depends
on the session
time
distribution

session = time
between 2
failures

18

RR vs. PL: analysis

Churn of RR decreases as session time distributions become
“more skewed” (=> higher variance)

RR can never have more than 2x the churn of PL strategies

E[C] =
2
αd

d∑

i=1

1
µi

(
1− E

[
exp

{
− α

2(1− α)
E[C] · Li

}])

19

contents

• an example system

• evaluation of node selection strategies

(how can we minimize churn?)

• applications

(how do existing systems select nodes?)

• conclusions

20

applications of RR & PL

anycast

DHT replica placement

overlay multicast

DHT neighbor selection

21

overlay multicast

 0

 400

 800

 1200

 1600

 1 4 16 64 256
 0

 1

 2

 3

 4

 5

 6

La
te

nc
y

to
 ro

ot
 (m

s)

In
te

rru
pt

io
ns

 p
er

 n
od

e
pe

r d
ay

Nodes considered when picking parent (m)

two separate effects of
increasing m:

(1) tree becomes more
balanced (small decrease
in interruptions)
(2) move from RR- to PL-
like strategy (big increase)

22

a peek inside the tree

 0

 0.5

 1

 1.5

 2

 2.5

 0 5 10 15 20

Fa
ilu

re
s

pe
r d

ay

Depth in tree

 0

 0.5

 1

 1.5

 2

 2.5

 0 5 10 15 20

Fa
ilu

re
s

pe
r d

ay

Depth in tree

m = 1 (random selection)
m = n (latency-optimized)

 0

 0.5

 1

 1.5

 2

 2.5

 0 5 10 15 20

Fa
ilu

re
s

pe
r d

ay

Depth in tree

m = n (latency-optimized)

23

overlay multicast notes

Basic framework from [Sripanidkulchai et al SIGCOMM’04]

Found random parent selection surprisingly good

Tested 2 other heuristics to minimize interruptions

Both can perform better with some randomization!

24

DHT neighbor selection
Standard Chord topology

1
2

3

Active PL strategy for
selecting each finger

Preference List arises
accidentally

25

DHT neighbor selection
Randomized topology

Divide keyspace into 1/2,
1/4, 1/8, ...

Finger points to random key
within each interval

26

DHT neighbor selection
Datagram-level simulation, i3 Chord codebase, Gnutella trace

easy 29%
reduction at
n = 850

 0

 0.005

 0.01

 0.015

 32 64 128 256 512 1024

Fr
ac

tio
n

of
 re

qu
es

ts
 fa

ile
d

Average number of nodes in DHT

Standard Chord topology
Randomized Chord topology

27

contents

• an example system

• evaluation of node selection strategies

(how can we minimize churn?)

• applications

(how do existing systems select nodes?)

• conclusions

28

conclusions
A guide to minimizing churn

RR is pretty good; PL much worse

RR and PL arise in many systems

Design insights

watch out for (implicit) PL strategies

easy way to reduce churn: add some randomness

doing less
work may
improve
performance!

29

backup slides

30

Why use RR?

Simplicity: no need to monitor and disseminate failure data

Robustness to self-interested peers

Legacy systems

31

