Balls and Bins with Structure

Brighten Godfrey
UC Berkeley
Soda 2008 • January 2I, 2008

Nearby server selection

Servers in the unit square

Clients arrive, random locations

Probe some servers, connect to
least loaded
Want a balanced allocation of clients
 to servers

It's almost balls 'n' bins...

- n bins (servers), m balls (clients)
- Balls arrive sequentially: probe d random bins, placed in least loaded
- Classic results, when $m=n$:
- d=1: max load $O(\log n / \log \log n)$
- d=2: max load $O(\log \log n)$
- $d=\log ^{c} n$: max load $O(1)$

Want structured choices

- Standard balls-andbins requires uniform random choices
- But probing close servers is better

In this paper

a balls and bins model with arbitrary correlations between a ball's choices

Past work

- [Kenthapadi \& Panigrahy, SODA’06]: Balanced allocations on graphs

- Max load $O(\log \log n)$ when graph almost regular with degree $n^{\theta(1 / \log \log n)}$
- We allow stronger structure and primarily address $d=\Theta(\log n)$ choices

Our model

- Given a distribution over sets of bins
- Each ball i draws set B_{i} from the distribution, put ball in random least loaded bin in B_{i}

Example: nearby server selection

- Pick random point p in the plane
- $B_{i}=$ set of servers within some distance of p

What restrictions on the B_{i} s yield a good max load?

Main Theorem

If we have, for every ball i,
enough choices $d:=\left|B_{i}\right| \geq \Omega(\log n)$
"balance" \forall bins $j, \operatorname{Pr}\left[j \in B_{i}\right]=\Theta\left(\frac{d}{n}\right)$
then
w.h.p. max load $=1$ after placing $\Theta(n)$ balls
$\ldots O(1)$ after placing n balls

Power: arbitrary correlations among choices!

Ex. 1: arbitrary patterns

- Index the bins: $0,1, \ldots, n-1$
- Adversary picks indexes $\left\{b_{1}, \ldots, b_{d}\right\}$
- Ball picks random offset R and probes bins $\left\{b_{1}+R, \ldots, b_{d}+R\right\} \bmod n$

enough choices Set $d=\Theta(\log n)$
balance $\begin{aligned} & \text { Due to random offset, }\end{aligned} \quad \Rightarrow \begin{aligned} & \max \text { load } \\ & O(1) \text { w.h.p. }\end{aligned}$

Ex. 2: server selection

- n servers at random locations in unit square
- Each client i picks random point p in the plane; $B_{i}=$ set of servers within distance r of p
enough Pick r to cover area $(\log n) / n$.
choices Chernoff shows w.h.p. about $\log n$ servers in any B_{i}.
balance p uniform random: servers have equal chance of falling within r

Other cases in paper

- Application to load balance in peer-to-peer networks
- More general version of theorem
- No need for same number of choices for each ball
- No need for set of choices B_{i} to come from same distribution for each ball

Remainder of the talk

Proof overview

2 Lower bound

3 Open problems

Intuition: regain independence

- Want to show each ball finds an empty bin

Independent choices

Delelell! II
Current allocation of balls is irrelevant
$\log (n)$ choices =>
find empty bin w.h.p.

Correlated choices

Problem: allocation

is not uniform-random

- Suppose one ball so far, sequential choices

These bins have

 - same chance of being in B_{i} -greater chance of getting ball if in B_{i} because they're picked along with filled bin- Solution: show placement process is dominated by uniform process that places more balls

Proof structure

- Two processes:

> | P1 (i) | $\begin{array}{l}\text { allocation after } i \text { balls with } \\ \text { structured choices }\end{array}$ |
| :--- | :--- |
| P2(i) | $\begin{array}{l}\text { allocation after ki balls put in } \\ \text { uniform-random empty bins }\end{array}$ |

- Show inductively $\mathrm{P} 1(i)$ is dominated by $\mathrm{P} 2(i)$:

$$
P 1(i)_{j} \leq P 2(i)_{j} \quad \forall \text { bins } j \text { w.h.p. }
$$

Inductive step, ball i+1

- "Smoothness": Pr[bin j gets ball $=\Theta\left(\frac{1}{f n}\right)$ if j empty, $\forall j$
- Show smoothness w.h.p., using balance and $O(\log n)$ size (\# free bins in B_{i} concentrates)
- Smoothness implies domination:
- Set up bipartite graph, nodes = outcomes with structured and uniform choices, resp.
- Show perfect fractional matching with vertex weights exists for suitable $k=>$ domination preserved

Lower bound

- Main theorem: $\Omega(\log n)$ choices and balance are sufficient for $O(1)$ max load
- Are $\Omega(\log n)$ choices necessary? Yes, almost:

There exist balanced choices of bins $\left(B_{i}\right)$ with $\left|B_{i}\right|=d$ for which max load is

$$
\geq \frac{\ln n}{\ln \ln n}\left(\frac{1}{d}\right. \text { w.h.p. }
$$

At best linear decrease in max load: no power of two choices result!

Open problems

- Close gap between upper and lower bounds
- Conjecture: can improve number of placed balls from $\Theta(n)$ to $(1-\epsilon) n$ with max load 1
- Theorem requires placement in uniform random least-loaded bin among choices. Relax that reqirement?
- Finding a job!

