
Distance Oracles for Stretch Less Than 2

Rachit Agarwal

Department of Computer Science,

University of Illinois at Urbana-Champaign

agarwa16@illinois.edu

P. Brighten Godfrey

Department of Computer Science,

University of Illinois at Urbana-Champaign

pbg@illinois.edu

Abstract

We present distance oracles for weighted undirected graphs

that return distances of stretch less than 2. For the realistic

case of sparse graphs, our distance oracles exhibit a smooth

three-way trade-off between space, stretch and query time

— a phenomenon that does not occur in dense graphs. In

particular, for any positive integer t and for any 1 ≤ α ≤ n,

our distance oracle is of size O(m + n2/α) and returns

distances of stretch at most (1 + 2

t+1
) in time O((αµ)t),

where µ = 2m/n is the average degree of the graph. The

query time can be further reduced to O((α + µ)t) at the

expense of a small additive stretch.

1 Introduction

Distance oracles are compact data structures that

can be efficiently queried to compute the distance

between any given source-destination pair in a graph.

A distance oracle is said to return stretch-s distances

if, for a given pair of vertices at distance d, the

returned distance δ satisfies d ≤ δ ≤ s · d. There

is a trade-off between the size of the oracle and

its stretch; this trade-off is now well understood for

general undirected graphs. In particular, there exist

distance oracles of size Θ(n1.5) that return distances

of stretch 3 [17], and a lower bound of Thorup and

Zwick [17] shows that oracles that return distances

of stretch less than 3 must have size Ω(n2). However,

the hard instances used to prove this lower bound

are extremely dense graphs: the proof shows that to

achieve stretch less than 3, the size of the oracle

must be lower bounded by the number of edges in

a graph with Θ(n2) edges. Essentially, the bound

shows the existence of a dense enough graph that is

incompressible.

Can lower stretch be achieved using sub-quadratic

space in sparse1 graphs? This question is both

interesting and important for two reasons. First, far

from being a narrow special case of the problem,

sparse graphs are the most relevant case. Nearly all

large real-world networks are sparse, including road

networks [14], social networks [4], the router-level

Internet graph [9] and the Autonomous System-level

Internet graph [8], as well as networks like expander

graphs that are important in many settings; see [2]

1We say that a graph is sparse if it has m = o(n2) edges.

for numerical examples of the sparsity of a number

of networks. These include nearly all networks

with real-world applications of distance oracles — in

social networks [1,13], personalized search [13,18],

network routing [2, 16], etc. In this sense, oracles

that match the lower bound of [17] are optimal only

for the obscure case of extremely dense graphs.

The second reason sparse graphs are interesting

is that the mathematical structure of the question

changes dramatically in the case of sparse graphs.

Taking the extreme case of m = Õ(n) edges, one can

trivially produce an oracle of size Õ(n) that returns

exact shortest paths (stretch 1), simply by storing the

input graph and running Dijkstra’s algorithm on each

query. This, however, takes Õ(n) time per query. Thus,

in the dense case, the focus is on retaining sufficient

information to retrieve low stretch distances after a

“lossy compression” of the graph. In the sparse case,

the input graph can be stored in relatively little space,

and the trade-off with query time becomes critical.

Relatively little is known about the space-stretch-

time trade-off for sparse graphs. Pǎtraşcu and Roddity

[11] designed a stretch-2, constant-time oracle of size

O(n4/3m1/3). Agarwal et al. [2,3] explored the trade-

off between size and query time; their lowest-stretch

oracle is of size O(m + nm1−ǫ) and returns stretch-

2 distances in O(mǫ) time. No non-trivial distance

oracle that returns distances of stretch less than 2 in

sparse weighted graphs is known.

In this paper, we present the first distance ora-

cle that returns distances of stretch less than 2 for

weighted graphs with m = o(n2) edges. For the

realistic case of sparse graphs, our distance oracle

achieves a smooth three-way trade-off between space,

stretch and query time. Our main theorem is as

follows.

Theorem 1.1. Let G be any weighted graph with n

vertices and m = O(nµ) edges with non-negative

weights. Then, for any 1 ≤ α ≤ n and any inte-

ger t > 0, we can construct a distance oracle of

expected size O(m+n2/α) and a query algorithm that

returns distances of stretch (1+ 2

t+1
) in expected time

O((αµ)t + (αµ)t−1α logα).

agarwa16@illinois.edu
pbg@illinois.edu

For instance, consider graphs with m = Õ(n)

edges and fix the space to be Õ(n7/4). Then our

oracle retrieves stretch-2 distances in O(n1/4) time

and stretch-1.67 distances in O(
p

n) time.

More generally, the parameters α and t in our

result give a smooth tradeoff between query time

and stretch (for fixed t) or between query time and

size (for fixed α). The theorem also implies that on

sufficiently sparse graphs, it is possible to retrieve

distances with stretch arbitrarily close to 1 in sub-

quadratic space and sub-linear query time. The query

time in Theorem 1.1 can be further reduced using a

small additive stretch, that depends only on t. We

describe this and other special-case results in §6.

Before delving deeper, we remark on what we be-

lieve differentiates our approach from previous work.

The main focus of [2, 3, 11, 17] was on designing

(elegant and compact) distance oracles to represent

the input graph; their query algorithms for retrieving

distances were rather straightforward. In contrast,

the focus of our work is a query algorithm that allows

us to achieve a more general space-stretch-time trade-

off and retrieve distances of stretch less than 2;

our distance oracle, on the other hand, is closely

related to that of [2,17] with a simple (yet powerful)

modification to facilitate our query algorithm. In

particular, our main tool is a query algorithm that

recursively queries a stretch-3 distance oracle of size

O(m+ n2/α); with each successive query, the stretch

improves and the query time increases. The main

challenge is to improve stretch without significantly

increasing query time, which we accomplish by per-

forming recursive queries in a structured fashion.

2 Related work

Lower bounds for distance oracles. For general

weighted undirected graphs, Thorup and Zwick [17]

proved that distance oracles that return distances of

stretch 2 and 3 must require Ω(n2) and Ω(n3/2) space.

Their lower bounds, as discussed earlier, hold only for

dense graphs and do not apply to our case.

Sommer et al. [15] proved that the size of

stretch-s time-t distance oracles is lower bounded

by n1+Ω(1/st); that is, for (constant stretch and)

constant query time, any oracle must have super-

linear size for graphs with m = Õ(n) edges. For

graphs with m > Ω̃(n) and/or super-constant query

time, their bound does not have any meaningful

interpretation. Conditioned on a conjecture on

hardness of set intersection queries, Pǎtraşcu and

Roditty [11] strengthened their result for the special

case of stretch-2 oracles by proving a lower bound of

Ω(n
p

m) on the size of oracles with constant query

time.

There are reasons to believe that it may be hard

to improve upon these lower bounds unconditionally

[11], and realistically, upper bounds seem to be

the only way to make progress on the problem. A

particularly compelling scenario is the case ofΩ(log n)

query time, like ours, for which no non-trivial lower

bounds are known and it is conceivable that distance

oracles with smaller stretch and size exist.

Upper bounds for weighted graphs. For general

weighted undirected graphs, Thorup and Zwick [17]

designed a distance oracle, that for any integer k ≥ 2,

is of size O(kn1+1/k) and returns stretch-(2k − 1)

distances in O(k) time; the construction time of their

oracle is O(mn1/k). Subsequent research improved

the construction time [5–7, 19] and the query time

[10]. Designing oracles with reduced size and/or

stretch turned out to be a much harder problem,

precisely due to the above lower bounds. Indeed,

these results may be quite far from optimal for the

realistic case of sparse graphs.

For the case of sparse graphs, Pǎtraşcu and Rod-

dity [11] considered the problem of designing dis-

tance oracles with constant query time: their oracle

is of size O(n4/3m1/3) and returns stretch-2 distances.

Agarwal et al. [2, 3] designed distance oracles with

super-constant query time and explored the trade-off

between size and query time. For instance, on graphs

with m = Õ(n) edges, a special case of the distance

oracle in [2] returns stretch-2 distances using Õ(n2−ǫ)
space and O(nǫ) query time — for ǫ = 0.5, this

requires less space but higher query time than [11].

Recently, Porat and Roditty [12] gave a stretch-

less-than-2 oracle for the special case of unweighted

graphs. We give a detailed comparison below but note

that for sparse weighted graphs, no non-trivial oracle

for stretch less than 2 is known; even for unweighted

graphs, we significantly improve upon their results for

each point in the space-stretch-time trade-off space.

Comparison with Porat-Roditty oracle [12]. Per-

haps, the work most closely related to ours is that of

Porat and Roditty: their oracle is of size O(nm1−ǫ)
and returns distances of stretch 1+2ǫ

1−2ǫ
in time O(m1−ǫ)

for the special case of unweighted graphs.

There are three main aspects in which our oracle

of Theorem 1.1 improves upon their oracle. First, we

significantly improve upon their results for each point

in the space-stretch-time trade-off space. For instance,

consider graphs with m = Õ(n) edges and let α =

nǫ . Then, by setting ǫ = (1/(2t + 4)), our oracle

has the same stretch and space as their oracle but

requires
p

n ·nt/(2t+4) less query time — a polynomial

reduction in the query time for each value of t. The

improvement increases with the density of the graph.

Second, unlike their distance oracle, our oracle

works for general weighted graphs. Finally, their

distance oracle exhibits the space-stretch trade-off as

in classical distance oracles for dense graphs [17];

once the stretch is fixed, the space and query time

are fixed. Our oracle exhibits a more general three-

way trade-off highlighting a fundamental difference

between the dense and the sparse cases.

3 Overview of our technique

We start by giving a high level overview of our

technique. To do so, let us briefly recall one of the

most frequently used techniques to design distance

oracles [2, 3, 11, 17]. Typically, the construction of

distance oracles starts by selecting a subset of vertices

L known as “landmark vertices”. The oracle stores

the distance from each vertex in L to each other

vertex in the graph. Next, each vertex u is assigned a

landmark vertex ℓ(u) ∈ L; this is the vertex ℓ ∈ L that

minimized the distance d(u,ℓ), ties broken arbitrarily.

Finally, the notion of “balls” is used — the ball of

any vertex u is the set of all vertices w for which

the distance between u and w is strictly less than the

distance between u and ℓ(u). The distance from each

vertex u to each vertex in B(u) is either stored in the

oracle [2,3,11,17] or is computed on the fly [2,3].

In order to retrieve low stretch distances, a typical

query algorithm works as follows. When queried

for the distance between two vertices u, v, the exact

distance is returned if u ∈ B(v) or if v ∈ B(u); if not,

the distance d(u,ℓ(u))+ d(ℓ(u), v) is returned. In the

latter case, by triangle inequality, we get that the re-

turned distance is at most 2·d(u,ℓ(u))+d(u, v), which

is at most 2 · d(u,ℓ(u)) more than the exact distance.

Hence, the stretch is given by 1+ 2d(u,ℓ(u))/d(u, v).

For instance, if d(u,ℓ(u)) ≈ d(u, v), we get roughly

stretch 3 [17].

Our technique builds upon the above technique

using two observations. First, given the above stretch-

3 oracle, it may be possible to retrieve distances of

lower stretch by carefully querying the oracle. More

specifically, let u′ be some vertex along the shortest

path between u and v and suppose we know the exact

distance d(u,u′). We can then query the oracle for

distance between u′ and v and return the distance

d(u,u′) + δ(u′, v). As above, the exact distance is

returned if u′ ∈ B(v) or v ∈ B(u′); if not, the returned

distance is d(u,u′) + d(u′,ℓ(u′)) + d(ℓ(u′), v). Using

triangle inequality, we get that the returned distance

is at most d(u,u′) + 2 · d(u′,ℓ(u′)) + d(u′, v) = 2 ·
d(u′,ℓ(u′)) + d(u, v). If d(u′,ℓ(u′)) < d(u,ℓ(u)), this

in fact leads to a better stretch; finding such a vertex

u′ and computing the distance d(u,u′) takes some

time, but leads to improved stretch.

Our second observation is related to finding a

good candidate vertex u′ for querying the oracle.

Recall that the stretch of the distance returned de-

pends on d(u′,ℓ(u′)), or more precisely, on the ratio

d(u′,ℓ(u′))/d(u, v). The lower this ratio, the lower

is the stretch of the distance returned. Hence, we

not only want to find a vertex u′ along the shortest

path, but also a vertex with a small “ball radius”

d(u′,ℓ(u′)). If we can find a vertex u′ such that

d(u′,ℓ(u′)) ≤ d(u, v)/(t + 1), we will get the desired

bound on stretch. We will show that such a vertex

always exists and can be found within the desired

bound on the query time.

The main challenge in exploiting the above two

observations is that of finding a good candidate vertex

u′ — one that lies along the shortest path between

u and v and allows us to bound d(u′,ℓ(u′))/d(u, v).

Indeed, this information is not stored within the

oracle and that is where we need to do most of the

work. The rest of this section provides some low level

details on efficiently finding such a vertex u′.
We start by noting that there may be multiple

candidate vertices for u′; for instance, since u ∈ B(u),

there exists at least one such candidate vertex among

the neighbors of vertices in B(u)2. To find this vertex,

we grow a partial shortest path tree around the source

u until all the neighbors of B(u) have been explored

(see Figure 1(a)); alternative algorithms for finding

these candidate vertices may grow shortest path trees

around v (as in Figure 1(b)) or even around both u

and v (as in Figure 1(c)). Growing these shortest path

trees contribute to the query time of our algorithm.

Here, we need to resolve the issue of the source

and/or the destination having extremely dense neigh-

borhoods — if O(m) edges need to be explored to

grow this (partial) shortest path tree, this may lead

to O(m) worst-case query time. In order to resolve

this problem, we use a result from [2, 3], which

shows that designing distance oracles for graphs

with average degree µ is no harder than that for µ-

degree bounded graphs. In particular, they present a

technique that takes an oracle for µ-degree bounded

graphs and converts it into an oracle for graphs with

average degree µ with no loss in stretch and at most a

constant factor increase in size and query time. This

allows us to not worry about high-degree vertices by

focusing on designing distance oracles for µ-degree

bounded graphs.

2Note that at least one such vertex also exists among the

neighbors of vertices in B(v). Indeed, this vertex may be a better

candidate for being the vertex u′. It turns out that our desired

bound on stretch can be proved irrespective of which of these

vertices is chosen as the vertex u′ but it may be possible to achieve

an improved bound on stretch (theoretically or empirically) by

using a more sophisticated algorithm for selecting this vertex u′.

u v

(a) Exploring the neighborhood of u in

search of candidate vertex u′

u v

(b) Exploring the neighborhood of v

in search of candidate vertex u′

u v

(c) Exploring the neighborhood of u and v in

search of candidate vertex u′

Figure 1. Various possibilities of exploring the neighborhoods of the source and the destination in search of candidate vertex u′.

We now give the high-level idea of proving the

desired bound of (1+2/(t+1)) on stretch. To achieve

this bound, we use a recursive query algorithm. Once

we have found a good candidate vertex u′ among the

neighbors of vertices in B(u), we recurse; that is, we

find a good candidate vertex u′′ among the neighbors

of vertices in B(u′) and so on. Once the depth of

recursion has reached t, we are able to show that

among all the candidate vertices explored during the

recursive queries, we would have found a vertex w

along the shortest path between u and v such that

d(w,ℓ(w))≤ d(u, v)/(t+1). As discussed earlier, this

leads to the desired bound on stretch.

The space-stretch-time trade-off. Finally, we

comment on the three-way trade-off between space,

stretch and query time in our distance oracle.

For any fixed stretch, our distance oracles achieve

the trade-off between space and query time by way

of construction. Unlike the construction algorithms

in [11, 17], the size of the landmark set L in our

oracles is controlled by a parameter 1≤ α ≤ n. As we

increase the size of L, the size of the oracle increases

since it stores the distance from each vertex in L to

each other vertex. On the other hand, as the size of

L increases, fewer edges need to be explored while

growing the shortest path trees in each recursive step,

leading to a smaller query time. Hence, for any fixed

stretch, we get a smooth space-time trade-off using

the parameter α.

The other spectrum of the trade-off is achieved by

using the recursive query algorithm — for a fixed size

of the oracle, we get a trade-off between stretch and

query time. Fix some 1 ≤ α ≤ n and hence, the size

of the oracle. Then, we get a stretch-time trade-off by

controlling the depth of recursion — the lower the

desired stretch, the higher the query time. This is

due to the fact that we are simply querying the same

data structure (recursively) and hence, the size of the

oracle is fixed; the query algorithm simply allows us

to trade-off query time for improved stretch.

4 A distance oracle for stretch 3

In this section, we construct a distance oracle that re-

turns stretch-3 distances for any weighted graph. Our

oracle is similar in spirit to the oracles of [2,17] with

some simple, yet powerful modifications. We give

a randomized construction of the oracle; our query

algorithm is deterministic and hence, using Chernoff

bound, all the results hold with high probability with

an extra logarithmic factor. In particular, we prove

the following lemma:

Lemma 4.1. Let G be any weighted graph with n

vertices and m = O(nµ) edges with non-negative

weights. Then, for any 1 ≤ α ≤ n, we can construct

a distance oracle of expected size O(m+ n2/α) and a

query algorithm that computes stretch-3 distances in

expected time O(αµ+α logα).

Let L and V ′ be a given subset of vertices. Then,

for any vertex v, we define the following:

• Nearest vertex in set L — ℓ(v): the vertex a ∈ L

that minimizes d(v, a), ties broken arbitrarily.

• Neighbor set N(V ′): the set of all the neighbors

of vertices in V ′.

• Ball of a vertex B(v): the set of vertices w ∈ V

for which d(v, w)< d(v,ℓ(v)).

• Ball radius rv: the distance from v to its nearest

neighbor in L, that is, d(v,ℓ(v)).

• Vicinity of a vertex Γ(v): the set of vertices in

B(v)∪ N(B(v)).

• Distance-via-ball from v to w — d ′
v
(w): cost

of the least-cost path from v to w such that all

intermediate vertices on this path are contained

in B(v); that is:

d ′
v
(w) = min

x∈N (w)∩B(v)
{d(v, x) +weight of edge(x , w)}

The following result from [2, 3] will be useful to

succinctly describe our results:

Lemma 4.2 ([2,3]). Let G be any weighted undi-

rected graph with n vertices, m edges and average

degree µ = 2m/n. Then, one can construct an

equivalent graph with maximum degree ⌈µ+2⌉, such

that the new graph has 2n vertices, m+ n edges, and

has the same distances between any pair of vertices

as the distance in the original graph between the

corresponding vertices.

The reduction that leads to the above result does

introduce some new zero-weight edges in the graph.

Hence, the above implies that as long as the stretch

bound of the query algorithm does not depend on the

edge weights, given a graph with average degree µ,

we can replace it with a graph with maximum degree

no more than ⌈µ + 2⌉, and build the oracle on this

new graph instead of the original graph. Using the

above result, we can henceforth focus on degree-

bounded graphs. To this end, let G = (V, E) be a µ-

degree bounded graph where each vertex has at most

µ= 2m/n neighbors.

Constructing the oracle. Fix some 1 ≤ α ≤ n. The

construction begins by creating a set of “landmark”

vertices by sampling each vertex independently at

random with probability 1/α. Denote by L the set

of landmark vertices. The distance oracle stores, for

each v ∈ V , a hash table storing the exact distance to

each vertex in L; it also stores the nearest neighbor

ℓ(v) and the ball radius rv . In addition, the distance

oracle stores the entire graph — for each vertex v, the

set of edges (and their weights) incident on v.

Query algorithm. We now show how to retrieve

stretch-3 distances from the above distance oracle.

When queried for the distance between vertices u, v,

the algorithm runs modified shortest-path algorithms

from u and from v that stop once the distances to

all vertices in B(u) and B(v), respectively, have been

computed. These distances are stored in a hash

table temporarily. To answer the query, the algorithm

works in three steps: (1) it checks if v ∈ B(u) or

u ∈ B(v) — if any of these is true, the exact distance

is returned using the hash table; (2) if the first step

is unsuccessful, it checks if ru = 0 or rv = 0 — if

one of these is zero (say ru), the algorithm returns

d(u,ℓ(u)) + d(v,ℓ(u)), which is easily proved to be

exact by using triangle inequality; and (3) if the first

two checks are unsuccessful, the algorithm returns

d(u,ℓ(u)) + d(v,ℓ(u)), which is of stretch 3 using an

essentially unmodified proof of [17].

The above distance oracle and the query algo-

rithm are similar to that of the construction of Thorup

and Zwick [17]with three main differences. First, our

query algorithm computes balls and corresponding

distances to vertices in the ball on the fly; second, to

allow computation of these balls and distances on the

fly, the graph is stored within the oracle; and third,

the sizes of the balls are controlled by the parameter

α. It is this specific construction that allows us to use

a recursive query algorithm to retrieve distances of

lower stretch without increasing the size of the oracle.

The bounds on size of the oracle and the query time

are easily proved; see Appendix A.

Next, we claim two properties that the above

distance oracle (and the query algorithm) guarantee:

Claim 4.3. For any pair of vertices u, v ∈ V and any

β > 1, the above query algorithm either returns the

exact distance, or there exists a vertex w ∈ Γ(u)\B(u)

such that: d(u, w) + β · d(w, v)< β · d(u, v).

The proof of the above claim (see Appendix A)

follows by noting that the algorithm returns the exact

distance if ru = 0. Next, we will need the following

claim which shows that if the vicinities of a pair of

vertices u, v ∈ V do not intersect, we can compute a

lower bound on the distance between u and v:

Claim 4.4. For any pair of vertices u, v ∈ V , if Γ(u)∩
Γ(v) = ;, we have that d(u, v)≥ ru + rv .

Claim 4.4 has been explicitly used in [2, 11] for

designing oracles of stretch 2 and larger. In fact, a

stronger result from [3] show that the same lower

bound on d(u, v) holds even if B(u) ∩ Γ(v) 6= ;.
For sake of completeness, we provide a proof in

Appendix A.

We will extensively use the above two claims

throughout the rest of the paper. In particular, we will

query the distance oracle of Lemma 4.1 recursively in

a structured fashion; in each recursive step, we will

argue that when queried for distance between a pair

of vertices u, v ∈ V , the query algorithm either returns

the exact distance between u and v or we can find a

vertex w ∈ Γ(u) such that d(x , v) is strictly less than

d(u, v) (using Claim 4.3). Once such a vertex w is

found, we will use it along with Claim 4.4 to lower

bound the distance between u and v.

To bound the query time of our algorithm, we will

need the following claim (proof in Appendix A):

Claim 4.5. Let G = (V, E) be any weighted µ-degree

bounded graph. Then, for any vertex v, given the

distance oracle of Lemma 4.1 and given a hash table

containing distances to each vertex in B(v), a hash

table containing distance-via-ball to each vertex in

Γ(v) can be constructed in O(|B(v)|·µ) = O(αµ) time.

Algorithm 1 Query (u, v, t): the query algorithm.

1: Compute d(u, x) for each x ∈ B(u) and compute d(v, y) for each y ∈ B(v)

2: Compute d ′
u
(x) for each x ∈ Γ(u) and compute d ′

v
(y) for each y ∈ Γ(v)

3: If v ∈ B(u) or u ∈ B(v)

4: return d(u, v)

5: If ru ≥ rv

6: q1← u; q2← v

7: Else

8: q1← v; q2← u

9: If t > 1

10: return minx∈Γ(q1)\B(q1)

n

d ′
q1
(x) +QUERY(x ,q2, t − 1)

o

11: γ1←∞, γ2←∞
12: If Γ(q1)∩Γ(q2) 6= ;
13: γ1←minx∈Γ(q1)∩Γ(q2)

n

d ′
q1
(x) + d ′

q2
(x)
o

14: γ2← d(q2,ℓ(q2)) + d(q1,ℓ(q2))

15: return min{γ1,γ2}

5 A recursive query algorithm

In this section, we present a recursive query algorithm

and use it along with the distance oracle of Lemma 4.1

to prove Theorem 1.1. Recall that the query algorithm

of Lemma 4.1 computes stretch-3 distances in O(αµ)

time. In order to compute distances with improved

stretch, our query algorithm recursively queries the

oracle; with each query, the stretch improves and

the query time increases. The main challenge is to

improve stretch without significantly increasing query

time, which we accomplish by performing recursive

queries in a carefully structured fashion.

The high level idea of the query algorithm is as

follows (see Algorithm 1). The input to the algorithm

is a pair of vertices u, v ∈ V and a positive integer

t that determines the depth of recursion (and hence,

the desired stretch). This depth is specified at the time

of querying and each query can have a different depth

(and hence, stretch and query time guarantees).

In each recursive step, the algorithm executes as

follows. Given a pair of vertices u, v and an integer

t, the first two steps are executed similar to the query

algorithm of Lemma 4.1. The difference lies in Step

(3) — if none of the conditions in first two steps is

satisfied, the algorithm checks if the desired depth of

recursion is reached or not. If the desired depth of

recursion is not yet reached, the algorithm selects

one of the vertices out of u and v (we return, in

a moment, to the question of how this selection is

done); call the selected vertex q1 and the other vertex

q2. The algorithm then recursively initiates multiple

queries, each asking for the distance between q2 and

one of the vertices x ∈ Γ(q1); the result of each such

query is added to the corresponding distance d ′
q1
(x)

and the minimum of these distances is returned.

We now return to the question of how the algo-

rithm selects the vertex q1 (out of u and v) to initiate

the next level of recursive queries. As discussed in §3,

various strategies exist (for instance, three strategies

of Figure 1); we discuss one of such strategies that

recurses through the vertices in the vicinity of the ver-

tex with larger ball radius. The intuition behind using

this particular strategy is that by recursing through

the vertex with larger ball radius, we may be able to

get a better lower bound on the distance between the

source and the destination (using Claim 4.4). Hence,

we use ball radii to guide our selection of vertex q1

out of u and v.

We describe this using an example: suppose that

the query is performed on a source-destination pair

(u, v) and suppose we always query the vertices in

the vicinity of the source (u for this pair). Consider

the shortest path between u and v shown in Figure 2.

Starting with (u, v) as the source and the destination,

if we want to get a good lower bound (via Claim 4.4)

on the distance between the source and the desti-

nation, (one of) the best order(s) to proceed would

be (u, v) → (x1, v) → (v, x2) → (x4, x2) → (x3, x2);

that is, in each step, search the vicinity of the vertex

with larger ball radius. Hence, in each recursive step,

we “swap” the source and the destination vertices

depending on whose ball radius is larger. This leads

to the desired bound on the stretch.

The last question to settle is the execution of

the algorithm when the desired depth of recursion

has been reached. If none of the pairs of vertices

u
x1 x2 x4x3

v

Figure 2. An illustration of the idea of “swapping” of vertices used in the query algorithm. The path shown is the shortest path between u

and v; the circles around the vertices denote their balls.

queried during the execution of the algorithm satisfies

the conditions for retrieving exact distances (line 3

and line 4 in Algorithm 1), the last query has to

retrieve the distance via the landmark vertex of one

of the vertices. Referring to Figure 2 again, once we

query for distance between (x2, x3), which one should

return the distance via its landmark vertex? Consid-

ering the worst-case scenario, since d(x2,ℓ(x2)) <

d(x3,ℓ(x3)), it makes sense to retrieve the distance

via the landmark of the vertex with smaller ball

radius. With such a strict ordering of querying the

vertices, we get the desired bound on the stretch for

the distance retrieved by the query algorithm.

5.1 Formal Analysis of the query algorithm In

the rest of the section, we assume that the query

algorithm does not return the exact distance and

terminates with some vertex returning the distance

via its landmark vertex. We start with a simple

observation:

Observation 5.1. Each successive query contains a

vertex from the previous query. Furthermore, the ball

radius of the retained vertex is smaller than the ball

radius of the dropped vertex.

Suppose we perform a depth-t recursive query

between vertices u and v. Let x1, x2, . . . , x t , x t+1 be

the set of vertices on the recursion path (in some

arbitrary order) along which the final distance is

returned. Note that the number of vertices in the

set of queries is exactly one more than the depth of

recursion. Without loss of generality, assume that

the final query was performed on the pair of vertices

x t , x t+1 and x t+1 returns the distance via its landmark

vertex ℓ(x t+1).

Then, we make the following claim, a proof of

which is relatively straightforward using Observa-

tion 5.1:

Claim 5.2. Let x1, x2, . . . , x t , x t+1 be the set of ver-

tices on the recursion path (in some arbitrary order)

along which the final distance is returned and let x t+1

be the vertex that returns the distance in the last

recursive call. Then, we have that: rx t+1
≤ rx i

, ∀i ≤ t.

Recall from the statement of Claim 4.4 that if the

vicinities of two vertices do not intersect, it is possible

to lower bound the exact distance between the two

vertices. The following lemma generalizes the result

of Claim 4.4 to the case of algorithm performing

recursive queries with depth-t:

Lemma 5.3. Let x1, x2, . . . , x t , x t+1 be the set of ver-

tices on the recursion path (in some arbitrary order)

along which the final distance is returned and let

x t+1 be the vertex that returns the distance in the

last recursive call. Then, either the query algorithm

returns the exact distance or the distance between

the source and the destination is bounded by below

as d(u, v) ≥ rx1
+ · · ·+ rx t

+ rx t+1
≥ (t + 1)rx t+1

.

Proof: Assume that the vertices on the recursion path

along which the final distance is returned lie on the

shortest path between u and v; indeed, if this were

not the case, the stretch can only be smaller and

the analysis will only give us a pessimistic bound.

Consider the case when the query algorithm does not

return the exact distance between u and v. Consider

some query Query(x , y, i) and without loss of gener-

ality, assume that the next query is Query(x ′, y, i − 1)

for some x ′ ∈ Γ(x)\B(x). Then, since x ′ ∈ Γ(x)\B(x)
and x ′ lies along the shortest path between x and y ,

we have that (recall, rx is defined to be the radius of

the ball B(x))

d(x , y) = d(x , x ′) + d(x ′, y)≥ rx + d(x ′, y)

Using the above expression on the pair of vertices

along the recursion path for Query(u, v, t) and assum-

ing that the last query is performed on pair of vertices

x t , x t+1, we get the following expression as a lower

bound on the distance between u and v:

d(u, v)≥ rx1
+ rx2

+ · · ·+ rx t−1
+ d(x t , x t+1)

Let P = (x t , w1, w2, . . . , x t+1) be the shortest path

between x t and x t+1 and let w = wi0
where i0 =

max{i|wi−1 ∈ P∩B(x t)}. Then, if the query algorithm

does not return the exact distance, we have that

w /∈ Γ(x t+1) since otherwise we get the exact distance

(using line 13 of Algorithm 1). Since w /∈ Γ(x t+1),

δ(u, v) = d(u, v)− d(x t , x t+1) +δ(x t , x t+1)(1)

= d(u, v)− d(x t , x t+1) + d(x t+1,ℓ(x t+1)) + d(ℓ(x t+1), x t)(2)

≤ d(u, v)− d(x t , x t+1) + d(x t+1,ℓ(x t+1)) + d(ℓ(x t+1), x t+1) + d(x t+1, x t)(3)

= d(u, v) + 2 · d(x t+1,ℓ(x t+1))(4)

= d(u, v) + 2 · rx t+1
(5)

we get using Claim 4.4 that d(x t , x t+1) ≥ rx t
+ rx t+1

.

Hence, we get the following lower bound on the

distance between u and v:

d(u, v)≥ rx1
+ · · ·+ rx t

+ rx t+1

Using the result from Claim 5.2 on the above expres-

sion gives us the desired bound. �

The final task is to provide an upper bound on

the distance returned by the query algorithm; when

combined with the lower bound on the exact distance

between the source-destination pair, this will easily

lead to a bound on the stretch. The following lemma

suggests that the distance returned by the query

algorithm with recursion depth t can not be much

larger than the exact distance between u and v:

Lemma 5.4. Let x1, x2, . . . , x t , x t+1 be the set of ver-

tices on the recursion path (in some arbitrary order)

along which the final distance is returned and let x t+1

be the vertex that returns the distance in the last

recursive call. Then, algorithm QUERY(u, v, t) returns

distance that satisfies:

δ(u, v)≤ d(u, v) + 2 · rx t+1

Proof: If the query algorithm returns the exact dis-

tance, the lemma trivially holds. Consider the case

when such is not the case. We prove the lemma for

the case when the vertices on the recursion path lie

along the shortest path between u and v; as discussed

earlier, if any other set of vertices return a shorter

path, our analysis will only lead to a pessimistic

bound on the retrieved distance.

First, we claim that assuming that the last query is

on pair of vertices x t , x t+1, the distance returned by

the query algorithm is given by δ(u, v) = (d(u, v)−
d(x t , x t+1)) + δ(x t , x t+1). To see this, recall our as-

sumption that each of the vertices x1, x2, . . . , x t , x t+1

lie along the shortest path. Hence, line 10 always

adds up the exact distance in each recursive step;

this follows by noting that if the vertices lie along

the shortest path, then for any pair of vertices x i , x j ,

d ′
x i
(x j) = d(x i , x j).

If x t+1 returns the distance via its landmark ver-

tex, the distance returned by the distance oracle

δ(u, v) is given by Eq. 1, or equivalently, by Eq. 2. The

upper bound of Eq. 3, or equivalently, of Eq. 4 on the

distance returned by the distance oracle follows using

triangle inequality. Finally, the last simplification

from Eq. 4 to Eq. 5 follows by the definition of ball

radius, leading to the proof of the lemma.

�

We are now ready to prove the desired bounds on

size of the oracle, the query time and the stretch of

the distances returned by the query algorithm:

Proof of Theorem 1.1. The claim regarding the size

of the distance oracle follows from Lemma 4.1. It

remains to bound the query time and stretch. We start

by proving the bound on query time. In the worst

case, the distance is returned after t recursive calls of

the query algorithm. First, we note that for any vertex

v, |B(v)| = O(α) and since the graph is assumed to

be µ-degree bounded, we have that |Γ(v) \ B(v)| =
O(αµ). Hence, for any vertex v, distances to vertices

in the ball and distance-via-ball to vertices in the

vicinity can be computed in time O(αµ + α logα)

using results of Lemma 4.1 and Claim 4.5.

Also, using the bound on the number of vertices in

Γ(v) \ B(v), we have that in the i-th call, there are at

most O((αµ)(i−1)) vertices for which the condition of

line 10 or line 13 is checked by the query algorithm;

and each of these vertices have a vicinity of size

O(αµ). Hence, the time required to complete the i-

th recursive query is O((αµ)i−1 · (αµ+ α logα)). We

now prove the bound on stretch. Using Lemma 5.4,

we have that:

δ(u, v) ≤ d(u, v) + 2 · rx t+1

≤ d(u, v) + 2 ·
d(u, v)

t + 1
(Lemma 5.3)

=

�

1+
2

t + 1

�

d(u, v)

�

6 Improving space-time trade-off

The distance oracle of Theorem 1.1 returns distances

of stretch 1+ 2/(t + 1) using O(m+ n2/α) space and

O((αµ)t +(αµ)t−1α logα) query time. In this section,

we show how to reduce the query time for the above

oracle to O((α+µ)t) at the expense of a small additive

stretch. We also show how to improve the space-time

trade-off of Theorem 1.1 for the special case of t = 2.

Theorem 6.1. Let G be any weighted undirected

graph with n vertices and m = O(nµ) edges and let

wuv be the weight of the heaviest edge along the

shortest path between any pair of vertices u and v.

For any integer t > 0, denote by β = 2/(t + 1). Then,

for any 1 ≤ α ≤ n and any integer t > 0, we can

construct a distance oracle of size O(m + n2/α) and

a query algorithm that, when given two vertices u

and v at distance d, returns a distance of at most

(1+ β)d + (2− β)wuv in time O
�

(α+ µ)t
�

.

For unweighted graphs with m = Õ(n5/4) edges,

for instance, the above theorem gives us a distance or-

acle of size Õ(n7/4) that returns stretch-(5/3,4/3) dis-

tances in O(
p

n) query time. This improves upon the

space-time trade-off of Theorem 1.1 (which achieves

the same space and query time only for graphs with

m= Õ(n) edges) at the expense of an additive stretch

of 4/3.

The distance oracle used by Theorem 6.1 is the

same as in Lemma 4.1; it is our query algorithm

(presented in Appendix B) that allows us to reduce

the query time at the expense of a small additive

stretch. The high level difference between the query

algorithm of Theorem 1.1 and the one for additive

stretch is that for any query between vertices u, v, it is

no more necessary to recurse through vertices in the

vicinity Γ(u) \ B(u); it suffices to recurse on vertices

in B(u) ∪ N(u) — that is, through vertices that are

either in the ball or the neighbors of the source. Since

balls are roughly a factor µ smaller than the vicinities,

we achieve a reduced query time. The additive factor

in stretch comes due to the fact that in comparison

to the query algorithm of Theorem 1.1, the amount

of progress that we make towards the destination in

each subsequent query is now reduced by an amount

equal to the weight of the edge along the shortest

path that connects the vertex in B(u) to its neighbor.

We prove Theorem 6.1 in Appendix B.

It is possible to further improve the space-time

trade-off in Theorem 1.1 and in Theorem 6.1 for

the very special case of t = 2 by using our query

algorithms on the distance oracles of [11]:

Theorem 6.2. Let G be any weighted undirected

graph with n vertices and m = O(nµ) edges. Then,

there exists a distance oracle of size O(n4/3m1/3) and

a query algorithm that, in the worst case, returns a

stretch-5/3 distance in time O(n1/3m1/3).

Theorem 6.3. Let G be any weighted undirected

graph with n vertices and m = O(nµ) edges. Then,

there exists a distance oracle of size O(n5/3) and

a query algorithm that, when given two vertices u

and v at distance d, returns a distance of at most

5/3× d + 4/3×wuv in time O(n2/3) where wuv is the

weight of the heaviest edge along the shortest path

between u and v.

The proofs for Theorem 6.2 and Theorem 6.3

use ideas similar to those of Theorem 1.1 and The-

orem 6.1, respectively. For sake of completeness, we

provide these proofs in Appendix C.

7 Open Problems

Pǎtraşcu and Roddity, in [11], raised the question

of achievable stretch with subquadratic size distance

oracles and polynomial, albeit sublinear, query times.

Our paper partially answers their question, but many

questions raised in [2,11] remain unresolved: can we

reduce the query time without significant loss in size

and/or stretch? Can we improve size and/or query

time for stretch greater than 2? Can we derive lower

bounds for some restricted cases, say O(polylog(n))

query time?

Allowing higher query time to reduce the size

and/or stretch leads to several interesting possibilities

in related problems:

• Distance oracles with constant query time can be

used to design compact routing schemes [16];

the case of super-constant query time is no

different — higher query time can often be

taken care of by using lightweight handshaking

schemes [2, 3]. Can we design distributed com-

pact routing schemes for our distance oracles

without significantly stretching the path of the

first packet?

• While it seems significantly more challenging,

can this line of research lead to a o(mn) time

combinatorial algorithm for computing all-pair

approximate shortest paths (APASP) for stretch

less than 2? The only result known for com-

puting APASP with stretch less than 2 is due to

Zwick, which uses matrix multiplication [6,20].

Acknowledgments. The authors would like to

thank the anonymous reviewers for their suggestions.

We gratefully acknowledge the support of NSF grant

CNS 10-17069.

References

[1] R. Agarwal, M. Caesar, P. B. Godfrey, and B. Y. Zhao.

Shortest paths in less than a millisecond. ACM SIG-

COMM Workshop on Online Social Networks (WOSN),

2012.

[2] R. Agarwal, P. B. Godfrey, and S. Har-Peled. Ap-

proximate distance queries and compact routing in

sparse graphs. Proc. IEEE Conference on Computer

Communications (INFOCOM), 1754–1762, 2011.

[3] R. Agarwal, P. B. Godfrey, and S. Har-Peled. Faster

approximate distance queries and compact routing

in sparse graphs. http://arxiv.org/abs/1201.2703,

2012. ArXiv.

[4] Y.-Y. Ahn, S. Han, H. Kwak, S. Moon, and H. Jeong.

Analysis of topological characteristics of huge online

social networking services. Proc. ACM International

Conference on World Wide Web (WWW), 835–844,

2007.

[5] S. Baswana, A. Gaur, S. Sen, and J. Upadhyay. Dis-

tance oracles for unweighted graphs: Breaking the

quadratic barrier with constant additive error. Proc.

International Colloquium on Automata, Languages and

Programming (ICALP), 609–621, 2008.

[6] S. Baswana and T. Kavitha. Faster algorithms for ap-

proximate distance oracles and all-pair small stretch

paths. Proc. IEEE Annual Symposium on Foundations

of Computer Science (FOCS), 591–602, 2006.

[7] S. Baswana and S. Sen. Approximate distance oracles

for unweighted graphs in expected O(n2) time. ACM

Transactions on Algorithms 2(4):557–577, 2006.

[8] CAIDA – The Cooperative Association for Internet

Data Analysis. 〈http://www.caida.org/home/〉.
[9] Y. Hyun, B. Huffaker, D. Andersen, E. Aben, M. Luckie,

kc claffy, and C. Shannon. The ipv4 routed /24 as

links dataset, November 2010.

[10] M. Mendel and A. Naor. Ramsey partitions and

proximity data structures. Journal of European Math-

ematical Society 2(9):253–275, 2007.

[11] M. Pǎtraşcu and L. Roditty. Distance oracles beyond

the Thorup-Zwick bound. Proc. IEEE Annual Sympo-

sium on Foundations of Computer Science (FOCS), 815–

823, 2010.

[12] E. Porat and L. Roditty. Preprocess, set, query! Proc.

European Conference on Algorithms (ESA), 603–614,

2011.

[13] M. Potamias, F. Bonchi, C. Castillo, and A. Gionis. Fast

shortest path distance estimation in large networks.

ACM Conference on Information and Knowledge Man-

agement (CIKM), 867–876, 2009.

[14] D. Schultes. Route Planning in Road Networks. PhD

Thesis, University of Karlsruhe, February, 2008.

[15] C. Sommer, E. Verbin, and W. Yu. Distance oracles

for sparse graphs. Proc. IEEE Annual Symposium on

Foundations of Computer Science (FOCS), 703–712,

2009.

[16] M. Thorup and U. Zwick. Compact routing schemes.

Proc. ACM Symposium on Parallel Algorithms and

Architectures (SPAA), 1–10, 2001.

[17] M. Thorup and U. Zwick. Approximate distance

oracles. Journal of the ACM 52(1):1–24, 2005.

[18] M. V. Vieira, B. M. Fonseca, R. Damazio, P. B. Golgher,

D. d. C. Reis, and B. Ribeiro-Neto. Efficient search

ranking in social networks. Proc. ACM Conference

on Information and Knowledge Management (CIKM),

563–572, 2007.

[19] C. Wulff-Nilsen. Approximate distance oracles with

improved preprocessing time. Proc. ACM-SIAM Sym-

posium on Discrete Algorithms (SODA), 202–208,

2012.

[20] U. Zwick. All-pairs shortest paths using bridging sets

and rectangular matrix multiplication. Journal of the

ACM 49(3):289–317, 2002.

Appendix

A Proofs for §4

We start by providing the proof for Lemma 4.1; this

requires proving the bound on size and the query

time. The bound on stretch follows easily using

triangle inequality and an essential unmodified proof

from [17]. Recall that we are given a weighted

undirected graph with n vertices and m = O(nµ)

edges; and the graph is µ-degree bounded.

Proof of Lemma 4.1. Recall that each vertex in the

graph is sampled uniform randomly with probability

1/α for inclusion in set L. Hence, it follows that

E[|L|] = O(n/α). Storing exact distances from

each vertex in the graph to each vertex in L, hence,

requires O(n2/α) space, in expectation. In addition,

each vertex stores the exact distance to each of

its neighbors, requiring an additional O(m) storage;

storing ℓ(v) and rv requires an additional O(1) space.

Hence, the size of the distance oracle is O(m+ n2/α),

in expectation.

We now bound the query time. To start with,

we note that since vertices in L are selected uniform

randomly with probability 1/α, each vertex v has a

ball of size O(α), in expectation; this is easily proved

using an argument similar to [17, Lemma 3.2]. Com-

puting the distance to each vertex in the ball requires

time O(αµ + α logα) using the modified Dijkstra’s

algorithm presented in [17]. Once the distances to

vertices in the ball are computed, the checks required

by the query algorithms can be performed in O(1)

time, leading to the desired proof. �

Proof of Claim 4.3. Consider the case when the

algorithm does not return the exact distance — that

is, when v /∈ B(u) and ru > 0. Let P = (u, x1, x2, . . . , v)

be the shortest path between u and v. Let i0 =

max{i|x i−1 ∈ P∩B(u)}. Now consider the vertex w =

http://arxiv.org/abs/1201.2703
http://www.caida.org/home/

x i0
. Clearly, w ∈ Γ(u) \ B(u) since x i0−1 ∈ B(u) and

w ∈ N(x i0−1); furthermore, d(u, w) ≥ ru > 0. The

proof follows by noting that w lies along the shortest

path from u to v and hence, d(u, v) − d(w, v) =

d(u, w). �

Proof of Claim 4.4. Let P = (u, x1, x2, . . . , v) be the

shortest path between u and v. Consider the vertex

w = x i0
, where i0 = max{i|x i−1 ∈ P ∩ B(u)}. By

definition, w ∈ Γ(u) \ B(u) and hence, d(u, w) ≥ ru.

Furthermore, since Γ(u) ∩ Γ(v) = ;, we have that

w /∈ Γ(v) and hence, d(v, w) ≥ rv . The proof follows

using the fact that w is on the shortest path between

u and v. �

Proof of Claim 4.5. We describe how to construct

a hash table H that contains, for each vertex v, the

distance-via-ball to all vertices w ∈ Γ(v) in time

O(|B(v)| · µ). This assumes that the hash tables

containing the vertices in the ball have already been

constructed. Consider any vertex v; first, we copy

each entry from the hash table containing distances

to vertices in B(v) into H. Next, we iterate through

each vertex x ∈ B(v) and perform the following:

for each neighbor x ′ ∈ N(x), check if x ′ ∈ B(v) —

if yes, do nothing. If x ′ /∈ B(v), check if there is

an entry for x ′ in H. If no, create an entry with

x ′ as the key and (d(v, x) + weight of edge(x , x ′))
as the value. If there is already an entry, check if

(d(v, x)+weight of edge(x , x ′)) is less than the value

corresponding to the key x ′ in H; if yes, update the

entry.

The above algorithm requires, for any vertex v,

iterating through all vertices in B(v) and their neigh-

bors; since the graph is assumed to be a µ-degree

bounded graph, computing distances-via-ball for any

vertex v requires O(|B(v)| × µ) time. Using proof of

Lemma 4.1, this amounts to O(αµ) time. �

B Proof of Theorem 6.1

In this section, we prove Theorem 6.1. The distance

oracle used in the proof is the same as that of

Lemma 4.1. Here, we give the query algorithm and

then analyze the stretch and the query time. Since

most of the results from §4 and §5 naturally follow

for the case of additive stretch, we only focus on

the differences that allow us to achieve an additive

stretch. Recall from the discussion in §4 that it

suffices to focus on µ = 2m/n degree bounded

graphs.

B.1 Query algorithm. The query algorithm for ad-

ditive stretch is given in Algorithm 2. The algorithm

is a slightly modified version of the query algorithm

from §5.

B.2 Analysis. Recall that our distance oracle for

additive stretch is the one used in Lemma 4.1; hence,

the bound on the size follows using the proof of

Lemma 4.1. Moreover, recall from the proof of

Lemma 4.1, that E[|L|] = O(n2/α) and for any vertex

v /∈ L, |B(v)| = O(α) and |Γ̄(v)| = O(α + µ), in

expectation.

Using the above easy observations, we now an-

alyze the stretch and the query time for the above

algorithm. We start with the following claim, which

is akin to Claim 4.3:

Claim B.1. For any u, v ∈ V and any β > 1, the

query algorithm of Lemma 4.1 either returns the exact

distance, or there exists a vertex w ∈ Γ̄(u) such that:

d(u, w) + β · d(w, v)< β · d(u, v).

Next, for the purposes of proving an additive

stretch, we will need a simple modification in the

statement of Claim 4.4, which we state below:

Claim B.2. Let u, v ∈ V and let P = (u, x1, x2, . . . , v)

be the shortest path between u and v with the weight

of the heaviest edge being wuv . Furthermore, let w =

x i0
, where i0 = max{i|x i ∈ P ∩ Γ̄(u)}. If w /∈ Γ̄(v),

d(u, v)≥ ru + rv − wuv.

Proof: Let P = (u, x1, x2, . . . , v) be the shortest path

between u and v. Let i0 = max{i|x i ∈ P ∩ Γ̄(u)} and

w = x i0
and w′ = x i0+1. Then, since w′ /∈ B(u),

we have that d(u, w′) ≥ ru and d(w, w′) ≤ wuv;

this gives us that d(u, w) = d(u, w′) − d(w, w′) ≥
ru − wuv. Furthermore, since w /∈ Γ̄(v), we get that

d(v, w) ≥ rv. The bound follows by noting that w

lies on the shortest path between u and v and hence,

d(u, v) = d(u, w) + d(v, w)≥ ru + rv − wuv. �

Note that the query algorithm for additive stretch,

similar to that of purely multiplicative stretch, iterates

through vertices of the source — the vertex with

larger ball radius. Hence, the results of Observa-

tion 5.1 and Claim 5.2 hold for the case of additive

stretch query algorithm. More precisely, using the

same notation as in §5, we can prove that rx t+1
≤ rx i

,

for all i ≤ t.

The rest of the proof is structured as for the case

of purely multiplicative stretch — we first provide

a lower bound on the exact distance between the

source-destination pair using the depth of recursion;

next, we provide an upper bound on the distance

returned by the query algorithm and finally, use these

two bounds to provide bounds on stretch.

Algorithm 2 QueryA (u, v, t): the distance query algorithm for additive stretch distance oracle. We denote by

Γ̄(v) the set of vertices in B(v)∪ N(v).

1: Compute d(u, x) for each x ∈ B(u) and compute d(v, y) for each y ∈ B(v)

2: Compute d ′
u
(x) for each x ∈ Γ̄(u) and compute d ′

v
(y) for each y ∈ Γ̄(v)

3: If v ∈ B(u) or u ∈ B(v)

4: return d(u, v)

5: If ru ≥ rv

6: q1← u; q2← v

7: Else

8: q1← v; q2← u

9: If t > 1

10: return minx∈Γ̄(q1)

�

d(q1, x) +QUERY(x ,q2, t − 1)
	

11: γ1←∞, γ2←∞
12: If Γ̄(q1)∩ Γ̄(q2) 6= ;
13: γ1←minx∈Γ̄(q1)∩Γ̄(q2)

�

d(q1, x) + d(q2, x)
	

14: γ2← d(q2,ℓ(q2)) + d(q1,ℓ(q2))

15: return min{γ1,γ2}

The central difference between the two query

algorithm is in terms of the lower bound on the exact

distance between the source-destination pair. We

have the following lemma that allows us to prove the

desired bound on the additive stretch. The proof to

Lemma B.3 is essentially similar to that of Lemma 5.3

– the only difference is that we use the bound of

Claim B.2 rather than Claim 4.4.

Lemma B.3. Let x1, x2, . . . , x t , x t+1 be the set of ver-

tices on the recursion path (in some arbitrary order)

along which the final distance is returned and let

x t+1 be the vertex that returns the distance in the

last recursive call. Then, either the query algorithm

returns the exact distance or the distance between the

source and the destination is bounded by below as:

d(u, v)≥ (t + 1) · rx t+1
− t · wuv

Proof: Assume that the vertices along the recursion

path lie on the shortest path between u and v and

that the query algorithm does not return the exact

distance between u and v. Consider some query

QueryA(x , y, i). Let P = (x , x1, x2, . . . , y) be the

shortest path between x and y . Let i0 = max{i|x i ∈
P ∩ Γ̄(x)} and x ′ = x i0

. Since x initiates a recursive

call through all vertices in Γ̄(x), one such query must

be initiated to x ′; consider query QueryA(x ′, y, i− 1).

Then, since N(x ′) /∈ Γ̄(x), we have that d(x , x ′) ≥
rx − wx y (recall, rx is defined to be the radius of the

ball B(x)). Using the fact that x ′ lies on the shortest

path between x and y , we get that:

d(x , y) = d(x , x ′) + d(x ′, y)≥ rx −wx y + d(x ′, y)

Using the above expression on the pair of vertices

along the recursion path for QueryA(u, v, t) and as-

suming that the last query is performed on pair of

vertices x t , x t+1, we get the following expression as a

lower bound on the distance between u and v:

d(u, v)≥ rx1
−wuv + · · ·+ rx t−1

−wuv + d(x t , x t+1)

which is equivalent to

d(u, v)≥ rx1
+rx2

+· · ·+rx t−1
−(t−1)wuv+d(x t , x t+1)

In the last step, we use Claim B.2 on x t , x t+1 pair,

giving us: d(x t , x t+1) ≥ rx t
+ rx t+1

− wuv . Hence,

we get the following lower bound on the distance

between u and v:

d(u, v)≥ rx1
+ · · ·+ rx t

+ rx t+1
− t ·wuv

Recall that the result of Claim 5.2 holds for the

distance oracle and the query algorithm for additive

stretch; using it on the above expression gives us the

desired bound. �

The distance returned by the query algorithm for

additive stretch can be bounded as follows:

Lemma B.4. Let x1, x2, . . . , x t , x t+1 be the set of ver-

tices that were ever queried by the query algorithm

(in some arbitrary order) and let x t+1 be the vertex

that returns the distance via its landmark vertex

ℓ(x t+1). Then, the algorithm QUERYA(u, v, t) returns

distance that satisfies:

δ(u, v)≤ d(u, v) + 2 · rx t+1

The proof for the above lemma is the unmodified

proof of Lemma 5.4 from §5.

Proof of Theorem 6.1. Using the oracle of

Lemma 4.1, we get the bound on size. It remains to

bound the stretch and query time; we start with the

latter. In the worst case, the distance is returned after

t recursive calls. In the i-th call, there are at most

O((α + µ)i−1) vertices for which line 10 or line 13

of the algorithm is executed; each of these vertices

recurse through at most O(α + µ) vertices. Hence,

i-th call takes time O
�

(α+ µ)t
�

.

We now prove the bound on stretch. Using

Lemma B.4, we have that

δ(u, v)≤ d(u, v) + 2 · rx t+1

which using the bound from Lemma B.3, gives us:

δ(u, v) ≤ d(u, v) + 2 ·
d(u, v) + t · wuv

t + 1

=

�

1+
2

t + 1

�

d(u, v) +
2t

t + 1
wuv

=

�

1+
2

t + 1

�

d(u, v) +

�

2−
2

t + 1

�

wuv

which by setting β = 2/(t + 1), completes the

proof. �

C Improving space-time trade-off for t = 2

We start by briefly describing the high level idea

of the oracle of [11]. Their distance oracle, as in

[17], constructs a set L of landmark vertices. Each

landmark vertex stores the distance to each other

vertex in the graph. Each vertex v ∈ V \ L stores

the distances to the vertices in its ball B(v) and to

their neighbors; that is, to the vertices in its vicinity

Γ(v). Furthermore, each vertex v ∈ V \ L also stores

distances to vertices u for which Γ(u)∩ Γ(v) 6= ;; lets

call this extended vicinity set and refer to it as Γ′(v).
When queried for distances between two vertices u

and v, if u ∈ Γ′(v) or if v ∈ Γ′(u), the distance

oracle returns the exact distance; if not, then the

vertex with smaller ball radius returns the distance

to the destination via its landmark vertex – this gives

a bound of 2 on the stretch.

By using an elegant landmark selection algorithm,

they are able to show that there exists a set of

O(n1/3m1/3) landmark vertices such that every vertex

in the graph has an extended vicinity set of size

no more than O(n1/3m1/3). This leads to the size

bound on the distance oracle – storing distances from

landmark vertices to each other vertex in the graph

requires O(n4/3m1/3) space, which is same as each
vertex storing its extended vicinity set. Hence, the

total size of the distance oracle is O(n4/3m1/3).

If we use the query algorithm of §5 on this

distance oracle, the algorithm checks in time

O(n1/3m1/3) whether there exists a vertex x ∈ Γ′(u)
such that Γ′(x)∩Γ′(v) 6= ;. If such an x is found, the

exact distance will be returned. If no such x exists,

the returned distance is minimum over all x ∈ Γ′(u),
δ(u, v) = d(u, x) + δ(x , v). As earlier, we can restrict

the analysis to all vertices x that lie along the shortest

path between u and v (there must be some vertex in

Γ′(u) that lies along the shortest path, by definition

of Γ′(u)), which gives us that the returned distance is

upper bounded as δ(u, v) ≤ d(u, v) + 2 · rx , precisely

as in the proofs of Lemma 5.4 and of Lemma B.4. The

remaining task is to find a lower bound on d(u, v),

for which we have the following lemma:

Lemma C.1. Let P = (u, x1, x2, . . . , v) be the shortest

path between u and v and let i1 = max{i|x i ∈
Γ′(u) \ B(u)}. If the final distance is returned via the

landmark vertex of a vertex, d(u, v)≥ ru + rx i1
+ rv .

Proof: Let i1 = max{i|x i ∈ Γ′(u) \ B(u)} and let i2 =

max{i|x i ∈ Γ′(x i1
)}. Since Γ′(x i1

)∩Γ′(v) = ;, we have

that x i2
/∈ Γ′(v). Hence, as in the proof of Lemma 4.4,

we have that d(x i1
, v) ≥ rx i1

+ rv. Furthermore, since

d(u, rx i1
)≥ ru, we get the desired bound. �

Without loss of generality, assume that x i1
is

the vertex that returns the distance via its landmark

vertex, then, we have that d(u, v) ≥ 3 · rx i1
, which

using the upper bound from the discussion above

leads to 5/3 being an upper bound on the stretch.

The bound on the query time follows from the

fact that only one of the vertices out of u or v can

explore the vertices in its extended vicinity leading

to O(n1/3m1/3) query time. Exploring the vicinities

further, as in our earlier algorithms, will lead to

super linear query times, for which trivial oracles are

known.

For the proof of Theorem 6.3, we note that every-

thing but the lower bound on the distance between

u and v remains the same. For the lower bound,

we have the following lemma, the proof to which is

exactly similar to that of Claim B.2:

Lemma C.2. Let P = (u, x1, x2, . . . , v) be the shortest

path between u and v and let i1 = max{i|x i ∈ Γ′(u) \
B(u)}. If the query algorithm returns the distance via

the landmark vertex of some vertex, d(u, v) ≥ ru +

rx i1
+ rv − 2wuv .

Using this lemma, along with the upper bound on

the returned distance, we get the desired bound on

the stretch. The bounds on size and query time follow

from the construction of the distance oracle.

	Introduction
	Related work
	Overview of our technique
	A distance oracle for stretch 3
	A recursive query algorithm
	Formal Analysis of the query algorithm

	Improving space-time trade-off
	Open Problems
	Proofs for §4
	Proof of Theorem 6.1
	Query algorithm.
	Analysis.

	Improving space-time trade-off for t=2

