
Fair Queueing
Presented by Brighten Godfrey

Slides thanks to Ion Stoica (UC Berkeley)
with slight adaptation by Brighten Godfrey

2

Traditional queueing

 Traditional Internet
- Congestion control

mechanisms at end-systems,
mainly implemented in TCP

- Routers play little role
 Router mechanisms affecting

congestion management
- Scheduling
- Buffer management

 Traditional routers
- FIFO
- Tail drop

3

Drawbacks of FIFO with Tail-drop

 Buffer lock out by misbehaving flows
 Synchronizing effect for multiple TCP flows
 Burst or multiple consecutive packet drops

- Bad for TCP fast recovery

4

RED

 FIFO scheduling
 Buffer management:

- Probabilistically discard packets
- Probability is computed as a function of average queue

length (why average?)

Discard Probability

Average
Queue Length

0

1

min_th max_th queue_len

5

RED Advantages

 Absorb burst better
 Avoids synchronization
 Signal end systems earlier

 And XCP would be even better than RED in these regards

6

But still no isolation between flows

 No protection: if a flow misbehaves it will hurt the
other flows

 Example: 1 UDP (10 Mbps) and 31 TCP’s
sharing a 10 Mbps link

0

2.5000

5.0000

7.5000

10.0000

1 5 1011121314151617181920212223242526272829 3132

RED

Th
ro

ug
hp

ut
(M

bp
s)

Flow Number

UDP

1 32

7

A first solution

 Round-robin among different flows [Nagle ‘87]
- One queue per flow

8

Round-Robin Discussion

 Advantages: protection among flows
- Misbehaving flows will not affect the performance of well-

behaving flows
- FIFO does not have such a property

 Disadvantages:
- More complex than FIFO: per flow queue/state
- Biased toward large packets – a flow receives service

proportional to the number of packets (When is this bad?)

9

Fair Queueing (FQ) [DKS’89]

 Define a fluid flow system: a system in which
flows are served bit-by-bit

- i.e., bit-by-bit round robin

 Advantages
- Each flow will receive exactly its max-min fair rate
- ...and exactly its fair per-packet delay

10

Max-Min Fairness

 Denote
- C – link capacity
- N – number of flows
- ri – arrival rate

 Max-min fair rate computation:
1. compute C/N
2. if there are flows i such that ri <= C/N, update C and N

3. if no, f = C/N; terminate
4. go to 1

 A flow can receive at most the fair rate, i.e., min(f, ri)

11

Example

 C = 10; r1 = 8, r2 = 6, r3 = 2; N = 3
 C/3 = 3.33 C = C – r3 = 8; N = 2
 C/2 = 4; f = 4

8
6
2

4
4

2

f = 4:
min(8, 4) = 4
min(6, 4) = 4
min(2, 4) = 2

10

12

Alternate Way to Compute Fair Rate

 If link congested, compute f such that

8
6
2

4
4

2

f = 4:
min(8, 4) = 4
min(6, 4) = 4
min(2, 4) = 2

10

13

Implementing Fair Queueing

 What we just saw was bit-by-bit round robin
 Can’t do it – can’t interrupt transfer of a packet

(why not?)
 Idea: serve packets in the order in which they

would have finished transmission in the fluid flow
system

 Strong guarantees
- Each flow will receive exactly its max-min fair rate

(+/- one packet size)
- ...and exactly its fair per-packet delay (+/- one packet

size)

14

Example

1 2 3 4 5

1 2 3 4

1 2
3

1 2
4

3 4
5

5 6

1 2 1 3 2 3 4 4

5 6

55 6

Flow 1
(arrival traffic)

Flow 2
(arrival traffic)

Service
in fluid flow

system

Packet
system

time

time

time

time

Guarantees

 Translating fluid to discrete packet model doesn’t
actually involve a lot of combinatorics.

 Theorem: each packet P will finish transmission
at or before its finish time in fluid flow model.

- assuming (for now) all packets are in queue at time 0
 Proof:

- Suppose the packet’s finish time is T in fluid model
- Fluid model: packets that have finished by T sum to <=

RT bits (possibly less: some packets may still be in
progress) where R is link rate

- Packet model: these will be sent in time <= RT / R = T.
 So, why is the real guarantee (without

assumption) only approximate (+/- one packet)?
15

Problem

 Recall algorithm: “serve packets in the order in
which they would have finished transmission in
the fluid flow system”

 So, need to compute finish time of each packet in
the fluid flow system

 ... but new packet arrival can change finish times
of packets in the system (perhaps all packets!)

 Updating those times would be expensive

16

Solution: Virtual Time

 Key Observation: while the finish times of
packets may change when a new packet arrives,
the order in which packets finish doesn’t!

- Only the order is important for scheduling
 Solution: instead of the packet finish time

maintain the number of rounds needed to send
the remaining bits of the packet (virtual finishing
time)

- Virtual finishing time doesn’t change upon packet arrival
 System virtual time – index of the round in the bit-

by-bit round robin scheme

17

18

System Virtual Time: V(t)
 Measure service, instead of time
 V(t) slope – rate at which every active flow receives service

- C – link capacity
- N(t) – number of active flows in fluid flow system at time t

1 2
3

1 2
4

3 4
5

5 6Service
in fluid flow

system time

time

V(t)

19

Fair Queueing Implementation

 Define
- - finishing time of packet k of flow i (in system virtual

time reference system)
- - arrival time of packet k of flow i
- - length of packet k of flow i

 Virtual finishing time of packet k+1 of flow i is

 Order packets by increasing virtual finishing time,
and send them in that order

20

“Weighted Fair Queueing” (WFQ)

 What if we don't want exact fairness?
- E.g.,: file servers

 Assign weight wi to each flow i
 And change virtual finishing time

21

Simulation Example

 1 UDP (10 Mbps) and 31 TCPs
sharing a 10 Mbps link

0

0.1250

0.2500

0.3750

0.5000

1234567891011121314151617181920212223242526272829303132

Th
ro

ug
hp

ut
(M

bp
s)

Flow Number

Stateful solution:
Fair Queueing

10 Mbps)

UDP (#1)
TCP (#2)

TCP (#32)
...

UDP (#1)
TCP (#2)

TCP (#32)
...

0

2.5000

5.0000

7.5000

10.0000

1234567891011121314151617181920212223242526272829303132

Th
ro

ug
hp

ut
(M

bp
s)

Flow Number

Stateless solution: Random
Early Detection (RED)

22

Summary

 FQ does not eliminate congestion; it just
manages the congestion

 You need both end-host congestion control and
router support for congestion control

- End-host congestion control to adapt
- Router congestion control to protect/isolate

 Don’t forget buffer management: you still need to
drop in case of congestion. Which packet’s would
you drop in FQ?

- One possibility: packet from the longest queue

Announcements

 Got my emails?
 Project proposals due Tuesday
 Watch for survey

23

