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Abstract— Existing solutions to balance load in DHTs incur
a high overhead either in terms of routing state or in terms of
load movement generated by nodes arriving or departing the
system. In this paper, we propose a set of general techniques and
use them to develop a protocol based on Chord, calledY0, that
achieves load balancing with minimal overhead under the typical
assumption that the load is uniformly distributed in the identifier
space. In particular, we prove that Y0 can achieve near-optimal
load balancing, while moving little load to maintain the balance
and increasing the size of the routing tables by at most a constant
factor.

Using extensive simulations based on real-world and synthetic
capacity distributions, we show thatY0 reduces the load imbal-
ance of Chord from O(log n) to a less than3.6 without increasing
the number of links that a node needs to maintain. In addition,
we study the effect of heterogeneity on both DHTs, demonstrating
significantly reduced average route length as node capacities
become increasingly heterogeneous. For a real-word distribution
of node capacities, the route length inY0 is asymptotically less
than half the route length in the case of a homogeneous system.

I. I NTRODUCTION

During the last few years the distributed hash table (DHT)
has emerged as a flexible and general architecture that can
support a large variety of applications including file shar-
ing [9], [24], storage systems [21], query processing [16],
name services [36], and communication services [39], [6],
[32]. A DHT manages a global identifier (ID) space that is
partitioned amongn nodes organized in an overlay network.
To partition the space, each node is given a unique IDx and
owns the set of IDs that are “closest” tox. Each object is given
an ID, and the DHT stores an object at the node which owns
the object’s ID. To locate the owner of a given ID, a DHT
typically implements a greedy lookup protocol that contacts
O(log n) other nodes, and requires each node to maintain a
routing table of sizeO(log n).

One central challenge in the DHT design is how to balance
the load across the nodes in the system. Even in the case of a
homogeneous system where all nodes have the same capacity,
DHTs can exhibit anO(log n) imbalance factor [33]. The
imbalance can significantly increase as the heterogeneity of
the system increases.

Two classes of solutions have been proposed so far to ad-
dress this challenge. Solutions in the first class use the concept
of virtual servers[18], [9]. Each physical node instantiates one
or more virtual servers with random IDs that act as peers in
the DHT. In the case of a homogeneous system, maintaining
Θ(log n) virtual servers per physical node reduces the load

imbalance to a constant factor. To handle heterogeneity, each
node picks a number of virtual servers proportional to its
capacity. Unfortunately, virtual servers incur a significant cost:
a node withk virtual servers must maintaink sets of overlay
links. Typically k = Θ(log n), which leads to an asymptotic
increase in overhead.

The second class of solutions uses just a single ID per
node [26], [22], [20]. However, all such solutions must re-
assign IDs to maintain the load balance as nodes arrive and
depart the system [26]. This can result in a high overhead
because it involves transferring objects and updating overlay
links. In addition, none of these solutions handles heterogene-
ity directly, although they could be combined with the virtual
server technique.

In this paper, we present a simple DHT protocol, called
Y0, that addresses the above drawbacks.Y0 is based on the
concept of virtual servers, but with a twist: instead of picking
k virtual servers with random IDs, a node clusters those IDs
in a random fractionΘ(k/n) of the ID space. This allows the
node to share a single set of overlay links among allk virtual
servers. As a result, we can show that the number of links
per physical node is stillΘ(log n), even withΘ(log n) virtual
servers per physical node.

In addition, we show that heterogeneity, rather than being
an issue, can be an asset. Higher-capacity nodes have a denser
set of overlay links and lower-capacity nodes are less involved
in routing, which results in reduced route length compared
to the homogeneous case. While both Chord andY0 see
improvement,Y0’s is more significant because its placement
of virtual servers provides more control over the topology.

Like most previous DHT work, we operate under the
uniform load assumption, that the load of each node is propor-
tional to the size of the ID space it owns. This is reasonable
when all objects generate similar load (e.g., have the same
size), the object IDs are randomly chosen (e.g., are computed
as a hash of the object’s content), and the number of objects
is large compared to the number of nodes (e.g., Ω(n log n)).
Alternately, we can unconditionally balance theexpectedload
over uniform-random choices of object IDs.

Our main contributions are the following.
• We introduce a heterogeneity-aware ID selection algo-

rithm for ring-based DHTs, Low-Cost Virtual Server
Selection (LC-VSS). We prove that LC-VSS can balance
the ID space partitioning within a factor(1+ε) of optimal
for any ε > 0, and that while the system size and



average capacity remain relatively stable, the amount of
load movement to maintain that balance is nearly optimal.

• We prove that LC-VSS can be used with arbitrary overlay
topologies while increasing route length by at most an
additive constant and outdegree by at most a constant
factor, even withΘ(log n) virtual servers. Furthermore,
our construction provides some flexibility in neighbor
selection, even if the underlying topology lacks it.

• We apply LC-VSS to Chord and extensively evaluate
the resulting protocol, calledY0. Simulations in various
capacity distributions show thatY0 ensures that all nodes
have less than3.6 times their fair share of the ID space
with no more overlay links than in Chord with a single
virtual server. Furthermore, we show that heterogeneity
decreases route length in Chord and more significantly
in Y0, with Y0’s route lengths asymptotically roughly
55% shorter in a real-world distribution than in the
homogeneous case.

The paper is organized as follows. Section II discusses our
model, the ID selection problem, and the technique of virtual
servers. Section III introduces LC-VSS and its application to
Chord to produce theY0 DHT. Section IV gives theoretical
guarantees onY0’s performance when it is generalized to
arbitrary overlay topologies. Section V evaluatesY0 and Chord
through simulation. Section VI discusses related work and
Section VII concludes.

II. PRELIMINARIES

A. Model

We assume a system withn physical nodes. Nodev has a
fixedcapacitycv. Capacities are normalized so that the average
capacity is1; that is,

∑
v cv = n. Our use of a scalar capacity

assumes that there is a single important resource on which
nodes are constrained, such as storage space, processing speed,
or last-mile bandwidth.

We assume that each nodev can estimatecv andn within a
factor γc and γn, respectively, of the true values, with high
probability. We further assume the estimates are unbiased.
Estimation of n is discussed in [22]. Since capacities are
normalized, to estimatecv, a node will need an estimate of
the average capacity. One may obtain a crude estimate through
random sampling of other nodes, such as the successors in the
ID space. The techniques of [27] could be applied to DHTs
to estimate bothn and average capacity and would provide
guarantees on the quality of the estimate.

We say that an event happens with high probability (w.h.p.)
when it occurs with probability1−O(n−1).

We assume a DHT that manages a unit-size circular ID
space,i.e., [0, 1) ⊆ R employing arithmetic modulo1. We
assume the DHT uses consisting hashing [18] to partition the
ID space among the nodes as in Chord. Each nodev picks
an ID id(v) ∈ [0, 1) and is assigned ownership of the region
(id(w), id(v)] whereid(w) is the nearest preceding node’s ID.
A node may pick multiple IDs (virtual servers) in which case
it owns the union of the associated regions.

B. The ID selection problem

Under the uniform load assumption, the load on a node will
be proportional to the size of the ID space it owns. Thus,
picking a load-balanced partitioning amounts to selecting
appropriate IDs for the nodes. Let theshare of node v be
the fractionfv of the ID space assigned to it, divided by its
“fair share” of the ID space:

share(v) =
fv

cv/n
.

A good partitioning has the following properties.
• Load balanceThe maximum sharein the system should

be as low as possible — ideally,1 — so that the load on
each node is proportional to its capacity.

• Load movement To maintain load balance, nodes may
need to select different IDs when other nodes arrive or
depart. This can be costly because reassigning ownership
of the ID space implies data movement and changes to the
overlay connections. Thus, we desire little change in the
ID space partitioning upon node arrivals and departures.

• Normalized degreeThenormalized degreeof a nodev is
deg(v)/cv, wheredeg(v) is the number of distinct nodes
to whichv maintains connections or which maintain con-
nections tov in the overlay network used for routing. We
wish to minimize the average and maximum normalized
degree.

The main reason for the last objective is not to reduce
the memory footprint of the routing table, but to reduce the
overhead of the control traffic required to keep the routing
table entries up to date.

C. Basic Virtual Server Selection (Basic-VSS) Scheme

As discussed in the introduction, the virtual server technique
can be used to balance the load not only in a homogeneous
system, but also in a heterogeneous system [9]. However,
the precise way in which the technique is applied to highly
heterogeneous systems has not been specified. In the reminder
of this section we present a simple strategy that we later adapt
in Y0.

Let α = α(n) be the number of virtual servers per unit
capacity. Whenα = 1, nodes of average capacity have a single
virtual server, but the maximum share isΘ(log n). Whenα =
Θ(log n), we can achieveΘ(1) maximum share but the degree
of a node increases by a factorα = Θ(log n).

The main issue we address in this section is how to handle
low capacity nodes. Since the total system capacity isn, there
are roughlynα virtual servers. Thus, the expected fraction of
ID space associated with a single virtual server is1/(nα).
There is a tradeoff in the choice ofα: if α is small, very low
capacity nodes will be overloaded even if they maintain only a
single virtual server. On the other hand, a largeα leads to high
degree, as even nodes of average capacity must maintainα
virtual servers and the associated overlay connections for each.
In particular, to ensure that the nodes of minimum capacity
cmin have close to their fair sharecmin/n of the ID space,
we must have1/(nα) = O(cmin/n), i.e., α = Ω(1/cmin).



1) ñ, c̃v ← estimates ofn andcv

2) m← if c̃v < γd then0 elseb0.5 + c̃vα(ñ)c
3) Choosem virtual servers with IDsr1, . . . , rm where each

ri is chosen uniformly at random∈ [0, 1)
4) Reselect IDs as above whenc̃v changes by a factor≥ γu or

ñ changes by a factor≥ 2

Fig. 1. The Basic Virtual Server Selection Scheme (Basic-VSS), run at each
nodev.

Parameter Description
γc, γn ≥ 1 Bound the maximum factor error (w.h.p.)

in each node’s estimate of its capacity and
of n, respectively; see Section II-A.

γd < 1 Capacity threshold below which a node
is discarded.

γu > 1 Each node updates its IDs when its estimate
of its capacity changes by a factorγu

(must haveγu > γc to avoid instability)
α(n) Number of virtual servers per unit capacity

Fig. 2. Parameters of both Basic-VSS andY0’s LC-VSS.

But sincecmin may be arbitrarily small,α may be arbitrarily
large, implying very high overhead. Moreover,cmin may be
unstable and hard to estimate.

We avoid this tradeoff by simply discarding nodes whose
capacity is lower than somediscard thresholdγd. If the
capacity of a node is less thanγd, the node does not instantiate
any virtual server, and does not participate in the standard
DHT routing protocol. The remaining nodesv with capacity
cv ≥ γd pick cv · α virtual servers. We call this algorithm
the Basic Virtual Server Selection (Basic-VSS) Schemeand
show the pseudocode in Figure 1. Figure 2 shows the main
parameters of the algorithm.

A natural concern with this algorithm is that it might discard
too much capacity, overburdening the remaining nodes. But
it is easy to see that in the worst case, at most a fraction
γd of the total capacity is discarded — ignoring estimation
error and lazy update to avoid instability and excessive load
movement as (normalized) capacity changes. Removing those
simplifications, we have the following, which we prove in [13]:

Claim 1: In the Basic-VSS scheme, the fraction of the total
capacity remaining in the ring is at least1− γcγuγd w.h.p.

An optimization deserving of further study is to fixα and
find theγd which minimizes the maximum share. However, we
expect thatγd = 1

2 will be acceptable for most applications.
With this choice, the capacity of any node remaining in the
ring is at least half the average capacity, so we do not need
to significantly increaseα to handle the low-capacity nodes.
Although in the worst case 50% of the total capacity is
discarded, in our simulations of Section V, less than 20% is
discarded in a range of power law capacity distributions and
less than 10% in a real-world distribution. If the discarded
capacity were excessive in some distribution, we could use a
smallerγd at the cost of increasingα to maintain the same
load balance.

Furthermore, if we cannot afford to discardanycapacity, we

can use discarded nodes for data storage (but not routing) by
having each discarded node pick a “parent” in the ring which
would assign it data to store.

Discarded nodes may still perform lookup operations in the
DHT although they are not part of the ring structure and do
not route messages. We have discarded nodes connect to the
system throughk links to nodes owning the IDsr+ 1

k , . . . , r+
k
k , wherer ∈ [0, 1) is chosen randomly. In our simulations of
Section V, we usek = d3cv log2 ne for nodev since withα =
1, Chord nodes in the ring have roughly3cv log2 n outlinks
as well (≈ log n fingers and≈ 2 log n successors for each of
the≈ cv virtual servers).

This raises another natural question: whether the congestion
on the nodes in the ring will increase due to lookup operations.
However, Claim 1 implies that the increase cannot be too great.
Indeed, in Section V-A, we will see a slight drop in congestion
due to decreased route length, which arises in part because
there are fewer nodes in the ring.

III. T HE Y0 DHT

In this section we present theY0 DHT, which is composed
of a Low Cost Virtual Server Selection (LC-VSS) Schemeand
simple changes to Chord’s successor lists, finger tables, and
routing. Later, in Section IV-C, we present formal guarantees
for LC-VSS applied to any overlay topology, not just Chord.

A. Low Cost Virtual Server Selection (LC-VSS) Scheme

The LC-VSS scheme which selects IDs forY0’s virtual
servers is shown in the illustration of Figure 3 and in pseu-
docode in Figure 4. As in the Basic-VSS scheme of Section II-
C, nodes of capacity less thanγd are discarded and each
remaining nodev choosesΘ(cvα) IDs, whereα = Θ(log n).
However, these IDs are not selected randomly from the entire
ID space. Instead, we pick a random starting pointpv and then
select one random ID within each ofΘ(log n) consecutive
intervals of sizeΘ(1/n). Whenn or cv changes by a constant
factor, the ID locations are updated. The algorithm inherits the
parameters shown in Figure 2.

It has been proposed to compute a node’s ID as a hash of
its IP address, which makes it more difficult for a node to
hijack arbitrary regions of the ID space [33]. To support this,
we could easily replace the randomness in the description of
the algorithm with such hashes.

B. Successor Lists

In Chord, each virtual server keeps links to its2 log2 n
successors in the ring [33]. The purpose is fault tolerance:
when each node fails with probability12 , each remaining
virtual server will still have a link to its immediate successor
w.h.p. To obtain the same bound inY0, each node must keep
links to the2 log n distinctnodes succeeding each of its virtual
servers.

Chord constructs its successor list as follows. Each virtual
servervs belonging to nodev obtains its successor list from its
immediate successorsucc(vs) and addssucc(vs) to the list.
If the list is of length> 2 log n, it drops the clockwise-farthest



Nodev’s IDs
Other nodes’ IDs

(a) Basic-VSS gives a node of capacitycv ownership of
Θ(cv log n) disjoint segments of the ID space. The DHT must
maintain a set of overlay links for each.

Simulated

Real

1/n1/n1/n

Θ(cv log(n)
n )

pv

(b) Y0’s LC-VSS scheme results inΘ(cv log n) disjoint segments

clustered in aΘ( cv log n
n

) fraction of the ID space. WhenY0 builds
the overlay, itsimulatesownership of one contiguous interval. The
nodes’ simulated intervals overlap.

Fig. 3. ID selection illustrated.

Initialization:
1) pv ← random ID∈ [0, 1)
2) ñ, c̃v ← estimates ofn andcv

ID selection:
1) spacing ← 2−b0.5+log2 ñc (i.e., roughly 1/ñ)
2) start← bpv/spacingc · spacing
3) m← if c̃v < γd then0 elseb0.5 + c̃vα(ñ)c
4) Choosem IDs at start − (i + ri) · spacing for eachi ∈
{0, . . . , m− 1} and eachri chosen u.a.r.∈ [0, 1)

Periodic update:
1) Obtain new estimates̃c′v, ñ′

2) If c̃′v is at least a factorγu from c̃v, set c̃v ← c̃′v
3) If spacing 6∈ [ 1

2ñ′ ,
2
ñ′ ], set ñ← ñ′

4) If either ñ or c̃v changed, reselect IDs as above

Fig. 4. Y0’s LC-VSS scheme run at each nodev.

entry. InY0, we drop any virtual server belonging tov before
considering dropping the clockwise-farthest entry. Beginning
with an empty list at each node, periodic repetition of this
algorithm builds a list of2 log2 n distinct successors.

Will a node’s Θ(cv log n) virtual servers involve
Θ(cv log2 n) successor links, as in Basic-VSS? We show
in Section IV-C that sinceY0’s IDs are clustered, these
Θ(cv log2 n) logical successors fortunately involve only
Θ(cv log n) distinct nodes, so onlyΘ(cv log n) network
connections need to be maintained. Memory use does
increase by a logarithmic factor, but this is not likely to be
detrimental. Even whenn = 230, a node withlog n virtual
servers would maintain2 log2 n = 1800 logical successors,

Simulated

Real

Message

...

......

Fig. 5. Routing inY0. A close-up of part of the ID space is shown.

which at a generous 1 KB each uses less than 2 MB of RAM.

C. Finger Tables

For each virtual server with IDx, Chord keeps afinger table
of links to the nodes owning the “target IDs”(x+b−i) mod 1
for i = 1, 2, . . .. Typically b = 2.

In Y0, for the purposes of overlay construction, each node
v simulatesownership of a contiguous intervalIv of size
Θ( cv log n

n ) enclosing its virtual servers, building one set of
overlay links as if it actually owned all ofIv. This is depicted
in Figure 3(b). Specifically,v simply keeps one finger table
emanating from the clockwise end ofIv (see Section III-A).
An important property is that although a node’s virtual server
IDs may change,pv is fixed. Thus, the finger table changes
only when a target ID changes ownership.

This construction allows us to choose a better overlay
topology than Chord in the heterogeneous case. The size of
Iv scales with the node’s capacity, but this does not affect the
size of the finger table. Since we allow each node a number
of outlinks proportional to its capacity, we have some unused
capacity on high-capacity nodes. We use this to reduce route
length by choosing a “denser” set of overlay links on high-
capacity nodes: nodev chooses fingers at integer powers of
b1/cv , whereb is a parameter which we take to be2 by default
as in Chord. This results inO(logb1/cv n) = O(cv logb n)
fingers w.h.p. Note that, unlike the rest ofY0, this technique
does not generalize to arbitrary overlay topologies.

D. Routing

It turns out that the only change we need to make to Chord’s
greedy routing is that both the successor list and the finger
table are considered, rather than just the latter.

To find the owner of some IDx, Chord routes greedily on
the finger table, at each step selecting the neighbor whose ID
is clockwise-closest tox. In Y0, we employ the same algorithm
until we arrive at a nodev for which x ∈ Iv. At this point,v
doesn’t truly ownx, and we have no fingers which are closer
to the true destination. However, due to the clustering ofv’s
IDs, the real owner is not far from one ofv’s virtual servers.
Specifically, they are separated byO(log n) nodes. We can
complete the route using greedy routing over the successor
list in Θ(1) additional hops, as shown in Figure 5.

IV. A NALYSIS

In this section we analyze the performance ofY0 with
respect to the metrics described in Section II-B. The results



apply Y0’s techniques to any ring-based DHT, e.g [33], [29],
[17], [26], [23]. We prove the following:

• Y0 can achieve a near-optimal maximum share of1 + ε
for any ε > 0 (Section IV-A).

• As long as the number of nodesn and the average
capacity remain relatively stable, the amount of load
movement thatY0 incurs to maintain a good balance is
close to optimal (Section IV-B).

• Compared to the case of a single virtual server,Y0

with α = Θ(log n) increases the number of distinct
links that a node maintains by at most a constant factor,
while providing flexibility in neighbor selection for any
topology (Section IV-C).

• Compared to the case of a single virtual server,Y0 with
α = Θ(log n) increases route length by at most an
additive constant (Section IV-D).

We defer all proofs to [13].

A. Load Balance Bounds

Our first theorem says that the maximum share can be made
arbitrarily close to1, even in the heterogeneous case. Through-
out the analysis we assume that all nodes have performed their
periodic update step since the last event in the system.

Theorem 2:Whenα ≥ 8γnγcγu

(1−γcγuγd)γdε2 · lnn, the maximum

share of a node is at most (γcγu)2

(1−ε)2(1−γcγuγd) + o(1) w.h.p. for
any ε > 0.

Proof: (Sketch) Whenα = Θ(log n), we haveΘ(log n)
IDs in each region of the ID space of sizeΘ(1/n) w.h.p.
regardless of the capacity distribution. With this balanced
distribution of IDs, the share associated with each ID is ap-
proximately a geometric random variable. Applying a Chernoff
bound to their sum yields the result.

Despite the frightening plethora of constants in the bound,
our simulations of Section V show that we get a maximum
share of less than3.6 with a modestα = 2 log2 n in various
capacity distributions. Furthermore, most of the complexity in
the above guarantee is due to varying node capacities. Hard-
codingc̃v = 1 into LC-VSS and a straightforward modification
of our analysis yields the following bound:

Theorem 3:If node capacities are homogeneous, whenα ≥
8γn

ε2 lnn, the maximum share of a node is at most(1−ε)−2 +
o(1) w.h.p. for anyε > 0.

B. Load Movement Bounds

To maintain load balance as nodes join and leave, nodes
occasionally update their IDs. Each move of a virtual server
is equivalent to aleave followed by a join under a new ID.
Thus, load balancing effectively increases the churn rate of the
system, which involves costly object movement and overlay
link changes. In this section we bound this overhead in terms
of the amount of churn in the population of nodes in the
system.

Given a sequence of node join and leave events, we say that
the (aggregate) underlying churnis the sum over all events
of the fraction change in system capacity due to the event.

Specifically, if the system currently has total capacityC and
a node of capacityc joins, the underlying churn increases
by c/(C + c); if the same node subsequently leaves, churn
increases by the same amount again. Similarly, the(aggregate)
effective churnis the sum over all events of the fraction of
ID space which changes ownership due to the event, which
depends on the policy of the partitioning scheme.

Definition 1: The churn ratio for a sequence of events is
the DHT’s expected effective churn divided by its underlying
churn over those events.

This is equivalent to a metric used in [3].
We are interested the churn ratio aftert events for which

the underlying churn isΩ(t) (to avoid degenerate cases
such as zero-capacity nodes joining and leaving forever). We
also assume the system always has positive capacity. Finally
for simplicity we assume LC-VSS’s estimation error bounds
γc, γn hold with probability1.

In [13] we give a simple example which shows the churn
ratio is≥ 1 in the worst case for any scheme — that is, the
effective churn is at least the underlying churn. Basic-VSS in a
homogeneous environment withα = 1 (i.e., Chord) achieves
this lower bound, since in expectation the change in ID space
due to a join or leave is exactly the change in total system
capacity, and once joined, a node never changes its ID.

Our bound on LC-VSS’s churn ratio will apply to event
sequences during which the total number of nodes and average
capacity don’t vary greatly. Note thatthe underlying churn rate
may be arbitrarily high.

Definition 2: The system is(β, δ)-stableover a sequence of
events when the minimum and maximum values ofn differ by
less than a factorβ, and the minimum and maximum values
of the average capacity differ by less than a factorδ.

Theorem 4:If the system is( 2
γn

, γu

γc
)-stable, the churn ratio

of LC-VSS is 1
1−γcγuγd

+ o(1).
This reduces to1 + o(1) in the homogeneous case. Thus,

during periods whereinn and the average capacity are rel-
atively stable — which is likely the common case — the
overhead of LC-VSS’s load balancing operations is negligible.
The result follows from the fact that in this case virtually no
nodes reselect IDs.

C. Overlay Construction and Degree Bounds

In this section we describe how to use LC-VSS with any
overlay topology without significantly increasing outdegree,
while providing some flexibility in neighbor selection, even if
the original topology had none.
Sequential Neighbors.We deal first with what [14] terms
sequential neighbors. In ring-based DHTs, each nodev keeps
links to nodes whose IDs are close to each ofv’s IDs — either
thek = 2 log2 n successors in the ring [33] or thek successors
andk predecessors [29]. As discussed in Section III-B, inY0,
each node keeps links to thek distinct nodes closest to each
of its IDs.

In our overlay construction we assumek = Θ(log n). Since
α = Θ(log n), this implies that nodes haveΘ(cv log2 n)
logical sequential neighbors. The following theorem shows



that due to the clustering of IDs, the number ofdistinct
neighbors is low.

Theorem 5:Each Y0 node maintains links toΘ(cvα) =
Θ(cv log n) sequential neighbors w.h.p.
Long-Distance Neighbors.There is a significant amount of
variation in the structure of “long-distance” overlay links in
DHTs. To analyze the construction of arbitrary topologies on
top ofY0’s partitioning of the ID space, we extend and formal-
ize Naor and Wieder’s Continuous-Discrete Approach [26].
We assume the overlay topology is specified in continuous
form, as a functionE which maps a contiguous interval
(p1, p2] ⊆ [0, 1) to a subset of[0, 1) which constitutes the
neighborhood of(p1, p2]. For example, Chord’s finger table
would be specified as

E(p1, p2) = {p2 + 2−1, p2 + 2−2, . . .}.

Chord does not depend onp1, but general topologies may. The
Distance Halving overlay of [26] has

E(p1, p2) =
(p1

2
,
p2

2

]
∪

(
p1 +

1
2
, p2 +

1
2

]
.

The continuous graphE relates to the real world thusly:
Definition 3: A discretizationof E is a simulated interval

Iv ⊆ [0, 1) for each nodev and a graphG on the nodes in
the system such that

∀v ∀p ∈ E(Iv) (∃(v, w) ∈ G p ∈ Iw).

That is, if Iv is connected to a pointp ∈ E(Iv) in the
continuous graph, thenv is connected to some nodew ∈ G
simulating ownership ofp.

Thus, a discretization guarantees that each edge in the
continuous graph can be simulated by the discrete graph.
The setIv defines what part of the continuous graph node
v simulates. Note that theIvs may overlap.

The simplest example is what we call theStandard Dis-
cretization. For eachv we simply letIv be the subset of the
ID space whichv owns. The edges ofG are the minimal set
which satisfies the above definition. That is, the owner ofIv

maintains a link to each node which owns a nonempty subset
of E(Iv). This edge set is unique because ownership of the
ID space is a partitioning: for each̀∈ E(Iv), there is exactly
one nodew with ` ∈ Iw. This discretization is equivalent to
the operation of Chord and the Distance Halving DHT.

To adapt to our multiple-virtual server setting with low
degree, we use the followingShared Discretization. For each
v we letIv be the smallest contiguous interval which contains
the (disjoint) set of IDs thatv owns as well aspv (recall
the definition from Figure 4). Since theIvs overlap, we
have a fair amount of choice in selecting the edge set. We
use a simple greedy algorithm. Initially, label all ofE(Iv)
uncovered. Iterate by picking the uncovered pointp which
is the first frompv in the clockwise direction. Contactp’s
owner, get its successor list, its furthest successor’s successor
list, etc. until we find a nodew for which Iw covers all of
[p, p+Θ( log n

n )]∩E(Iv). Add an edge fromv to w. Terminate
when all ofE(Iv) is covered.

Assuming eventual termination, the above procedure clearly
satisfies Definition 3. The number of overlay links it creates
depends onE. Let f(n) be a nondecreasing function such
that if |I| ≤ 1

n , then E(I) can be covered by≤ f(n)
segments of length1n . Takingf(n) to be as small as possible
intuitively provides a lower bound on node degree: even in
a homogeneous system with a perfect partitioning of the
ID space, the Standard Discretization must give some nodes
≥ f(n) outlinks. The following theorem says that in LC-VSS,
nodes’ outdegrees are inflated by at most a constant factor.

Theorem 6:Using LC-VSS with α = Θ(log n) and the
Shared Discretization, each nodev has at mostO(cvf(n))
outlinks w.h.p. for any capacity distribution.
Flexibility in Neighbor Selection. When the topology allows
some choice in a node’s neighbors, we can employ proximity-
aware neighbor selection (PNS), which can significantly re-
duce the latency of DHT lookups [14]. Although Chord has
a great deal of flexibility, some DHT topologies do not.
In [13] we show that inY0, the fact that the simulated intervals
Iv overlap providesΘ(log n) choices for each of a node’s
long-distance neighbors,even if there was no choice in the
original topology. Even this fairly limited choice is likely
to provide a significant benefit. Simulations suggest that 16
choices for each neighbor provide nearly all the benefit that
an unbounded number of choices would provide [10].

Of course, a necessary assumption is that node capacities
are at mostO(n/ log n). For example, if only one node was
not discarded, then there is only one choice for each neighbor.

D. Route Length

To complete our adaptation of the overlay, we show that we
can simulate the overlay’s routing function while increasing
route length by at most an additive constant.

The continuous overlay is accompanied by arouting func-
tion r(I, t) which, given a current locationI ⊆ [0, 1) and a
target destinationt, returns an ID inE(I). At each step, we
apply the routing function to the current locationI and move
to a neighborw for which r(I, t) ∈ Iw. Sincer(I, t) ∈ E(I),
by definition, any discretization must have an edge to some
suchw. We setI ← Iw and iterate. If afterf(m) such steps
the distance from somè∈ I to t in the ID space is≤ 1/m
for any s and t, we say thatE has has path lengthf(m).

Thus, inf(n) hops, any discretization can arrive at a node
v such that some ID inIv is at distance≤ 1/n from the
destinationt. In the Shared Discretization, unlike the Standard
Discretization,v does not own all ofIv. However, due to
LC-VSS’s placement of IDs at intervals ofO(1/n) in the
ID space,v will always have a virtual server whose ID is at
distanceO(1/n) from t. A Chernoff bound shows that when
α = O(log n), the owner oft is O(log n) successors away, and
we route to our destination inO(1) hops using the successor
lists which we keep for each chosen ID. Thus, we arrive at
the following result.

Theorem 7:Using LC-VSS and the Shared Discretization
of any overlay topology with path lengthf(n), any message
can be routed inf(n) + O(1) hops w.h.p.



V. SIMULATION

We compareY0 and Chord using a simple simulator which
constructs the ID space partitioning and overlay topology of
the two DHTs in a static setting. To provide heterogeneity-
aware load balance in Chord, we use the Basic-VSS scheme
of Section II-C.

We assume that each node is given its capacity andn;
i.e., there is no estimation error. We useγd = 1

2 . Each data
point represents an average over 15 independent trials. We
show 95% confidence intervals. We show results forn equal to
powers of2. For intermediaten, there is some variation in the
load balance/degree tradeoff space forY0 because its spacing
between virtual servers is rounded to the nearest power of2.
Specifically, simulations show maximum share increases by
up to≈ 10% when degree decreases up to10%, or maximum
share decreases up to10% while degree increases up to25%.

We study three types of node capacity distributions: (1)
homogeneous, (2) power law with various exponents, and
(3) samples from the uplink bottleneck bandwidths of actual
Gnutella hosts measured by Saroiu et al [31], which we call
the SGG distribution. Thus, for this simulation, we consider
the capacity of a node to be the bandwidth of its connection
to the Internet. We have discarded points in their raw data set
which show bandwidth higher than 1 Gbps, since the authors
of [31] believe those to be artifacts of faulty measurement and
discard them in their study as well [30].

Our simulation results are as follows.
• Y0 achieves a maximum share of less than3.6 with α =

2 log n, whereα is the number of virtual servers per unit
capacity. This is roughly as well-balanced as Chord with
α = log n (Section V-A).

• The degree of nodes inY0 with α = 2 log n is as low as
Chord withα = 1 and even lower in some heterogeneous
distributions (Section V-B).

• In both DHTs, route lengths decrease as heterogeneity
increases, butY0 has a clear asymptotic advantage (Sec-
tion V-C).

A. Load Balance

Figure 6 summarizes the tradeoff between quality of load
balance and degree. We obtain various points on the tradeoff
curve for each protocol by selecting differentα. Y0 provides
a substantially better set of achievable points. Both algorithms
perform significantly better in the SGG distribution, although
we will see (Figures 7(b) and 9(b)) that not all capacity
distributions are better than the homogeneous case.

Figure 7(a) shows that withα = 2 log n, the maximum
share of any node inY0 is less than2.7 in a homogeneous
environment — nearly as good as Chord withα = log n but
(as we will see) at much lower cost. A largerα provides
a slightly better balance. Figure 7(b) shows that in a range
of power law capacity distributions with varying exponent,
the balance can be slightly worse or better than in the
homogeneous case, at all times staying below3.6.

Once the ID space is balanced, balance of overlay connec-
tions and routing load follow closely. We measure maximum

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 32  64  128  256  512  1024

M
ax

im
um

 s
ha

re

Average normalized degree

Chord, homogeneous
Chord, SGG

Y0, homogeneous
Y0, SGG

Fig. 6. Tradeoff between maximum share and average normalized degree,
achieved through varyingα, for n = 2048. For Chord,α ∈ {1, 2, 4, 8, 16},
and forY0, α ∈ {1, 2, 4, . . . , 128}.

degree as defined in Section II-B. To measure balance of
routing load, we have each node route a message to a random
ID. The congestionat a node is the number of messages
that flow through it, divided by its capacity. Both metrics
are Θ(log2 n) in Chord with α = 1: essentially,Θ(n log n)
messages andΘ(n log n) fingers are distributed uniformly
in the ID space, and some nodes own a fractionΘ( log n

n )
of the space.Y0’s constant-factor load balance thus implies
Θ(log n) maximum degree and maximum congestion. This is
illustrated in Figure 8. Note that the reduced congestion in the
heterogeneous case results from reduced route length, which
we cover in Section V-C.

B. Normalized Degree

In this section we evaluate the effectiveness of our tech-
nique at maintaining low average normalized degree, defined
in Section II-B. We average over all nodes that were not
discarded. Figure 9(a) shows this metric as a function ofα with
homogeneous capacities andn = 2048. We see essentially
no increase in degree inY0 until α > 2 log n ≈ 22. This
is because whenα ≤ 2 log n, the additional links associated
with the virtual servers are to essentially the same set of nodes
with which we are already linked due to the2 log n incoming
successor links. Even whenα > 2 log n, Theorems 5 and 6
imply that Y0’s degree isO(α) rather thanO(α log n) as in
Chord.

Due to the normalization by capacity in our degree metric,
Y0’s improved load balance gives it a lower average normal-
ized degree than Chord in the heterogeneous case. This is
depicted in Figure 9(b).

C. Route Length

To measure route length, we have each node route to a
random ID, and average over then resulting hop counts.
Figure 10(a) shows decreasing route lengths in the power law
distribution as the power law exponent decreases, with slightly
greater benefit inY0 than in Chord. Note that large power law
exponents approach a homogeneous system.

Figure 10(b) examines the asymptotics of route length. In a
homogeneous system,Y0 has very slightly higher route length
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than Chord, but as we showed in Theorem 7 this is only
an additive constant. In the SGG distribution, both DHTs
see significantly decreased route length. Chord’s benefit is
primarily due to the fact that there are fewer nodes in the ring:
roughly 75% of the nodes in this distribution had capacity less
thanγd = 1

2 and were discarded. This can only decrease route
length by an additive constant, but it is significant in small- to
medium-sized systems. InY0, our technique of increasing the
number of fingers at high-capacity nodes provides a constant-
factor decrease in route length (note the lower slope). A
least-squares fit of our data for networks with 1024 or more
nodes yields the following estimated asymptotic route lengths
(i.e., we ignore additive terms):

DHT Capacities Route length Normalized
Chord Homogeneous 0.450 log2 n 100%

SGG 0.348 log2 n 77%
Y0 Homogeneous 0.472 log2 n 105%

SGG 0.203 log2 n 45%

VI. RELATED WORK

ID space balance for homogeneous DHTs.The simplest
way to balance load, under the uniform load assumption, is
to obtain aO(1) maximum share. The simplest way to do
that is for each node to maintainΘ(log n) virtual servers [18],
[33]. Since this increases node degree by a factor ofΘ(log n),
multiple proposals followed which give each node just one
ID, but need to select and update that ID intelligently. All the
proposals of this type are similar in that they considerΘ(log n)
locations for a node and select the one which gives the best
load balance. They differ in which locations they check and
when.

In Naor and Weider [26], a node checksΘ(log n) random
IDs when joining, and joins at the one which gives it the
largest share. They show that this produces a maximum share
of 2 if there are no node deletions. Handling node deletions
requires an additional protocol, not precisely specified or
analyzed in [26], whereby nodes are divided into groups of
Θ(log n) nodes and periodically reposition themselves within
each group. In Adler et al [1], a joining node contacts a random
nodev already in the DHT, and splits in half the largest interval
owned by one ofv’s O(log n) overlay neighbors. This results
in an O(1) maximum share. A simple deletion protocol was
given but not analyzed.

Manku’s algorithm [22] has a joining node pick a random
node v and split in half the largest interval owned by one
of the Θ(log n) nodes adjacent tov in the ID space. This
achieves a maximum share of2 while moving at most a
single extra node’s ID for each node arrival or departure. It
extends to balancing within a factor1 + ε but movesΘ(1/ε)
IDs. In contrast, the results of Section IV-B imply thatY0

movesno extra IDs, even while achieving a maximum share
of 1 + ε, as long asn and the average capacity are relatively
stable. The algorithm is more complicated thanY0 and requires
assignment of IDs to arbitrary locations in the ID space, so
we cannot use the security mechanism of requiring a node’s
ID to be one of several hashes of its IP address [9].

In one simple algorithm of Karger and Ruhl [20], each
node has a fixed set ofO(log n) possible IDs (so the se-
curity technique can be employed) and periodically reselects
among them. This has maximum share2 + ε, but it requires
reassignment ofO(log log n) IDs per arrival or departure in
expectation. Bienkowski et al [2] later gave a similar algorithm
which reduces the number of reassignments to a constant, but
they show onlyO(1) maximum share. A second algorithm
of [20] adapts to uneven distributions of objects in the ID
space (whichY0 and the previously mentioned algorithms
cannot), but requires unrestricted ID selection and a special
overlay topology if the object distribution is very skewed, and
its maximum share is64.

ID space balance for heterogeneous DHTs.Comparatively
few schemes handle node heterogeneity. Dabek et al [9]
suggested that each physical node have a number of virtual
servers proportional to its capacity, which we have developed
into Basic-VSS in Section II-C. Surana et al [34], [12] bal-
ance load dynamically by transferring virtual servers between
physical nodes. This approach can handle node heterogeneity
and load which is not distributed uniformly in the ID space,
and was shown through simulation to produce a very good
balance. But it is more complicated thanY0, cannot employ the
aforementioned security mechanism, cannot take advantage of
heterogeneity to reduce route length as much asY0, and has
higher degree due to its use of multiple virtual servers per
node.

In a DHT-related work, Brinkmann et al [3] develop two
schemes which divide an ID space fairly among a set of nodes
of heterogeneous capacities, providing efficient ID lookup
and node join and leave algorithms. However, they assume
a centralized system with no overlay network. Their SHARE
strategy is very similar to our LC-VSS: in both, each node
selects an interval of the ID space of sizeΘ( log n

n ), and
ownership of a segment is “shared” among the nodes whose
intervals overlap that segment. However, they employ this
technique to handle nodes of very low capacity. If they were
willing to discard low-capacity nodes as we do, the trivial
Basic-VSS scheme of Section II-C would be acceptable. In
contrast, we cluster a node’s IDs in order to share overlay
links. Moreover, the way in which the ID space sharing is
performed in [3] is more complicated than in our scheme;
notably, nodes needΘ(log2 n) IDs, rather thanΘ(log n).

Load balance by object reassignment.The above strate-
gies balance load by changing the assignment of IDs to
nodes. Another approach is redirection: store a pointer from
an object’s ID to the arbitrary node currently storing it. This
can balance the load of storing and serving data, but not load
due to routing or maintenance of the overlay — and if objects
are small, routing dominates the bandwidth and latency of
storing and finding an object. It also requires maintenance of
the pointers and adds one hop to each lookup.

Karger and Ruhl [19] can handle heterogeneous capacities
and obtain a constant-factor load balance. Each node periodi-
cally contacts another, and they exchange objects if one node’s
load is significantly more than the other’s. But their bound
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on movement cost depends on the ratio of the maximum and
minimum node capacities. Byers et al [4], [5] use a “power
of two choices” approach, hashing an object tod ≥ 2 IDs
and storing it on the corresponding node with least load,
which results in a maximum load oflog log n/ log d + O(1).
Swart [35] places object replicas on a lightly-loaded subset
of nodes in Chord’s successor list. Neither [4], [5], nor [35]
provide results for the heterogeneous case.

Exploiting heterogeneity in P2P systems.Ratnasamy et
al. [28] posed the question of whether heterogeneity could be
leveraged to improve routing performance in DHTs. Nearly
all the DHTs which have followed up on this suggestion use a
two-level hierarchy, dividing nodes into a set of high-capacity
“superpeers” and low-capacity peers. Mizrak et al. [25] build
a clique of

√
n superpeers, each with

√
n low-capacity peers

attached. This produces a graph of constant diameter but
requires that superpeers have polynomially many neighbors. Its
scalability, particularly with respect to maintenance traffic, was
not demonstrated for a wide range of capacity distributions.
Zhao et al. [38] and Garces-Erice et al. [11] organize peers
into groups based on network locality. Each group chooses a
superpeer based on reliability, bandwidth, or latency, and the
superpeers across all groups form a DHT. We argue that these
two-level techniques cannot adapt to or take full advantage
of arbitrary node capacity distributions, because peers within
each of the two classes are treated equally. In fact these
schemes are complementary to ours: peers at each level of
the hierarchy are likely to have nonuniform capacities, so our
techniques could be applied to the DHTs used at each level
to further improve performance.

To the best of our knowledge, the only heterogeneity-aware
DHT designs not employing a two-level hierarchy, other than
Y0, are SmartBoa [15] and Xu et al [37]. In SmartBoa,
nodes are divided into up to 128 levels based on capacity,
and a node at levelk maintains roughlyn/2k neighbors.
A heterogeneity-aware multicast algorithm allows efficient
dissemination of node join or leave events, so nodes need not

continually ping their neighbors, enabling much larger routing
tables and thus lower route length than traditional DHTs.
However, SmartBoa does not adapt the ID space partitioning
(i.e., object storage load) to nodes’ capacities, nor was it
evaluated experimentally or theoretically. Xu et al [37] adapt
the DHT topology to fit the underlying network connectivity,
which may be heterogeneous, thus obtaining low stretch. But
the ID space is again not adapted to node capacity.

In the world of unstructured P2P systems, Freenet’s Next
Generation Routing [8] employs heuristics to route messages
to nodes with observed faster responses. Chawathe et al [7]
propose an unstructured Gnutella-like system which adapts
topology, flow control, and data replication to nodes’ capaci-
ties, and found that their system performed significantly better
in a heterogeneous environment. The techniques used in these
systems, and the services they provide, are quite different than
those ofY0.

VII. C ONCLUSION

We have proposed a scheme to assign IDs to virtual servers,
called Low Cost Virtual Server Selection (LC-VSS), that
yields a simple DHT protocol, calledY0, for which node
degree does not increase significantly with the number of
virtual servers.Y0 adapts to heterogeneous node capacities, can
achieve an arbitrarily good load balance, moves little load, and
can compute a node’s IDs asO(log n) hashes of its IP address
for security purposes. The techniques behindY0 generalize to
arbitrary overlay topologies while providing some flexibility
in neighbor selection, even if the underlying topology did not.
We demonstrated the effectiveness of our techniques through
simulation, showing a maximum share less than3.6 in a range
of capacity distributions with no greater degree than in Chord
with a single virtual server.

Y0 has several drawbacks. It usesΘ(log2 n) memory per
node, but we expect this will be acceptable in nearly all
circumstances. If a particularly good balance is desired, the
number of links needed to maintain the ring structure of the



DHT increases by a constant factor. Node join and leave
operations will be slowed somewhat by the fact that a node
ownsΘ(log n) virtual servers, although the overlay links need
to be constructed only once. Perhaps most significantly,Y0

requires good estimates ofn and the average capacity, and
a good balance is guaranteed only under the uniform load
assumption.

We also illustrated the potential of taking heterogeneity into
account, with route lengths in our DHT in a real-world capac-
ity distribution less than half those of a homogeneous distri-
bution due to our adaptation of the Chord overlay topology to
a heterogeneous environment. An interesting open problem is
to study the effect of heterogeneity in other DHT topologies,
such as de Bruijn graphs [17], [26]. More generally, we
hope that this work will motivate further exploration of how
heterogeneity can benefit distributed systems.
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