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ABSTRACT
Denial of service protection mechanisms usually require clas-
sifying malicious traffic, which can be difficult. Another ap-
proach is to price scarce resources. However, while conges-
tion pricing has been suggested as a way to combat DoS
attacks, it has not been shown quantitatively how much
damage a malicious player could cause to the utility of be-
nign participants. In this paper, we quantify the protection
that congestion pricing affords against DoS attacks, even
for powerful attackers that can control their packets’ routes.
Specifically, we model the limits on the resources available
to the attackers in three different ways and, in each case,
quantify the maximum amount of damage they can cause as
a function of their resource bounds. In addition, we show
that congestion pricing is provably superior to fair queueing
in attack resilience.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design

Keywords
Congestion pricing, Denial of Service, DoS, Security

1. INTRODUCTION
Denial of service (DoS) attacks are a recurring problem

for servers and network links on the Internet [22]. In a 2010
survey of 118 network operators, 104 (94%) reported ex-
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periencing at least one DoS attack per month, with 8 of
these reporting being the target of more than 500 attacks
per month [1]. The network may be even more vulnerable in
future Internet architectures that support source-controlled
routing [38, 37, 25, 11]: such architectures can improve per-
formance and reliability, but may let attackers target weak
links or construct long paths that use large aggregate band-
width.

Most past DoS defenses use filters or capabilities to re-
duce the volume of malicious traffic (see [19] and references
therein). However, because attackers may masquerade as
legitimate users, classifying traffic as malicious can be diffi-
cult. Some classification approaches exist [39, 23, 36, 24, 12]
but they do not help against sophisticated application-level
attacks [7, 32, 31] which generate traffic which is difficult to
distinguish from legitimate requests. In this paper, we focus
on mechanisms that do not require classification.

Without classification, a simple approach to limit dam-
age is fair queueing (FQ): partition each congested resource
among currently-active users equally [26], or using some
weighted fairness rule [33]. However, because FQ acts on
each resource in isolation and at a specific moment in time,
FQ still allows attackers to grab disproportionately large
amounts of resources by requesting many different resources
across space, or continually requesting resources across time.1

A more robust approach is to combine FQ with rationing
by limiting the volume of data that users can send across
time; for example an ISP might limit a user’s total transfer
volume over each month [6]. Thus, an attacker (such as a
bot) is limited in the volume of resources it can send, but it
can still cause disproportionate damage by always request-
ing those resources when they most negatively impact oth-
ers (e.g., during natural or attacker-created periods of high
utilization). A third approach is requiring all users to pro-
duce proof of work, such as computational [8] or bandwidth
work [35, 17]. However, this imposes an additional cost on

1And even in the absence of malicious behavior, FQ does
not maximize total utility, since it does not take the users’
heterogeneous internal valuations of the network resources
into account.



all users, which may be quite significant on resource-limited
nodes (e.g., mobile devices with constrained batteries).

The natural economic solution to these problems is con-
gestion pricing, in which users expose their valuations to
the network through an auction mechanism. Network re-
sources are priced, and all users — legitimate and malicious
— pay for what they use. While human users might be
averse to fine-grained congestion payments, it is not nec-
essary to involve individuals. For example, monetary con-
gestion payments could be implemented between ISPs (effec-
tively congestion-weighting the payments that already occur
between ISPs), or in a cloud computing environment, where
dynamically-variable resource pricing for tenants is already
common [9] (and where some tenants may have incentive to
carry out DoS-style attacks against other tenants [28]). Al-
ternately, rather than directly corresponding to money, con-
gestion payments could constitute abstract “credits” used
only for resource utilization accounting during periods of
network congestion. Users could be given a monthly allot-
ment of credits from ISPs.

Congestion pricing has been extensively studied as a mech-
anism to optimize resource utilization among self-interested
but otherwise benign users [16, 14], and a practical proto-
col implementation of a kind of congestion pricing has been
proposed [5]. It is intuitively clear that congestion pricing
should provide resilience against DoS attacks, but while in-
terest has been expressed in using it as a DoS defense [4], the
behavior of congestion pricing in the presence of malicious
players has not been quantified.

In this paper, we address the following question quanti-
tatively: To what extent can congestion pricing neutralize
denial of service attacks? We follow a game-theoretic model
of Kelly [16] and Johari and Tsitsiklis [14], but we add mali-
cious players to the game. In our model, the network collects
payments from users and allocates bandwidth in proportion
to their payments; benign users selfishly bid for routes to
maximize their utility; and a malicious user acts to mini-
mize the utility of the benign users. Our main technical
contribution is an extension of the analysis of [14] to ma-
licious utility functions. The key difficulty is that the at-
tacker’s desire to minimize benign users’ utility introduces
an additional coupling between the users’ utilities that past
work does not handle.

Our analysis demonstrates that an attacker can inflict
damage on a congestion-priced network, but this damage
is provably limited. We show this under three scenarios de-
scribing the attacker’s flow of funds.

First, we consider a scenario in which attackers have ac-
cess to an unlimited amount of money but only spend it as
long as they receive a sufficient rate of return. We show
that if an attacker is willing to pay up to $σ to cause a $1
loss to the utility of the benign users, it cannot degrade the
benign users’ utility by more than a fraction σ

σ+1
or 25%,

whichever is higher. This result applies to the protection of
individual servers or an entire network (with possibly multi-
ple congested resources) where users can choose any routes.

Second, we show a stronger result in the case that conges-
tion pricing uses actual monetary transfer and the goal is to
bound the total utility of all legitimate entities — that is,
the benign users and the network (which receives payments
from the benign users and the attacker). In this scenario,
the attacker’s payments partially offset the damage it can
cause. We show that in this case the attacker can cause

the total utility to fall 25% below optimal, but never more,
regardless of its strategy.

And third, we study a case that models attacks from a
limited-size botnet of captured user machines. The attackers
have limited funds since spending too much would exhaust
the bots’ budgets and/or increase the chance that they are
detected as bots (when their congestion-spending begins to
exceed a normal machine’s profile). However, the attack-
ers might spend funds in a bursty manner, and thus at any
given moment might spend a very large amount. To model
this, we limit the attackers to total payment M over some
time period (e.g., a month) while benign users in total spend
B in that time period. Note that these budgets could rep-
resent a monthly allotment of congestion credits imparted
to the users by their ISPs, rather than monetary payments.
In this model, assuming that the network contains only a
single bottleneck resource (a link or server) and that all the
benign users have homogeneous utility functions, we show
that the benign users’ utility is at least B/(B + M). In
other words, attackers cannot arrange their bids to cause
damage disproportionate to their funds. We conjecture that
the same bound applies in more general settings.2

We also show that under these assumptions congestion
pricing is strictly superior to fair queueing in terms of attack
resilience. Congestion pricing can result in arbitrarily higher
total utility even when the network uses both FQ and per-
user volume limits.

To summarize, the main contributions of this paper are
as follows:

1. We quantify the maximum amount of damage an at-
tacker can inflict on a congestion-priced network, un-
der three scenarios limiting the attacker’s payments.

2. We demonstrate that congestion pricing outperforms
approaches based on fair queueing.

We next present our model (§2), our results on congestion
pricing (§3) and on a comparison with fair queueing (§4),
discuss some natural questions about our results and deploy-
ment of congestion pricing in general (§5), present related
work (§6) and conclude (§7). Appendices A and B present
proofs for the results in, respectively, §3 and §4.

2. MODEL

2.1 Congestion Pricing
Suppose we have R = B + M users,3 B of them benign,

M malicious. The users share a network in which each of
n directed links l has fixed capacity Cl. The network uses
the per-link variant of Kelly’s [16, 14] market mechanism
to partition the link capacities across its users: users buy
bandwidth from individual links separately, and the band-
width division at each link is governed by a proportional
allocation mechanism. If user r pays the link l a price plr,
the bandwidth xlr it is allocated at l is given by

xlr =
plr∑R
s=1 pls

Cl =
plr
Pl

Cl

2We note however that the fact that the attacker cannot
cause the 25% loss present in the earlier scenarios stems
from the assumption that the benign users have homoge-
neous utility functions.
3We use the terms “user” and “player” interchangeably.



where Pl is the sum of all the payments received by link l
(see [14] for a refinement to handle the case Pl = 0).

Each benign user b is attempting to transmit data to some
destination in the network. We denote the aggregate end-to-
end throughput available to b at time t by fb. fb is the result
of a max-flow computation on b’s bandwidth allocations at
the individual links.

Associated with each of the benign users b is a throughput-
utility function Ub that assigns a monetary value to b’s aggre-
gate bandwidth allocation fb. Following [14], the net utility
Qb of this user is the difference between its throughput-
utility and its outgoing payments:

Qb = Ub(fb)−
n∑

l=1

plb

We use three models of behavior for the malicious users,
corresponding to the three scenarios described in the intro-
duction (§1).

In the strategic model, the malicious users are players
in the game that act selfishly so as to minimize the sum of
the throughput-utilities of all the benign players. We define
the utility of each malicious player m as

Qm = −σm

B∑
b=1

Ub(fb)−
n∑

l=1

plm

where the spite coefficient σm indicates that the malicious
user is willing to pay $σm to see a $1 degradation in the
utilities of the benign players.

In the Byzantine model, we allow the malicious players
to play an arbitrary, but fixed, combination of prices �pm at
the links in the network. This model is stronger than the
other two since we do not restrict the malicious player to
strategies that myopically optimize a specific utility func-
tion.

Finally, in the fixed-ratio model, the malicious user at-
tempts to minimize the total throughput-utility

∑
b Ub of all

the benign users, subject to the constraint that it can spend
no more than a constant k times what the average benign
user spends. As discussed in §1, this models the botnet
setting, where the malicious user is operating by hijacking
resources from some of the benign users.

While our results for the strategic and the Byzantine mod-
els (§3) are quite general, and apply in arbitrary network
topologies for a large class of benign users’ utility functions,
our results for the fixed-ratio model (discussed in §4 in the
context of a comparison with fair queueing) assume a more
restricted setting. However, we conjecture that the bounds
we discuss continue to apply in more general scenarios.

Without loss of generality, we will assume there is exactly
one malicious user (i.e., M = 1). Multiple malicious players
can all be combined into a single powerful player with a large
value for σm, �pm, or k.

2.2 Fair Queueing
As noted in the introduction, in this paper we present

results describing both the absolute efficiency of congestion
pricing in the presence of malicious behavior, as well as its
relative performance compared to network-implemented fair
queueing.

Our analytical models of network and benign user behav-
ior for fair queueing (FQ) will closely parallel what was de-
fined above for congestion pricing (CP), the differences be-

ing that (i) the network now accepts bandwidth demands
directly from the users, instead of asking for payments; and
(ii) user demands are served according to the max-min fair-
ness rule, instead of proportional fairness.

We will compare CP and FQ in the botnet scenario (the
third of the three scenarios discussed in §1). We assume that
the malicious user is operating by hijacking resources from
some number M of benign users. Thus, in CP, if the average
benign user spends $x, the malicious user can spend up to
$Mx (this is the fixed-ratio model we discussed earlier, with
k = M

B
). In FQ, the malicious user can pretend to be up to

M benign users.
Given resource bounds, the single-shot version of the game

(which we have been considering so far) is trivially charac-
terized – all the users simply spend their entire budget in the
lone round of the game. In the multiple-round setting, the
answer is less clear: attackers may choose, for example, to
spend funds in a bursty manner in order to maximize dam-
age when the network is vulnerable. Our analysis will show
that with congestion pricing the same performance bounds
as in the single-shot game apply in a more general multiple-
round setting.

2.3 Metrics
As noted in §1, we study two metrics. First, the total

throughput-utility of all the benign players is given by L =∑
b Ub(fb) and represents the value of the network’s service

to benign users, ignoring payments.
Second, the total utility of all the legitimate entities in the

system (i.e., all benign users and the network) is the sum of
the net utilities of all the benign users and the total payment
received by the network and is given by

U =

(∑
b

Qb(fb)

)
+

⎛
⎝∑

l,b

plb +
∑
l

plm

⎞
⎠

= L+
∑
l

plm.

Unlike L, in U we subtract what the benign users pay (in-
side the Qb quantities), and add the payments the network
receives. Most of these quantities cancel each other, so that
the net change from L to U is that U includes the price the
malicious users pay to the network. U essentially measures
how well the malicious users’ payments offset the damage
they cause to the benign users.

We compare the values of U and L across three scenarios:
opt, in which the network is controlled by an optimal con-
troller that has perfect knowledge of the state of the entire
system; ben, in which the benign players interact selfishly
but the malicious players are not present in the system; and
mal, in which the benign and malicious players all interact
with each other. We use subscripts to identify scenarios (e.g.
Lmal, Uopt). L and U are different only when the malicious
user is present – i.e., only in the scenario mal.

3. CONGESTION PRICING
In this section we quantify the absolute efficiency of the

market in the presence of malicious behavior. We start by
establishing bounds in the special case when the network
consists of a single shared link (§3.1) and then show that
the same bounds apply in arbitrary networks (§3.2). The
proofs of these results are in Appendix A.



3.1 Single Link
Before discussing our results, we first summarize the anal-

ysis by Johari and Tsitsiklis [14] of single-link games with
only benign players.

Theorem 3.1 (Johari and Tsitsiklis [14]). Consid-
er the set of all single-link games with n > 1 players, all
benign, in which all Ub(fb) are non-negative, and strictly
concave, strictly increasing and continuously differentiable
in pb

4. Then:

• Each such game has a unique pure Nash equilibrium.

• In any such game, Lben
Lopt

> 3
4
, and this bound is tight, in

that for all ε sufficiently small, there is always a game
with Lben

Lopt
= 3

4
+ ε. In particular, for all n > 1, there

is always a game Benignopt
n with n benign players for

which Lben
Lopt

= 3n−4
4n−6

.

Byzantine model
We start by considering the Byzantine model (which al-
lows the malicious player arbitrary behavior) and bound the
amount of damage the attacker can inflict on the total utility
of all the legitimate entities in the system.

Theorem 3.2. Consider the set of all Byzantine-model
single-link games in which every benign user’s throughput-
utility Ub(fb) is non-negative, and strictly concave, non-
decreasing and continuously differentiable in �pb. Then:

• Each such game has a unique pure Nash equilibrium.

• In any such game,

Umal

Uopt
≥ 3

4
and

Umal

Uben
≥ 3

4
.

These bounds are tight.

In other words, the attacker can cause U to fall 25% below
Uopt or Uben, but no more. Note also that since U = L +
(total price paid by the malicious player), U and L coincide
when there are no malicious players in the system – which is
the case in the scenarios ben and opt. Therefore, the second
part of the theorem, in a sense, generalizes the known result
that Uben

Uopt
= Lben

Lopt
≥ 3

4
in games without malicious players.

Discussion
The restrictions on throughput-utility functions Ub(fb) bear
some discussion. The non-negativity and non-decreasing re-
strictions simply say that the network’s service never ac-
tively hurts the user and that having the option to send more
data is never bad. These would appear to apply to all rea-
sonable situations. The concavity assumption says that the
user experiences either linear utility from more bandwidth,
or diminishing returns. This does not include all real-world
applications, but note that even without malicious players,
only this class of utility functions has been analyzed [14].

Our proof of this theorem first establishes the existence
of Nash equilibria using an adaptation of the earlier proof
(originally due to Hajek and Gopalakrishnan [13]) for the

4While Ub itself takes real arguments, the expression
Ub(fb) = Ub(

pb
P
) is a vector function that depends on the

bids of all players

case when all the players are benign. The key difficulty is
that while in the original result all the players myopically
optimize their own utilities, in our setting we have an ad-
ditional player (the malicious player) whose own utility is a
function of everyone else’s utilities. This introduces an addi-
tional degree of coupling that needs to be handled specially.
We then compute the listed bounds on the social utility U
by constructing optimization problems to which they are the
solutions. We show examples of how the computation might
proceed in specific games later on in this section.

A potential issue with this result is that while we show
that the malicious users have to pay enough to significantly
offset the damage they cause, it is nevertheless true that
their payments go to the network operators, and not directly
to the victims of the attack. This distinction might not
always be significant — for instance, in the simple case of
protecting a single constrained resource (e.g. a server or data
center), the resource owner can sell service itself without
mediation from the network. But even if the network is a
separate party, it may be possible for the network to pass
on the benefits of these payments to its (non-malicious) end-
users – either directly, in the form of a refund, or indirectly,
such as through capacity augmentation. However, analyses
of such approaches are beyond the scope of this paper. Note
also that our results for the other two attacker models do
quantify, in absolute terms, the actual amount of damage
any given attacker can cause to the network’s benign users.

Strategic model
By the definition of the Byzantine model, it follows that the
stated bounds on the social utility apply in any pure equilib-
rium of any game in which the benign users’ utility functions
satisfy the conditions listed in Theorem 3.2, irrespective of
the malicious user’s utility function. The existence of a pure
equilibrium isn’t guaranteed, however. A sufficient condi-
tion is for the malicious user’s utility to be concave in its
payment. The requirements listed below in Theorem 3.3
essentially describe a special case of this condition.

In the strategic model, the same 3
4
bound applies to the

total utility, and we additionally bound the throughput util-
ity L. However, as noted, we require stronger restrictions on
the utility functions in order to guarantee the existence of
an equilibrium.

Theorem 3.3. In the strategic model, if each Ub(fb) is
non-negative, strictly concave and non-decreasing in �pb, and
strictly convex and non-increasing in �pm, and the malicious
player has spite coefficient σm, then:

• Each game has a unique pure Nash equilibrium.

• Lmal
Lopt

≥ min
{

3
4
, 1
1+σm

}
• For any value of σm, Umal

Uopt
≥ 3

4
and Umal

Uben
≥ 3

4
.

All the stated bounds are tight.

In the case of a single bottleneck link and in series-parallel
networks, an example class of throughput-utility functions
that satisfies the requirements are those of the form U(x) =
axd, a > 0, 0 < d ≤ 1. We conjecture but have not proved
that this is true for general networks as well.

The proof of this theorem proceeds along the same lines
as the proof of Theorem 3.3.



Examples
Suppose we have a link with capacity 1 unit and consider
the two-player game with one benign player b with utility
Ub(xb) = xb, and one strategic malicious player m with spite
coefficient σm. This simple example happens to demonstrate
the worst case values of many of the metrics listed above.
We now compute these metrics explicitly.

In both the optimal allocation and the scenario in which
the malicious user is not present in the system, the entire
link capacity would be allocated to the lone benign user.
Thus, Uopt and Uben (and hence Lopt and Lben) are both
equal to Ub(1) = 1.

Now suppose the malicious user does participate. Since
in an equilibrium we must have ∂Qb

∂pb
= 0 = ∂Qm

∂pm
, we find

that

pb =
σm

(σm + 1)2
, pm =

σ2
m

(σm + 1)2

and that the bandwidth allocations are

xb =
1

1 + σm
, xm =

σm

1 + σm

Therefore, Lmal = Ub(xb) =
1

1+σm
, and Umal = Ub(xb) +

pm =
1+σm+σ2

m
1+2σm+σ2

m
. Umal is smallest when σm = 1, at which

point its value is 3
4
. Observe that these match the worst

case values listed in Theorem 3.3.
Now consider the game [14] which is the example of worst

case behavior in games without malicious users. This game
consists of one user (call it user 1) with utility U(x) = x
and infinitely many players each with utility U(x) = x

2
. The

optimal allocation would allot the entire link capacity to
user 1 since that user values bandwidth the most, so that
Uopt = 1. But in the Nash equilibrium, it can be shown that
only half the capacity would go to user 1, and the other
half would be split equally amongst all the other (infinitely
many) players, so that Uben = 1 · 1

2
+ 1

2
· 1
2
= 3

4
.

We now show that Umal in this game is also 3
4
if we intro-

duce a malicious user with spite coefficient σm = 1. That
is, this game is another example in which Umal

Uopt
exhibits its

worst-case value. This is fairly easy to see — in this game,
the malicious user essentially ends up pricing the infinites-
imal players out of the system, and we are again left with
the same two-player game we considered above, where we
already noted that the value was 3

4
. Note, however, that

Umal
Uben

=
3
4
3
4

= 1 > 3
4
; Umal

Uben
does not display worst-case be-

haviour in this game. In fact, having started at a point
where the Nash equilibrium was as far as possible from op-
timal, the attacker is unable to do further damage.

3.2 General Topology
We now need to show that the bounds we have listed in

the single-link case also apply in arbitrary topologies. It
turns out that the proof in [14] of an analogous result for
games without malicious players can be adapted to this end
as long as we can prove that the metrics Umal

Uopt
and Umal

Uben
lie

between 0 and 1 (as does the metric Lben
Lopt

in games with-

out malicious players). As a result, the same bounds we
show in Theorems 3.2 and 3.3 apply to the case of arbitrary
topologies. Appendix A.3 discusses the details and proofs.

4. THE BOTNET MODEL AND COMPARI-
SON WITH FAIR QUEUEING

We now quantify the performance of congestion pricing
(CP) in the Botnet model and show how it compares against
fair queueing (FQ). In this section, we restrict ourselves to
the special case when the network consists of a single bottle-
neck resource – without loss of generality, we will assume this
bottleneck resource is a single shared link. Before discussing
our general analytical results (§4.2) we start by describing a
simple example showing why CP can outperform FQ (§4.1).
4.1 Example

Consider the following scenario, which describes a spe-
cial case of our results for illustrative purposes. Suppose we
have a population of N = B +M users (B benign, M bots
controlled by an attacker) that interact with the network, a
single shared link of capacity 1 unit, over a long period of
time. Suppose that most of the time the benign users place
a very small value on network access, so that they would
use the network if it were available, but would back off on
observing a non-trivial amount of contention. However, ev-
ery once in a while, the users experience some high-demand
event that causes them to place a very high value on net-
work access. A concrete example of a situation that fits
this model would be for users to be executing background
jobs (such as software update downloads) most of the time,
but having to occasionally also execute human-facing tasks
(such as webpage downloads).

Assume for the sake of simplicity that each (benign) user
only experiences one of these high-demand events over the
entire timeline, and that no two users experience high-demand
events at the same point in time.

Simple unmodified fair-queueing performs rather poorly
in this scenario, even in the absence of an attack. There
is no incentive for any of the users (benign or malicious)
to request any less than 1

N
of the entire network capacity

in each round. In particular, there is no incentive for any
of the other users to back off when someone experiences a
high-demand event. Therefore, the high-demand events –
the only network events on which any user places value – all
observe poor performance.

Now suppose we augment the fair-queued network with a
volume-limiting mechanism which restricts the total amount
of traffic any user can send over the entire timeline. Suppose
the timeline is T rounds long. Ideally, if all the users were
benign, we would want each of them to receive a bandwidth
allocation of:

• 1
N

in each of the T − N rounds in which none of the
users was experiencing a high-demand event

• 1 in the 1 round in which that user was experiencing
a high-demand event

• 0 in the N − 1 rounds in which one of the other users
was experiencing a high-demand event

Suppose we throttle users so that they can send no more
than

(T −N) · 1

N
+ 1 · 1 + 0 · (N − 1) =

T

N
units of traffic over the entire timeline.

This still does not solve the problem: this is exactly the
amount of traffic that users send out with unmodified fair-
queueing. Users do not know (or necessarily care) when



some other user is experiencing a high-demand event, and
will continue to request significant amounts of network ca-
pacity in each round, whether they currently require it or
not. But even if we can somehow ensure that the benign
users in the system back off during high-demand events,
there is no incentive for the malicious users to do so. The
attacker can choose to concentrate exclusively on the points
of time at which the network is experiencing a high-demand
event and request high bandwidth during those times. Even
if this slightly decreases the amount of traffic it can request
at every other point in time, this is still a net gain for the
attacker since the benign users place a low value on network
access during these times anyway. Thus in this case a be-
nign user would receive a bandwidth allocation of 1

N
during

a high-demand event if none of the users backed off, and
1

M+1
if only the bots refused to back off.

Suppose now that the network implements congestion pric-
ing. Every user is constrained to spend the same total
amount of money over the entire timeline – call this amount
1 unit. In the absence of an attack, each user would spend
small δ-amounts at each point in time in time at which it
isn’t experiencing a high-demand event, and a slightly higher
amount when it is (just enough to drive the price of network
usage high enough so that everyone else backs off).

Now consider how an attacker might affect the system.
In order to cause the maximum amount of damage, the at-
tacker should focus its resources on the B points of time at
which high-demand events occur. It might choose to split
its payment equally across each of these events (paying M

B
units at each of them), or it might target a specific user
and spend its entire budget during that user’s high-demand
event. The damage it can cause in either case is limited; we
look at the first here.

When a benign user observes contention (caused by the
attacker) during a high-demand event, it can ramp up the
amount it pays. If the value it places on network access
during low-demand conditions is sufficiently low, it would
simply redirect its payments so that it spends its entire bud-
get (1 unit) during the high-demand event. The amount of
bandwidth it then receives during the event is 1

1+M
B

= B
B+M

,

significantly larger than both the 1
N

it would receive with

unmodified fair-queueing and the 1
1+M

it would receive in
the best case with fair-queueing with volume limits. It does
lose whatever value it would have gained at the other points
in time (in low-demand conditions) but, by definition, this
value is very small anyway, so that this ultimately represents
a significant net gain for the benign user.

The reason congestion pricing outperforms fair queueing
is that congestion pricing allows the benign players to pay
more and therefore obtain a preferential bandwidth alloca-
tion during the periods of time at which they want to use
the network the most – or, in other words, when their utility
functions are the steepest. By treating all the users identi-
cally at every point in time, fair queueing, in effect, allows an
attacker to cause damage disproportionate to its resources.

The scenario described here can be modeled more formally
by defining a steep, high-value utility function for users that
are experiencing a high-demand event and a slow-growing,
low-value function for those that aren’t. Values such as the
δ in the above discussion fall out naturally from the rates of
growth and the absolute values of these two functions. We
omit the details.

4.2 Analytical Results
Proofs for these results are in Appendix B.
We first note the following simple result, which states that

even in the absence of malicious behavior, CP is strictly
better than FQ when the benign users have non-identical
utilities.

Theorem 4.1. In every one-round single-link game in whi-
ch all the players are benign and have concave, non-decreasing
and non-negative utility functions, the net social utility LCP

ben

when the link implements congestion pricing is always at
least the net social utility LFQ

ben when the link implements
fair queueing – that is,

LCP
ben ≥ LFQ

ben

The inequality is strict if the users have non-identical band-
width allocations in the congestion pricing Nash equilibrium.5

Since our goal is to compare how CP and FQ are affected
by malicious behavior, we will try to control for this ad-
vantage that CP has. In what follows, we will assume that
in each round all active benign users have identical utility
functions – in this case, both CP and FQ perform equally
well (and induce Nash equilibria in which the link capacity
is divided equally between the users in each round) in the
absence of malicious behavior.

Formally, we have a multi-round, single-link game, with a
population of B benign users and 1 malicious user control-
ling M bots, in which in each round t each of the nt active
benign users has the same throughput utility U t. As in The-
orem 3.3, we will require that each U t(xbt) be non-negative,
strictly concave and non-decreasing in pbt, and strictly con-
vex and non-increasing in pmt. As earlier, each active benign
user b tries to optimize

Qt
b(xbt) = U t(xbt)− pbt

However, now the malicious player seeks to

minimize
∑
t

∑
b

U t(xbt)

subject to the constraint∑
t

pmt ≤ M

B

∑
t

∑
b

pbt

where B is the total size of the benign user population. This
constraint essentially states that the malicious user cannot,
in total, spend more than M times what the average benign
user pays. Note that we only constrain the total amount
of money the malicious user can spend – it is free to try
to time its payments to maximize the damage it inflicts on
the network (for example, by targeting the network in its
periods of highest demand). We now show that the attacker
cannot use this freedom to cause damage higher than the
fraction of the total monetary resources it has available to
it. Essentially, the payoff the attacker would receive from
targeting the network at its most loaded is balanced by the
high cost of participating in the congestion pricing market
in high-demand conditions.

5Note that with simple fair queueing with no other con-
straints, there is nothing stopping every user from asking
for the entire link capacity. Since the link does not differen-
tiate between users, fair queueing would, therefore, end up
alloting every user the same amount of bandwidth.



Theorem 4.2. In the game defined above,
1. If the network uses CP, Lmal

Lopt
≥ 1

1+M
B

= B
B+M

. This

bound is tight, and is achieved in any one-round game
in which all the benign users have (identical) linear
utilities.

2. FQ allows the malicious user to obtain a fraction M
M+nt

of the link capacity in each round t. This is strictly
worse than CP unless every benign user participates
in every round (∀t.nt = B).

We have yet to analytically characterize how fair-queueing
would perform if, in addition, traffic volume limits are im-
posed on all the users (because of technical difficulties in-
duced by the max-min fairness rule used in fair-queueing).
However, as the example discussed in the previous subsec-
tion shows, there are reasonable scenarios where volume lim-
iting improves fair queueing by very little, if at all.

5. DISCUSSION
We answer here several natural questions about the results

discussed in this paper and about deployment of congestion
pricing in general.

Q. If the network has enough information about user iden-
tity to implement congestion pricing, isn’t the DoS problem
already solved?

A. No. First, implementing congestion pricing does not nec-
essarily require that information about user identity be com-
municated. In Re-feedback [5], for example, each node only
needs knowledge of a packet’s previous hop, rather than the
identity of the source, thus revealing no more information
about the source of user traffic to any node in the network
than the Internet does today.

Second, perfect information about user identity would not
be sufficient to protect against DoS, either. Attackers have
been known to initiate sophisticated application-level DoS
attacks, generating requests that are hard to tell apart from
legitimate traffic [32, 7]. In a case [31] from 2003, an at-
tacker using a botnet to target a specific host started out
using a simple SYN flood, but moved on to a sophisticated
HTTP-level attack (sending out repeated requests for large
images that could not be distinguished from the requests
coming in from regular users) once the victim implemented
SYN-flood countermeasures. The attack ultimately caused
an estimated $2 million dollars worth of damage. The 2010
Arbor Networks survey [1] suggests application-level attacks
are quite common, with more than 80% of respondents re-
porting HTTP-level attacks.

Q. Can per-packet congestion pricing scale to a large net-
work?

A. One option is Re-feedback [5] which could be applied to
implement congestion pricing at the packet level via light-
weight non-cryptographic exchanges only between neighbor-
ing routers. However, the market mechanisms considered in
this paper can be implemented at other levels of granularity,
such as per user or between ISPs [34].

Of course, Internet-scale deployment of network layer cha-
nges is never easy. But we argue that congestion pricing is
a plausible approach in targeted environments were changes
are possible, perhaps including billing models between ISPs,
or in cloud computing environments.

Q. Would human users be averse to being billed at a variable
rate for each packet?

A. Not necessarily. For example, users have, in the past,
accepted demand-based pricing for utilities such as electric-
ity [3].

But more importantly, human users need not be directly
involved in congestion pricing. The mechanics could be eas-
ily hidden from users by giving them a fixed budget per
month, as is currently done for bandwidth by many Inter-
net and cellular service providers, so that congestion pricing
would only affect users that go over their monthly “conges-
tion budget”. Alternately, the mechanism could be used only
between ISPs, or in a cloud computing environment where
dynamically-variable resource pricing for tenants is already
common [9] and human customers are not directly involved.
Note that ISPs already commonly use pricing that penalizes
peak loads by pricing at the 95th percentile of usage [27];
CP is effectively a more (economically) efficient version of
this mechanism.

Q. Wouldn’t users infected by bots end up paying for net-
work usage which they did not initiate?

A. True. But we argue that this is beneficial because it
changes the incentive structure, encouraging those who can
do something about the problem to address it. In the cur-
rent Internet, DoS attacks already cause a negative economic
effect, in the form of a loss of service for the victim; conges-
tion pricing shifts some of these effects from the victims to
the parties that are (directly or indirectly) responsible. In
particular, congestion pricing encourages:

1. ISPs to be more concerned about rogue activity on
their networks (to reduce customer complaints);

2. users and software vendors to be more diligent in pre-
venting and identifying malicious end-host behavior;
and

3. botmasters to send less attack traffic in order to remain
undetected.

6. RELATED WORK

DoS mitigation
Perhaps the simplest way to protect against DoS attacks is
to increase service capacity, but this can be expensive and
infeasible on short time scales. A second approach is to clas-
sify traffic as valid or malicious [39, 23, 36, 24, 12] and use
this classification to reduce the volume of malicious traffic
either by filtering malicious traffic or authorizing valid traf-
fic (see [19, 20] and references therein). These methods have
the disadvantages of imperfect classification [39, 23, 36], dif-
ficulty dealing with legitimate traffic not directly originated
by humans [24, 12], and an inability to deal with sophisti-
cated application-level attacks [32, 7, 31].

In proof-of-work schemes such as computational puzzles [8]
or bandwidth work [35, 17], the network allots service to its
users according to how much of their own local resources
they are willing to spend — a kind of proxy for dollar pay-
ments. This approach is problematic, since

1. It wastes resources.

2. Local computational resources may not be reasonable
as a proxy for monetary valuation when the users are



heterogeneous – for example, CPU proof-of-work would
allow an attacker using a desktop to overwhelm a net-
work of mobile users.

3. The relation between local computation and actual
monetary worth is not straightforward – the oppor-
tunity cost for the user of using local resources for net-
work payments depends heavily on precisely what else
the user wants to do locally.

The congestion pricing approach we use does not suffer
from these problems, since we use direct payments rather
than proof-of-work. However, considering the simplicity of
proof-of-work schemes, it might still be useful to characterize
their DoS resilience formally. We believe the model we use
in this paper is general enough that it can be adapted to
achieve this characterization – we leave that to future work.

Congestion pricing has been primarily studied as a way
to allocate bandwidth among legitimate selfish users [16, 5].
[21] shows through a simulation-based study that load-based
pricing can protect individual servers against simple flooding
attacks.

Game-theoretic analysis of congestion
Our basic game model is the market mechanism constructed
by Kelly [16] for elastic traffic. The elastic traffic model
assumes that the bandwidth requirement of each user is not
static and that the users would, in general, be willing to pay
more for larger bandwidth allocations. In a game-theoretic
analysis of this model, Johari and Tsitsiklis [14] have shown
that the efficiency of the market mechanism cannot fall more
than 25% below optimal. This paper extends this analysis
to games in which some of the users are malicious and seek
to minimize the utility of the selfish (but benign) users in
the system.

An alternate model is the inelastic traffic model [30], which
assumes that the bandwidth requirement of each user is a
fixed constant, but that the latency of each link is variable
and that it increases as the congestion at the link increases.
Recent work has studied the effect of malice on unpriced net-
works assuming an inelastic traffic model [2, 15, 10, 29]. In
particular, Babaioff et al. [2] demonstrated that the amount
of damage caused by a malicious user in an unpriced source
routed network can potentially be unbounded in an arbitrary
network, and Roth [29] analyzed the special case of linear
congestion games and showed that the maximum amount of
damage an attacker might cause can be bounded in terms
of system and network parameters such as the diameter of
the network and the slope of the latency functions.

We are not aware of any work studying the effects of mali-
cious behaviour on priced networks with either the inelastic
or the elastic traffic models.

7. CONCLUSION AND FUTURE WORK
Our analysis has shown that congestion pricing is a promis-

ing approach to mitigate denial of service attacks. This work
points to two major directions in the future: game theoretic
analysis of other DoS defense mechanisms, and the implica-
tions of congestion pricing.

The basic model we use is fairly general and can be adapted
to study other forms of network and user behavior, and other
DoS mitigation strategies. For example, our game-theoretic
approach may be able to analyze the efficacy of the proof-
of-work approach, or derive requirements on the accuracy

and precision of traffic classifiers. As another example, our
analysis did not treat the network itself as a strategic agent,
and simply assumed that it would honestly implement the
Kelly [16] pricing mechanism. Recent work by Kuleshov and
Vetta [18] has shown how the game-theoretic network de-
scription considered in this paper can be extended to model
the network as a rational agent. Other network models, such
as the inelastic traffic model from §6, can also be analyzed
in a game-theoretic setting.

In addition to the technical concerns, some of which are
considered in this paper, congestion pricing also raises nu-
merous questions that are economic and even societal in na-
ture. For instance: (1) How does pricing affect the network’s
incentives to improve its resource provisiong? (2) If conges-
tion pricing is implemented using actual monetary transfers,
what happens to the payments that the users make to the
network? Can they be refunded, somehow, without compro-
mising the users’ incentive to behave responsibly?
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APPENDIX

A. PROOFS OF RESULTS IN §3
We establish Theorem 3.3 first, and then derive Theo-

rem 3.2 from it.

A.1 Single Link: Strategic Model (Thm 3.3)
We discuss each of the assertions in the theorem in turn.

Nash Equilibrium
Theorem A.1. Any game with utility functions satisfy-

ing the constraints listed in Theorem 3.3 has a unique pure
Nash equilibrium.

Proof. Our proof adapts the demonstration by Hajek
and Gopalakrishnan [13] of a similar result for games con-
sisting solely of benign players. The primary difficulty in this
adaptation lies in handling an additional coupled constraint
introduced by the presence of the malicious player.



First note that in any Nash equilibrium, at least two users
must participate in the system (i.e., must have positive bid
values) – in any situation in which only one or zero users have
positive bids, at least one user in the system has incentive
to deviate. This ensures that (i) the market operates ac-
cording to the proportional allocation mechanism (the base
case when P = 0 does not apply), (ii) each xi is strictly in-
creasing as a function of pi, and whenever positive is strictly
decreasing as a function of pu for u �= i, and that (iii) no
one user is allocated the entire link capacity.

Now, as noted in Theorem 3.3, we assume that the ex-
pression Ui(xi) is strictly concave and strictly increasing in
pi, guaranteeing that the same properties hold for Qi. Fur-
ther, since each Ui is also assumed to be strictly convex and
strictly decreasing in pm, Qm = −σm

∑
i Ui−pm must again

be strictly concave and strictly increasing in pm
6. Therefore,

�p = (pu) is a Nash equilibrium for the given game iff for all
users u

∂Qu

∂pu
= 0 if pu > 0

∂Qu

∂pu
≤ 0 if pu = 0

Computing these partial derivatives and simplifying us-
ing properties (ii) and (iii) listed above, we find that these
conditions are equivalent to requiring that �p satisfy

U
′
i (xi)

(
1− xi

C

)
=

P

C
if xi > 0, for i = 1. . .n

U
′
i (0) ≤ P

C
if xi = 0, for i = 1. . .n

n∑
i=1

xi + xm = 1

n∑
i=1

xi

1− xi
=

1

σm
if xm > 0

n∑
i=1

xi

1− xi
≤ 1

σm
if xm = 0

It is fairly easy to verify that �p satisfies these requirements
iff the allocations xi it induces are a solution to the following
optimization problem (see [13] for a more detailed exposition
in the purely benign setting)

minimize
∑
i

Ûi(xi)

subject to xi ≥ 0 for i = 1. . .n
n∑

i=1

xi ≤ C

n∑
i=1

xi

1− xi
≤ 1

σm

at most one of the last two inequalities

being strict

where Ûi is an antiderivative of Ui

6Note that we only actually require that the aggregate func-
tion

∑
i Ui satisfies the convexity and monotonicity require-

ments. Requiring that each individual Ui does so too is a
sufficient (but not necessary) condition for ensuring this.

The objective function is identical to the one used in [13],
where it is shown that it must be strictly concave and strictly
increasing in each argument. Now note that the constraints
listed above delineate a non-empty, convex and compact fea-
sible region. Therefore, this optimization problem must have
a unique solution, the bandwidth allocations in which define
the unique pure equilibrium of the game.

The detailed derivation above (as well as in what follows)
is necessary; the results cannot be derived more directly from
those of Johari and Tsitsiklis [14]. Consider for example the
following possible proof of the above theorem:
“Add a large positive constant K to the malicious user’s

utility function. Since K is a constant, it does not change
the equilibrium state. Every player’s utility now satisfies all
the conditions required by Theorem 3.1 (which summarizes
the results of Johari and Tsitsiklis [14]), with the malicious
player now effectively becoming just another benign player.
The existence of the Nash equilibrium now follows directly.”

The problem with this argument is that the results of Jo-
hari and Tsitsiklis [14] cannot be applied in this way. While
the new set of utility functions does satisfy all the conditions
listed explicitly in Theorem 3.1, it fails an implicit struc-
tural requirement. The results of Johari and Tsitsiklis [14]
assume that every player’s net utility function has the form
[U(bandwidth allocated) − price paid]: that is, that every
player’s utility depends only on its own bandwidth alloca-
tion and its own payment. But in our case the malicious
player’s utility is a function of everyone else’s payments and
everyone else’s utilities.

Note also that even if the above argument were valid, it
could not be extended to derive the bounds listed in this
paper. Consider for instance the case σm = 1. Now all
Theorem 3.1 would imply is

(K −∑b Ub) +
∑

b Ub

K
>

3

4
⇐⇒ 1 >

3

4

which is less than helpful.
Observe that the constraints in Theorem A.1 character-

ize the unique equilibrium entirely in terms of the marginal
utilities (the first derivatives of the utility functions). There-
fore, given a game with arbitrary utility functions, we can
always construct an equivalent game with linear utility func-
tions that has the same equilibrium allocations – essentially,
replace each utility function with its tangent at the equi-
librium point. Now, since each utility function Ui(xi) is
assumed to be concave, we must have

U
′
i (xi)(xi − 0) ≤ Ui(xi)− Ui(0)

Since both our metrics essentially try to minimize
∑

i Ui(xi),
this shows that it is sufficient to consider only games with
linear utility functions (see [14] for a more formal proof).
Further, it can easily be shown [14] that if the throughput-
utilities are all non-negative, worst-case behaviour will be
observed in games in which all the utility functions pass
through the origin (i.e., Ui(0) = 0).

Therefore, when computing values for our metrics, we will
assume, without loss of generality, that all utility functions
are of the form Ui(xi) = aixi, ai > 0 a constant.

Bounding Lmal
Lopt

Theorem A.2. In any game in which the malicious player
has spite coefficient σm and in which pm > 0 in the unique



equilibrium, Lmal
Lopt

≥ 1
1+σm

, and there is always one such

game in which equality is achieved.

Proof. As was noted above, it is sufficient to consider
just the class of games with linear utility functions passing
through the origin. Suppose we have n benign users, each
with utility function of the form Ui(xi) = aixi. The op-
timal allocation (the one that maximizes the social utility∑

i aixi) simply allocates the entire capacity to the user υ
with highest marginal utility aυ. Without loss of generality,
we may assume that υ = 1 (else we can just reorder the
players).

Our goal now is to find a combination of utility functions
(that is, a combination of ai values) that minimizes the ra-

tio
∑

i aixi

a1C
. Note that the xi are dependent variables – each

combination of ai completely determines the unique Nash
equilbrium allocations xi. Conversely, given any reasonable
combination of bandwidth allocations xi, we can always find
a combination of linear utility functions for which this allo-
cation is the equilibrium. Therefore, we may also recast our
problem in terms of an optimization over the space of all
reasonable flows. In what follows, we shall use this second
formulation (which happens to be more concise than the
first).

Adding in all the constraints on the Nash equilibrium and
simplifying, our optimization problem translates to

minimize
1− x1

σm
(1)

subject to 0 ≤ xi ≤ x1 for i = 2,. . . ,n (2)
n∑

i=1

xi < 1 (3)

n∑
i=1

xi

1− xi
=

1

σm
(4)

Note that we essentially need to maximize x1 subject to
the given constraints. Considering constraint (4), and noting
that the other constraints imply that we must have 0 ≤ xi <
1 for all i, we see that x1 is maximized when x1 = 1

1+σm
and

all other xi are 0 – that is, when we only effectively have one
benign player in the game. The minimum possible value of
Lmal
Lopt

, which is the solution to this optimization problem, is

therefore
1− σm

1+σm
σm

= 1
1+σm

.
This bound is tight – it is achieved in the two player game

defined by one benign player with throughput-utility U(x) =
x and one malicious player with spite coefficient σm.

Recall that in games without malicious players, the least
possible value of Lben

Lopt
, 3n−4

4n−6
in an n-player game (note that

limn→∞ 3n−4
4n−6

= 3
4
), is achieved in a game that we refer to

as Benignopt
n (see Theorem 3.1).

Lemma 1. If σm < 1
2
, the malicious user has no incentive

to participate in the game Benignopt
n for any n ≥ 2; that is,

if a malicious player m with this value of σm were to be
added to this game, pm would be 0.

Proof. We first describe Benignopt
n in full. The game

includes one benign player with utility U(x) = x and n− 1
benign players each with utility U(x) = x

2− 1
n−1

. In the

equilibrium, the first player is allocated half the capacity

of the link and the remaining half of the capacity is split
uniformly across all the other players.

Since we have shown that all games with malicious players
have unique Nash equilibria, it is sufficient to show that the
throughput allocation in the previous paragraph satisfies all
the conditions for a Nash equilibrium with pm = 0 when
the malicious user is added to the system. The only new
constraint is the one based on the marginal utility of the
malicious player – it is sufficient to show that

∑
i

xi
1−xi

< 1
σm

.

Now for this throughput allocation, we have

∑
i

xi

1− xi
=

1
2

1− 1
2

+ (n− 1)

1
2(n−1)

1− 1
2(n−1)

= 1 +
1

2− 1
n−1

≤ 2 (equality at n = 2)

<
1

σm
when σm <

1

2

Corollary 1. Consider the game obtained by adding a
malicious player with spite coefficient σm < 1

2
to Benignopt

n .

In this game, Lmal
Lopt

= Umal
Uopt

= Lben
Lopt

= 3n−4
4n−6

.

Proof. Observe that the definitions of Lmal
Lopt

, Umal
Uopt

and
Lben
Lopt

all coincide in games in which no malicious players

participate. The result now follows from Lemma 1.

Theorem A.3. In any game satisfying the constraints listed

in Theorem 3.3, Lmal
Lopt

≥ min
{

3
4
, 1
1+σm

}
. Further, this bound

is tight for any value of σm.

Proof. Let partm(σm) denote the minimum possible value

of Lmal
Lopt

over the set of games in Theorem 3.3 in which the

malicious user has spite coefficient σm and participates in
the game (pm > 0), and nopartm(σm) the minimum possi-

ble value of Lmal
Lopt

over the games in which the malicious user

has a spite coefficient σm and does not participate (pm = 0).

Now, for any fixed σm, the minimum possible value of Lmal
Lopt

over the entire set of games is the smaller of partm(σm) and
nopartm(σm).

Theorem A.2 shows that for any σm, partm(σm) = 1
1+σm

,
and that there is a game which achieves this value. Theorem
3.1 shows that nopartm(σm) is bounded below by 3

4
, and

Lemma 1 shows that the bound is tight as long as σm < 1
2
.

The result now follows by noting that:

1. For σm > 1
3
, 1

1+σm
< 3

4
. As we have just discussed, the

1
1+σm

bound is exact – there is a game achieving this
value.

2. If σm ≤ 1
3
, 1

1+σm
≥ 3

4
, and further σm < 1

2
, ensuring

that Lemma 1 applies, and that, therefore, the bound
of 3

4
holds and is tight.

Bounding Umal
Uopt

and Umal
Uben

Lemma 2. If σm ≥ 1, the malicious user always partici-
pates in the game – that is, pm > 0.



Proof. We start by assuming that pm = 0 and establish
a contradiction to the equilibrium requirement

∑
i

xi
1−xi

≤
1

σm
.

If pm = 0,
∑n

i=1 xi = 1. Under this constraint,
∑

i
xi

1−xi

is minimized by the symmetric allocation which sets xi =
1
n

for all i. Therefore,

∑
i

xi

1− xi
≥ n× 1

n

1− 1
n

=
1

1− 1
n

> 1 ≥ 1

σm

Theorem A.4. In any game with σm ≥ 1, Umal
Uopt

≥ σ2
m+σm+1

σ2
m+2σm+1

.

Further, this bound is tight – for any value of σm, there is a
game that achieves this bound.

Proof. Proceeding along the lines of Theorem A.2, we
find that the minimum possible value of Umal

Uopt
(σm) is the

solution to the optimization problem

minimize (1− x1)

[
1

σm
+ 1−

n∑
i=1

xi

]
(5)

subject to 0 ≤ xi ≤ x1 for i = 2,. . . ,n (6)
n∑

i=1

xi < 1 (7)

n∑
i=1

xi

1− xi
=

1

σm
(8)

First fix the value of x1. It can be shown (by induction on
the number of players) that, ignoring constraints (6) and (7),
the objective is minimized when all xi (i �= 1) are equal. The
values of all these xi can be computed explicitly in terms of
x1 using (8).

It can also be shown that this solution satisfies constraints
(6) and (7) iff

1

1 + nσm
≤ x1 ≤ 1

1 + σm

Since x1 cannot exceed 1
1+σm

without violating constraint

(8), we only need to consider the following two cases:

1. x1 < 1
1+nσm

Let obj denote the objective function. We must have

obj ≥ (1− x1)

(
1

σm
+ 1− nx1

)
(by (6))

>

(
1− 1

1 + nσm

)(
1

σm
+ 1− n

1 + nσm

)

=
n+ nσm + n2σ2

m

1 + 2nσm + n2σ2
m

This last value is minimized by n = 1, at which point

its value is
1+σm+σ2

m
1+2σm+σ2

m
.

2. 1
1+nσm

≤ x1 ≤ 1
1+σm

In this case the objective can be expressed as a univari-
ate function of x1 using the solution described above.

The first derivative test can be used to establish that
when σm ≥ 1, the objective is monotonically decreas-
ing in x1 over the range listed in the case assumption.
Therefore, the objective is minimized when x1 = 1

1+σm
,

implying that xi = 0 for i �= 1, and this minimum value

is
1+σm+σ2

m
1+2σm+σ2

m
.

We therefore find that the optimal value is
σ2
m+σm+1

σ2
m+2σm+1

, and

that, as in Theorem A.2, this optimal value is attained in
a two-player game with one benign player with throughput-
utility U(x) = x and one malicious player with spite coeffi-
cient σm.

Let LowerBoundmal
opt

(σm) denote the minimum possible

value of Umal
Uopt

over the set of all games in which the malicious

user has spite coefficient σm. Define LowerBoundmal
ben

(σm)

analogously.

Lemma 3. σm = 1 must minimize LowerBoundmal
opt

(σm).

That is,
LowerBoundmal

opt
(σm) ≥ LowerBoundmal

opt
(1) = 3

4
.

Proof. When σm = 1, the net utility of the malicious
player is given by

Qm = −
∑
i

Ui − pm

That is, the malicious user acts so as to minimize the value of
(
∑

i Ui+pm). But this is exactly the numerator of the metric
Umal
Uopt

. Therefore, for any given combination of throughput

utilities for the benign players, Umal
Uopt

is minimized when the

malicious player has σm = 1, and thus the metric LowerBo-
undmal

opt
over the entire set of games must also be minimized

by σm = 1.

Corollary 2.

min
σm>0

LowerBoundmal
ben

(σm)

= min
σm>0

LowerBoundmal
opt

(σm)

= LowerBoundmal
ben

(1)

= LowerBoundmal
opt

(1)

=
3

4

Proof. Note that in any game, it follows directly from
the definitions that Umal

Uben
≥ Umal

Uopt
. Now, by Lemma 3 and

Theorem A.4, minσm LowerBoundmal
opt

(σm) is achieved at

σm = 1 in a game with exactly one benign player, and in
such games, when the malicious players are removed, the
social utility is the same in both the optimal and the equi-
librium allocations. The result now follows from Lemma
3.

A.2 Single Link: Byzantine Model (Thm 3.2)
Observe that the results in this theorem hold for a wider

range of the benign users’ utility functions than in the strate-
gic model (cf. Theorem 3.3). The additional constraints in
Theorem 3.3 were necessary to ensure the existence of an
equilibrium, as noted in §3.



The existence of a unique Nash equilibirum in these games
can be established using a proof that is more or less identical
to the one in Theorem A.1. We omit the details.

Further, it can be shown that, as in the strategic model,
it is sufficient to consider just the class of games in which
the benign users’ throughput-utilities are all linear func-
tions passing through the origin when establishing bounds
on Umal

Uopt
and Umal

Uben
. The fact that the same bound as in

the strategic model ( 3
4
) applies here now follows from the

following observation.

Theorem A.5. Consider the class of games in which the
benign users’ throughput-utilities are all linear functions pass-
ing through the origin. The strategic and the Byzantine mod-
els are interchangeable in these games; it is always possi-
ble to replace a strategic malicious player with an equiva-
lent Byzantine player (and vice-versa) without changing the
prices paid by any of the players (benign or malicious) – and

thus without changing the value of the Umal
Uopt

or Umal
Uben

metrics.

Proof. The proof in the forward direction is trivial. Sup-
pose the malicious player pays pm in the equilibrium in a
strategic model game. Then we may simply replace this
player with a Byzantine malicious player that always pays
pm without affecting any of the equilibrium conditions.

Now for the reverse direction, suppose we have a game
with a Byzantine malicious player that pays pm, and that
〈x1, . . . , xn〉 represent the bandwidth allocations to all the
benign players in the equilibrium. Then it is easy to see that
replacing the malicious player with a strategic player whose
σm value is given by equation (8) preserves the prices paid
by and the throughputs allocated to all the players in the
system.

A.3 General Topology
As noted in §3.2, the proof in [14] of an analogous result

for games without malicious players can be adapted to show
that the bounds in the single-link case extend to arbitrary
topologies once we establish the following intermediate re-
sult, which states that the Umal

Uopt
and Umal

Uben
metrics in games

with malicious players lie between 0 and 1, as does the Lben
Lopt

metric in games with only benign players.

Lemma 4. Consider any single-link game with n ≥ 1 be-
nign users, each of whose throughput utilities Ui are of the
form aixi, ai > 0 a constant, and one Byzantine malicious
player which plays the fixed price pm. The social utility
Umal =

∑
b Ub(xb)+pm in the unique pure Nash equilibirum

in this game is not more than the social utility in the optimal
allocation.

Proof. Proceeding as in Theorem A.4 and simplifying,
we find that we essentially need to

prove that (1− x1)

[
xm +

n∑
i=1

xi

1− xi

]
≤ 1 (9)

subject to 0 ≤ xi ≤ x1 < 1 for i = 2,. . . ,n (10)
n∑

i=1

xi + xm = 1 (11)

This is true since

LHS ≤ (1− x1)

[
xm

1− x1
+

n∑
i=1

xi

1− xi

]
(by (10))

≤ (1− x1)

[
xm

1− x1
+

n∑
i=1

xi

1− x1

]
(by (10))

= (1− x1)

[
xm +

∑n
i=1 xi

1− x1

]
= 1 (by (11))

However, we note that in order to guarantee stability in
the strategic model, we require the presence of a virtual
agent operated by the network controller that plays a small
ε price at each link (ε can be arbitrarily small). This is
needed to handle the resource allocation at links which are
not bottlenecked – the ε-player essentially soaks up all the
excess capacity in such links. Johari and Tsitsiklis [14] con-
sidered this ε-player in games without malicious players, and
showed that the need for it could be removed by using an
expanded version of the market mechanism in which play-
ers send auxiliary information (along with the prices) to the
links – this enables the players to obtain non-zero bandwidth
allocations from non-bottleneck links even with a zero price
payment. However, this expanded mechanism does not work
in the presence of malicious behavior.

B. PROOFS OF RESULTS IN § 4

Proof of Theorem 4.1. Suppose we have a B > 1 player
game, and assume WLOG that the link has capacity 1 unit.
Let Ub and xb denote respectively the throughput utility
function and bandwidth allocation in the congestion pric-
ing Nash equilibrium of user b, and let P denote the total
payment to the link from all the users in the equilibrium.

Suppose A of the B players received non-zero bandwidth
allocations in the congestion pricing NE. Order the players
so that these are the players numbered 1 through A. Now

B∑
b=1

Ub(xb)− Ub(
1

B
)

=

A∑
b=1

[
Ub(xb)− Ub(

1

B
)

]
+

B∑
b=A+1

[
Ub(0)− Ub(

1

B
)

]

≥
A∑

b=1

[
U

′
b(xb)

(
xb − 1

B

)]
+

B∑
b=A+1

[
U

′
b(0)

(
0− 1

B

)]

≥
A∑

b=1

xb − 1
B

1− xb
P −

B∑
b=A+1

P

(
0− 1

B

)

≥
A∑

b=1

xb − 1
B

1− 1
B

P −
B∑

b=A+1

P
1

B

=
1− A

B

1− 1
B

P − (B − A)
1

B
P

≥ 0

where the first inequality step uses the concavity of the Ub,
the second uses the first derivative characterization of the



Nash equilibrium (see Theorem A.1), and the third follows
from a simple analysis of the two cases xb < 1

B
and xb ≥ 1

B
.

Following the proof, it is easy to see that equality occurs
only if A = B and xb = 1

B
for all b.

Proof of Theorem 4.2.

Proof of part 1. First note that our argument in Ap-
pendix A for restricting our attention to linear utility func-
tions continues to apply here – given any game with ar-
bitrary concave utility functions, there is a corresponding
game with the same equilibrium payments and bandwidth
allocations but in which (i) the benign users all have lin-
ear utilities, and (ii) the values of the social utility metrics
we try to bound are no better than they were in the original
game. Hence we will assume that each of the nt benign users
in round t has the utility function U t(x) = atx. Further, we
will assume WLOG that the link has capacity 1 unit.

Constructing a first-derivative formulation as in the proof
of Theorem A.2, we find that the required worst-case value
of Lmal

Lopt
is the solution to

minimize

∑
t ntatxbt∑

t at

subject to at(1− xbt) = Pt

ntatxbt = λPt if pmt > 0

≤ λtPt if pmt = 0∑
t

pmt ≤ M

B

∑
t

ntpbt

Pt = ntpbt + Pt

pbt ≥ 0, pmt ≥ 0

We first consider the case when ∀t.pmt > 0. Writing
rt = ntatxbt, noting that the inequality constraint on the
malicious player’s budget would be an equality constraint in
any solution to the minimization problem (there is no rea-
son for the malicious player to spend less than it is allowed
to), and simplifying, we find that the solution to the above
problem is lower-bounded by the solution to7

minimize

∑
t rt∑
t at

subject to
∑
t

rt =

(
M

B
+ 1

)∑
t

r2t
at

0 < rt < at

It can now be shown that the solution to this problem is
1

1+M
B

, obtained by setting rt =
1

1+M
B

at.

The fact that this bound is the actual lower bound (and
that it is tight) follows by noting that it is achieved in any
single-round game with linear utility functions.

Finally, we need to justify the assumption that ∀t.pmt �= 0
– that is, that the malicious player does not gain by, for
example, concentrating its entire budget on one round of the
game. This can be done by proving, using induction, that
the malicious player would always cause no more damage
than the 1

1+M
B

ratio above if it did so.

Proof of part 2. As noted in footnote 5, in simple fair
queueing with no other constraints, there is nothing stopping
every user from asking for the entire link capacity. Thus the
link would be forced to allocate all requesting users an equal
amount of bandwidth. The result follows trivially.

7Lower-bounded since the constraints we’re placing on rt
are potentially looser than in the original problem
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