
Naps: Scalable, Robust Topology Management
in Wireless Ad Hoc Networks

P. Brighten Godfrey
pbg@cs.berkeley.edu

David Ratajczak
dratajcz@cs.berkeley.edu

Department of Electrical Engineering and Computer Science
University of California, Berkeley

Berkeley, CA 94720-1776

ABSTRACT
Topology management schemes conserve energy in wireless
ad hoc networks by identifying redundant nodes that may
turn off their radios or other components while maintain-
ing connectivity. We present Naps, a randomized topology
management scheme that does not rely on geographic loca-
tion information, provides flexibility in the target density of
waking nodes, and sends only a periodic heartbeat message
between waking neighbors; thus it is implementable even on
modest hardware. We formally analyze the connectivity of
the waking graphs produced by Naps, showing that these
graphs have nearly complete connectivity even at relatively
low densities. We examine simulation results for a wide
range of initial deployment densities and for heterogeneous
and mobile deployments.

Categories and Subject Descriptors
C.2.1 [Computer-communication Networks]: Network
Architecture and Design—distributed networks, network topol-
ogy, wireless communication

General Terms
Algorithms, Performance, Theory

Keywords
Wireless ad hoc networks, sensor networks, topology man-
agement, percolation theory, simulation

1. INTRODUCTION
In wireless ad hoc networks, nodes are distributed in a ge-

ographic region and are able to communicate only with other
nodes within a limited radius; long-range communication is
made possible by forwarding messages in a multi-hop fashion
toward their targets. Nodes are typically battery-powered

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IPSN’04, April 26–27, 2004, Berkeley, California, USA.
Copyright 2004 ACM 1-58113-846-6/04/0004 ...$5.00.

and hence energy is a scarce resource. Furthermore, on most
hardware, a substantial portion of energy is consumed by
the radio, irrespective of whether it is sending, receiving, or
merely listening for packets [1, 2, 3]. In high density deploy-
ments, however, not all nodes may be required to forward
traffic in order to maintain connectivity in the network. In
such cases, we may wish to select a fraction of nodes to turn
their radios or other components off (“nap”) for a calculated
interval to reduce their energy consumption, thus prolonging
the useful lifetime of the entire system. Such a technique can
also increase the capacity of the network [4] by producing a
“waking” connected backbone of lower density that assumes
all forwarding responsibilities, and to which all “napping”
nodes need communicate only infrequently or with reduced
transmission power.

In either case, we wish to select a nearly maximal set of
napping nodes, under the constraint that nearly all wak-
ing nodes are in a single connected component, and nearly
every napping node can transmit to a waking node. This
is a significantly weakened form of the NP-complete con-
nected dominating set problem [5], which requires selecting
the smallest connected backbone such that all nodes are ei-
ther in or adjacent to the backbone. We feel that these re-
laxed requirements are sufficient since connectivity may be
compromised anyway due to node and network unreliability
or an initially disconnected placement of nodes.

Our proposed algorithm, Naps, decides when nodes should
nap and wake up to achieve a target density of waking nodes
in expectation, without requiring that nodes know the initial
density. Intuitively, the fraction of time that a node should
be awake is inversely proportional to its degree and pro-
portional to the target density. The algorithm continually
changes the subset of waking nodes to allow all nodes to pe-
riodically nap. Naps is extremely simple, does not require
location information, does not require clock synchronization,
and only requires a node to wake and broadcast a heartbeat
to its waking neighbors every time period T (a tunable pa-
rameter of the algorithm).

We prove that the waking subgraphs produced by Naps
exhibit a phase transition: if the initial and target densi-
ties are above a critical threshold, then after running Naps
on an infinite graph with the initial density, any particu-
lar node is in an infinite connected component of waking
nodes with non-zero probability. This general phenomenon
is called percolation and has been widely studied [6]. In
the finite setting, the expected fraction of waking nodes in
the largest connected component approaches the percolation

probability as the area is increased [7]. This is in contrast
to the logarithmic density required to ensure complete con-
nectivity [8].

We show empirically that the waking subgraphs are al-
most completely connected even for relatively small values
of the target density. For example, in a network of at least
500 nodes with an initial density of 12/π and a target den-
sity of 6/π (such that a node expects 6 waking and 12 total
neighbors), we expect more than 98% of nodes to be either
waking and in the largest connected component, or napping
and adjacent to that component. This remains true even
while nodes wake and nap.

Naps can be used for any application that requires select-
ing a set of nodes with a specified target density and which
can adapt to dynamic changes in the topology. Note that
such adaptive algorithms have been developed for routing [9,
10], and adaptivity is already a requirement for most prac-
tical applications due to unreliability and mobility. Naps
does not require napping nodes to receive messages – allow-
ing them to leave their radio in the sleep state – and the
number of messages received is proportional to the target
density as opposed to the initial density. This is a signifi-
cant improvement over some previous algorithms, and is one
of the primary reasons that Naps shows significant energy
conservation even at arbitrarily high initial densities, espe-
cially when the energy consumption of a napping node is
small.

Finally, while our analysis assumes that nodes are dis-
tributed according to an infinite Poisson point process, we
show through simulation that the algorithm is applicable
even when the network is finite, the underlying distribution
is not uniform, and when nodes are mobile.

This paper makes the following contributions: it presents
a simple algorithm for “thinning” an ad hoc network by
selecting nodes to nap and wake at calculated intervals; it
presents the first such algorithm that maintains good con-
nectivity and energy conservation while scaling to very high
node densities and without using geographic information;
and it presents a formal and an empirical analysis of the
algorithm demonstrating its scalability and robustness.

The rest of this paper is organized as follows: Section 2
discusses related work; Section 3 describes our system model
and environmental assumptions; Section 4 describes the Naps
algorithm itself; Section 5 contains a theoretical analysis of
the asymptotic properties of the waking subgraphs produced
by Naps; Section 6 examines the empirical behavior of the
algorithm under a wide range of test conditions; and Sec-
tion 7 concludes the paper.

2. RELATED WORK
Algorithms that turn off radios by exploiting redundancy

have been dubbed topology management schemes [1, 2, 3,
11], and several solutions have been proposed placing differ-
ent assumptions on hardware and applications [1, 12, 11].

AFECA [12] is similar in spirit to Naps in that nodes
are given a sleep interval that is related to the number of
neighbors they have. However, each AFECA node is awake
for a fraction of time which is roughly 2/(2 + N) (assuming
each node has an accurate measurement of its neighborhood
size N). By the results of Section 5, this yields a wak-
ing subgraph with many small components. Since AFECA
assumes a store-and-forward routing mechanism, messages
must wait for nodes to wake before making further progress.

Hence AFECA trades energy conservation for significantly
increased routing latency.

GAF [11] is similar to Naps in its goals, and provides
the application with an effectively static topology. How-
ever it relies on geographic information, limiting its use to
hardware and environments where such information can be
reliably obtained. We demonstrate that Naps provides good
performance even without such features.

Span [1] is designed to select a connected backbone for
the purposes of energy conservation, and does not assume
geographic location information. Span produces a (not nec-
essarily minimal) connected dominating set. However Span
is comparatively complex, and requires that every node peri-
odically receive topology information from each of its neigh-
bors in the original graph, so that the fraction of time that
a node’s radio is idle or receiving (as opposed to sleeping)
will increase as the initial density of the network increases.
This property limits Span to only a factor of 2 improvement
in system lifetime even at high initial densities. Span has
no flexibility in the density of waking nodes, limiting its use
for applications other than connectivity. TMPO [13] shares
many of the same traits as Span, though with greater em-
phasis on performance in a mobile setting.

STEM [3] turns off nodes even more aggressively than the
previous schemes by exploiting the fact that many applica-
tions only generate traffic sporadically. Similar to AFECA,
it trades energy conservation for increased routing latency.
It further assumes a separate low-power radio operating at
a lower duty cycle.

There are a number of papers that propose turning off
radios at the MAC layer when the radio is not in use; see
Zheng et al. [14] and the references therein. These and other
node-level power saving techniques can complement Naps in
order to further conserve energy.

Gupta and Kumar [4, 8] and others have studied the prob-
lem of varying the radius of transmission in amenable hard-
ware while preserving connectivity. This technique may be
useful in improving the capacity of the network by reducing
radio interference, though it is unlikely to yield significant
energy conservation since the extra energy cost of trans-
mission is small compared to the ambient cost of an idle
radio [3].

Turning off nodes has been considered with the objective
of maintaining complete (or adequate) sensing coverage as
opposed to mere connectivity. Both Booth et al. [15] and
Tian and Georganas [16] consider various algorithms for this
problem, all of which rely on geographic information.

Distributed algorithms for approximating connected dom-
inating sets have been proposed that require a constant num-
ber of rounds of communication and yield logarithmic factor
approximations [17]. However these are difficult to imple-
ment, typically requiring some form of synchronization or
leader election. Moreover, they do not evenly distribute re-
sponsibility across all nodes over time.

The percolation result of Section 5 follows a fairly stan-
dard proof technique described by Grimmett [6], and is sim-
ilar to a result by Dousse et al. [18] on the impact of inter-
ferences on connectivity of ad hoc networks.

3. MODEL
We consider a wireless ad hoc network in which nodes are

distributed in the plane
� 2 or a finite region thereof. In

our formal analysis, we assume that nodes are distributed

according to an infinite Poisson point process in the plane
with spatial intensity (density) λ. That is, for any region R
of the plane of area A and any n ≥ 0, Pr[n nodes in R] =
(Aλ)ne−Aλ/n!. Furthermore, for any two disjoint regions
R1 and R2, the number of points in R1 is independent of
the number of points in R2.

We also assume that each node has a unit transmission
radius, so that it can communicate reliably and instanta-
neously with any other node at a Euclidean distance at most
1; radii other than 1 are modeled by suitably rescaling the
density (and the area, in the finite case). When applied to
the infinite Poisson point process of density λ, these commu-
nication links produce an infinite random geometric graph
G(λ). A fundamental property of G(λ), first established by
Zuev and Sidorenko [19], is that there is a critical threshold
λ∗ such that for all densities λ > λ∗, there is a non-zero
probability p∞ > 0 that a particular node is in an infinite
connected component, or that “percolation occurs.” Fur-
thermore, for all densities λ < λ∗, p∞ = 0. While an exact
value is not known, simulations [20] predict that λ∗ ≈ 1.44.

In our simulations, we consider a uniform point process
in which Aλ nodes are distributed independently and uni-
formly at random within a square of area A, thus producing
a density of λ. It is known that the expected fraction of
nodes in the largest component quickly approaches p∞ as
A → ∞; see Chapters 10 and 11 of Penrose [7] for a rigor-
ous treatment. Thus we require λ > λ∗ to enable multi-hop
routing even in modestly sized deployments.

We assume that each node is able to broadcast a message
to all listening nodes within its transmission radius, and will
receive a broadcast message whenever it is awake. In our
simulations and analysis, we assume that message delivery
is reliable, and messages do not collide. No clock synchro-
nization is necessary, but clock skews should be negligible
compared to the length of one iteration of the algorithm,
which we envision as being at least on the order of minutes.
Lastly, the node must be able to wake from sleep mode to
perform an operation after a specified interval.

4. THE Naps ALGORITHM
The Naps algorithm, executed at each node v in the net-

work, proceeds as follows.

Naps(Neighbor threshold c ∈ � +, time period T ∈ � +)
Wait random time tv chosen uniformly from [0, T)
while true do

Broadcast HELLO message
Start timer t
i← 0
while t < T and i < c do

Increment i for each HELLO message received
Nap until t = T

In other words, each node v first waits a random amount
of time and thereafter operates in time periods of length
T . At the start of each period, v broadcasts a “HELLO”
message. It then listens for HELLO messages from other
nodes. If fewer than c messages are received before the end
of the period, v remains awake during the entire period.
Otherwise, v naps from the time the cth message is received
until the end of the period. Note that for t ≥ T , the graphs
occurring at times t, t + T, t + 2T, . . . are equivalent.

In our simulations, we augment this algorithm in two
ways. First, nodes use a random period length chosen from
[0, T) every 10th iteration. Without this re-randomization,
poor random choices are repeated every period and can lead
to certain nodes remaining awake for a disproportionate
amount of time. Second, we effect non-integral values of
c by having each node choose a neighbor threshold of either
dce or bcc randomly (with appropriate weighting) in each
period. In our analysis, we do not consider these variants.

4.1 Design intuition
If each node were given both the existing density λ of the

network and a target density λ̂ < λ, then we could simply
have each node remain awake a fraction λ̂/λ of the time in-
dependently at random. By the Poisson thinning lemma [7],

the waking graph would be a random graph from G(λ̂) with
the desired density. However, this limits the algorithm’s
flexibility since it requires that the nodes know λ.

Instead, each node v adaptively estimates its local den-
sity using an estimate of its degree (deg(v)). As we show
in Section 5, v will remain awake for an expected fraction
c/(deg(v)+1) of each period. Hence as the density increases,
nodes will have more neighbors and thus nap for longer pe-
riods, keeping the density of waking neighbors nearly con-
stant. If every node has nearly the same degree, then we
expect that c nodes will remain awake among the deg(v)+1
nodes in each node v’s radius. This yields an overall density
of approximately c/π.

4.2 Parameter selection
The neighbor threshold c controls the target density of

waking nodes; the time period T controls the rate of turnover
of these waking nodes. The choice of these parameters is left
to the application using Naps, though these constants must
be known to all nodes in the system.

T should be chosen large enough that nodes are awake for
intervals of time that are significant for the purposes of the
application. T should also be chosen small enough that a
substantial number of time periods occur during a node’s
lifetime to spread load evenly among nodes. While this may
mean that the optimal T depends on the initial density, a
choice of T on the order of minutes will likely suffice for most
applications and densities. While there are naturally ways
to adapt c and T over time, we do not examine them here.

As noted previously, the neighbor threshold c produces a
waking node density of approximately c/π. In Section 5, we
show that percolation occurs for c > c∗, and the experiments
of Section 6 imply that 4 < c∗ < 5. Thus we envision that
almost all applications will want to have c ≥ 5 so that a large
fraction of waking nodes are in the largest connected com-
ponent. Beyond that, the desired density may vary greatly
based on the application’s particular needs.

5. ANALYSIS
In this section we prove that the Naps waking graphs ex-

hibit a percolation threshold similar to that of random geo-
metric graphs. We consider the waking graphs produced at
time t ≥ T by running Naps on an initial geometric random
graph G from G(λ). The resulting waking subgraph, G′, has
distribution Gt(λ, c, T), where c and T are the algorithm pa-
rameters. Note that the randomness of this distribution is
over both the initial node placement and the nodes’ start
times tv ∈ [0, T) chosen by Naps.

Lemma 1. In any time period [t, t + T), for t ≥ 0, every
node v broadcasts exactly one HELLO message at a time t′v
independently and uniformly distributed in the period.

Proof. Each node v emits a HELLO at times tv, tv +
T, . . . , where the tv are independent and identically dis-
tributed in [0, T). For some integer k, we have t ≤ kT <
t + T . Thus t′v = tv + kT if tv < t − (k − 1)T , else
t′v = tv + (k − 1)T . This is a measure-preserving bijection
between tv and t′v.

Lemma 2. Consider G ∈ G(λ) and any node v. After
running Naps with random start times tv ∈ [0, T) until time
t ≥ T ,

Pr[(v is awake at time t)|deg(v) = d] =

�
1 if d < c

c
d+1

otherwise.

Proof. By Lemma 1, in the interval [t− T, t), there are
d+1 HELLO messages emitted by node v and its neighbors,
independently and uniformly distributed at times t1 ≤ t2 ≤
· · · ≤ td+1. Disregarding the event of probability 0 that any
two nodes have the same start times, node v is awake at
time t if and only if its HELLO message is among the most
recent c messages. Since any ordering is equally likely, this
occurs with probability c

d+1
.

As a result, the distribution Gt(λ, c, T) does not depend on
t or T other than the requirement that t ≥ T . Without
loss of generality, we refer to the distribution as G(λ, c). By
running Naps on a random G ∈ G(λ), the waking subgraph
at time t ≥ T is a random G′ ∈ G(λ, c).

Theorem 3. Let Pλ,c be the event that percolation occurs
in G(λ, c) – that is, that a particular waking node g is con-
nected to an infinite connected component of waking nodes.
For any 0 ≤ p < 1, there exist λ′ and c′ such that for any
λ ≥ λ′ and any c ≥ c′, Pr[Pλ,c] ≥ p.

The proof of the theorem translates the presence of contin-
uum percolation on a graph from G(λ, c) into the presence
of bond percolation on a discrete lattice; for G chosen from
G(λ), we define a lattice on the plane and label the edges of
the lattice open or closed based on the placement of nodes
in G so that an infinite connected component of open edges
in the lattice will imply an infinite connected component in
G′.

Figure 1 shows the lattice construction. First, we con-
struct a square lattice L of edge length � 1/5 centered at an
arbitrary point. Note that any two nodes in adjacent squares
must be connected. Let L′ be the dual lattice, which has a
node at the center of each face of L and an edge e′ perpen-
dicular to each edge e of L . When we refer to a node, unless
explicitly stated otherwise, we mean a node of the original
graph G, not a node of L or L′. A waking node refers to a
node of G′.

Definition 4. An edge e of L is open if there exist wak-
ing nodes (nodes in G′) in each of the two squares adjacent
to e. Otherwise, e is closed. An edge e′ of L′ is open if the
corresponding edge of L is open; otherwise, e′ is closed. A
path (or component) is open when all of its edges are open;
it is closed when all of its edges are closed; otherwise, it is
neither open nor closed.

PSfrag replacements

L L′

e1

e2

e′1

e′2

1
� 1/5

Figure 1: Nodes of L and L′ are shown as squares

and nodes of G are circles, filled when waking. Here

e1 and e′1 are open, while e2 and e′2 are closed.

Lemma 5. If there is an infinite open path P∞ = {e1, e2, . . .}
in L′ then there is an infinite connected component in G′.

Proof. Each edge ei of P∞ spans some adjacent faces
fi, fi+1 of L. Since ei is open, there is a node vi of G′

in fi. By our construction of L, nodes in adjacent faces are
connected, so {v1, v2, . . .} is an infinite connected component
in G′.

The proofs of the next two lemmas follow the proof of
Theorem 3.

Lemma 6. Let q be the probability that a particular edge
of L is closed. Then for any q′ > 0, there exist λ′ and c′

such that for λ > λ′ and c > c′, we have q < q′ for a random
waking graph G′ ∈ G(λ, c).

Lemma 7. Let P be a path of length n in L and let q be
as in Lemma 6. Then Pr[P is closed] ≤ qn/247.

Proof. (of Theorem 3) Let v be the node of L′ which is
in the same face of L as g. By Lemma 5, it is sufficient to
show that v is in an infinite component of open edges in L′

with probability at least p. We then use the following fact:
in any realization of G(λ, c), if v’s open component in L′ is
not infinite then it is finite, which by planar duality implies
that there is a cycle of closed edges in L encompassing v.
Thus, we have

Pr[g in inf. comp. in G(λ, c)]

≥ Pr[v in infinite open component in L′]

= 1− Pr[v in finite open component in L′]

= 1− Pr[∃ closed cycle in L around v]

≥ 1−
∞�

n=1

Pr[∃ closed cycle of length n around v]

≥ 1−
∞�

n=1

ρ(n)(Pr[a cycle of length n is closed]),

where ρ(n) is the number of cycles of length n in L that
surround v, and is upper-bounded by ρ(n) ≤ 4n · 3n−2, as
described in [6] (pps. 15-18). By Lemma 7, we can upper-

bound the second factor by qn/247, where q is the probability

PSfrag replacements

R

F � 1/5

1

Figure 2: A face F of the lattice L and the region R,

all points within distance 1 of F excluding F itself.

that a particular edge is closed (independent of all other
edges). Continuing, these two bounds give us that

Pr[g in inf. comp. in G(λ, c)] ≥ 1−
∞�

n=1

4n · 3n−2qn/247

= 1− 4

9

∞�
n=1

n · (3q1/247)n

= 1− 4

9
· 3q1/247

(1− 3q1/247)2
,

which is≥ p when q ≤ � 11−9p−2
√

10−9p
27(1−p) � 247

, and by Lemma 6

we can make q arbitrarily small as long as λ and c exceed
some minimal values.

Proof. (of Lemma 6) Let X be the event that a particu-
lar face F of L does not contain any waking nodes. We will
show that we can make Pr[X] arbitrarily small by choosing
λ and c sufficiently large. Since q ≤ 2 · Pr[X] (by a union
bound over two faces), this will imply that we can make q
arbitrarily small.

Let R be the region of the plane containing all points of
distance at most 1 from F , not including F . Let NF and
NR be the number of nodes of G in F and R, respectively,
and let AF and AR denote the area of F and R, respectively.
These are depicted in Figure 2.

Let Y be the event that�
1

k
· E[NF] ≤ NF � ∧ (NR ≤ k · E[NR]) ,

for a chosen k. We will use the fact that Pr[X] ≤ Pr[X|Y]+
Pr[¬Y].

Since NF and NR are independently distributed Poisson
random variables with E[NR] = ARλ and E[NF] = AF λ, for
any k > 1, there is a λ′ such that λ > λ′ implies P [¬Y] <
q′/4.

Thus we may now restrict ourselves to examining Pr[X|Y].
In this case

NR ≤
�
k2 · E[NR]

E[NF]
� NF = � k2AR/AF � NF . (1)

Recall that our random graph G(λ, c) is a snapshot of
an arbitrary point in time t in the execution of the Naps
algorithm. Consider the sequence of HELLO messages sent
just prior to this moment by nodes in F and R. If any one
of the last c messages was sent by a node v in F , then there

must be a waking node in F , since v has seen fewer than
c messages. Thus, if there are no waking nodes in F , then
the past c messages must all have been sent by nodes in
R. Note also that in the time period of length T ending at
time t, exactly NF +NR messages will be sent and these are
uniformly and independently distributed in the period by
Lemma 1. Thus, letting M be the number of messages sent
by nodes in R between the most recently sent message from
F and time t, and pessimistically assuming that deg(i) ≥ c
for all i, we have

Pr[X|Y] ≤ Pr[M ≥ c|Y]

=
NR

NF + NR
· NR − 1

NF + NR − 1
· · · · · NR − c

NF + NR − c

≤
�

NR

NF + NR
� c

≤
�

(k2AR/AF)NF

NF + (k2AR/AF)NF
� c

(by Eqn. 1)

=

�
k2AR

AF + k2AR
� c

,

which is a monotonically decreasing function of c. Hence
there exists c′ such that c > c′ implies Pr[X|Y] < q′/4.
Hence for sufficiently large λ and c, q ≤ 2·Pr[X] ≤ 2(Pr[¬Y]+
Pr[X|Y]) < q′.

Proof. (of Lemma 7) Let Xe be the event that edge e
is closed. Lemma 6 gives an upper bound on Pr[Xe] for a
particular edge, but dependencies between edges make ex-
amining the entire path problematic. To handle this, we
will pick a set of edges S = {e1, . . . , ek} ⊆ P such that the
events Xe1

, . . . , Xek
are independent. Then we will have

Pr[P is closed] = Pr[�
e∈P

Xe] ≤ Pr[�
e∈S

Xe] = (Pr[Xe])
|S| = q|S|.

We now need only find a set S of size n/247 that satis-
fies the above independence property. Consider a particular
edge e of L. Xe is a deterministic function of the (random)
waking/napping state of the nodes in the two faces adjacent
to e. Furthermore, since each node’s communication radius
is 1, the state of these nodes is independent of the state of
nodes at distance greater than 1 from them. Thus, Xe and
Xe′ are independent if their adjacent faces are more than
distance 2 apart. By laborious counting, we find that there
are 246 edges within distance 2 of e’s adjacent faces (exclud-
ing e). Thus each time we pick an edge out of P and put it
in S, we bar ourselves from putting at most 246 other edges
of P into S. Thus, we can pick S to be of size at least n/247.

6. EMPIRICAL RESULTS
In this section, we measure and analyze the empirical per-

formance of Naps under several different scenarios. Our
measurements are based on a simple simulator. Initially Aλ
nodes are placed uniformly at random (u.a.r.) in a square of
area A. As per the Naps algorithm, each node v has a ran-
dom start time tv ∈ [0, T), and the simulator “wakes” v at
times tv+kT for k ∈ {0, 1, 2, . . .}. We gather statistics about
the n waking subgraphs occurring in [T, 2T). Specifically,
we measure the maximum component accessibility (MCA)
of these subgraphs, defined as the fraction of nodes that
are are either in or have an edge to the largest connected

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 1 2 3 4 5 6 7 8

A
ve

ra
ge

 M
C

A

Density

Underlying graph
c = 6
c = 5
c = 4
c = 3

Figure 3: Average MCA as a function of density, for

A = 625 and various c.

component of the waking subgraph. This appropriately cap-
tures the dual requirement that the waking subgraph be
well-connected, and that almost every napping node should
have an edge to it. Note that a connected dominating set is
a waking subgraph with MCA of 1.

Our empirical results are as follows. We verify the asymp-
totic properties predicted by the analysis of Section 5 and
demonstrate that the MCA is high for c ≥ 6, except in small
networks (Section 6.1). We show that Naps saves power ef-
fectively, especially at high densities, with network lifetime
scaling almost linearly in λ (Section 6.2). Naps is robust in
an obstructed environment, but may require a higher c and λ
(Section 6.3). In a random waypoint model of mobility, Naps
performs better than in the nonmobile case (Section 6.4).

6.1 Threshold Selection
We analyze the behavior of Naps for a large range of initial

densities and for several choices of the neighbor threshold c.
For each initial density λ on the x-axis, we run 20 trials.
In each trial we generate a new random graph on which
we simulate Naps. Based on samples at 100 random times
in the period [T, 2T), we calculate the average MCA, 1st
percentile MCA, and average fraction of waking nodes for
these sample points, and then average these values over the
20 trials. The choice of T does not affect the measurements
of this section.

In Figure 3, we have chosen A = 625 and plotted the av-
erage MCA for densities between 0.1 and 8 in increments of
0.1 and integral neighbor threshold values between 3 and 6.
We have also plotted the connectivity of the initial graph
(MCA for c =∞), which experiences a phase transition be-
tween densities 1 and 2 corresponding to the known critical
threshold near 1.44 [20]. For c ≤ 4, the MCA is quali-
tatively low in the resulting subgraph, even at high initial
densities. On the other hand, for c ≥ 6, the average MCA
closely follows the largest connected component of the un-
derlying graph. Figure 4 shows that the 1st percentile MCA,
while lower than the average, is also qualitatively high for
c ≥ 6 and low for c ≤ 4. For c = 5, while the average MCA
is fairly high, it does produce some subgraphs with appre-
ciably lower connectivity than the underlying graph as seen
by the low measured value in this plot.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 1 2 3 4 5 6 7 8

1s
t p

er
ce

nt
ile

 M
C

A

Density

Underlying graph
c = 6
c = 5
c = 4
c = 3

Figure 4: 1st percentile MCA as a function of den-

sity, for A = 625 and various c.

How many nodes do we expect to be awake at any given
time? Recall that in the Poisson distribution, a node has
degree d with probability (πλ)de−πλ/d!. The probability
that a node with degree d is awake is c/(d + 1) if d ≥ c or 1
otherwise, as given by Lemma 2. Thus,

Pr[node v awake]

= Pr[deg(v) < c] +

∞�
d=c

c

d + 1
(πλ)de−πλ/d!

= Pr[deg(v) < c] +

∞�
d=c

c

πλ
(πλ)d+1e−πλ/(d + 1)!

= Pr[deg(v) < c] +
c

πλ
· Pr[deg(v) > c],

which tends from above to c/(πλ) as λ→∞. Since the uni-
form distribution of our simulations approaches the Poisson
distribution as A → ∞, this suggests that the fraction of
waking nodes will be slightly greater than c/(πλ).

The simulation of Figure 5 verifies this rough calculation.
There is diminishing utility for c > 6, since the number of
waking nodes increases linearly with c, however the average
MCA does not significantly increase above c = 6.

Figure 6 corroborates the result of Theorem 3. Fixing
sufficiently large constants c and λ and increasing area, the
1st percentile MCA tends to a limit close to 1. However,
for c ≥ 5 connectivity is worse for small A, suggesting that
one may need a neighbor threshold greater than 6 in small
networks.

6.2 Energy Conservation
The preceding measurements show that the fraction of

waking nodes decreases as the initial density increases, sug-
gesting greater energy conservation. In this section we con-
cretely measure the lifetime of a system running Naps.

For our simulations of the network over time, we give each
node energy to survive awake for time 100T . We parame-
terize the sleeping-to-waking power ratio r, so a node can
sleep for 100/r time periods. We do not consider the power
used in turning on and off the radio and sending the HELLO
message, but we expect this cost to be negligible for large
T . In this setting, the MCA is the fraction of nodes that

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8

F
ra

ct
io

n
of

 n
od

es
 a

w
ak

e

Density

Simulation, c = 4
c = 6
c = 8

Analysis, c = 4
c = 6
c = 8

Figure 5: Average fraction of nodes awake as a func-

tion of initial density, for A = 625 and various c.

 0

 0.2

 0.4

 0.6

 0.8

 1

 32 128 512 2048 8192

1s
t p

er
ce

nt
ile

 M
C

A

Area

c = 8
c = 6
c = 5

c = 4.5
c = 4.3

c = 4
c = 3

Figure 6: 1st percentile MCA as a function of area,

for λ = 5 and various c.

are not dead (i.e. have energy remaining) and are either in
or connected to the largest waking connected component.
Notice that an MCA of p implies that at least a fraction p
of nodes are alive, but fewer may be awake. We sample the
MCA once in each time period T .

Figure 7 shows the MCA of the network over time for r =
0.1. The increase in network lifetime is sublinear in density
since lifetime is limited to 100T/r regardless of density. The
sharp decline towards the end of the system’s lifetime implies
that Naps effectively distributes energy consumption among
nodes.

Figure 8 summarizes the power-saving results of Naps.
We define network lifetime to be the amount of time that
the MCA is at least 0.9. For various densities and sleeping-
to-waking power ratios r, we plot the factor increase in net-
work lifetime obtained by using Naps as compared to using
no topology management. The simulation shows that Naps
achieves arbitrarily large conservation for small enough r
and high enough density. In particular, in the ideal case
r = 0, network lifetime is linear in the initial density. Note
that in the low density case λ = 2, the MCA occasionally
falls below 0.9, as shown in Figure 4.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700 800

A
ve

ra
ge

 M
C

A

Time

Density = 5
= 10
= 15
= 20

Figure 7: MCA as a function of time for various

initial densities, averaged over 20 trials. A = 625,
c = 6, r = 0.1, and a waking node survives for time

100T .

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 2 4 6 8 10 12 14 16 18 20

F
ac

to
r

in
cr

ea
se

 in
 n

et
w

or
k

lif
et

im
e

Density

r = 0
= 0.01
= 0.1
= 0.5

Figure 8: Factor increase in network lifetime vs.

density for various r, averaged over 5 trials. A = 900,
c = 6, and a waking node survives for time 100T .

As a practical example, a Medusa II sensor node uses
22.06 mW with its microcontroller unit (MCU) on and ra-
dio in idle mode (and more if the radio is transmitting or
receiving), but just 0.02 mW with the MCU sleeping and
the radio off [2]. Thus r ≤ 0.001 so our simulations show
that Naps would increase network lifetime by at least a fac-
tor of 3.75 with density λ = 10 or a factor 7.87 with λ = 20
(with A, c, and T set as in Figure 8).

6.3 Robustness
To model a particular case of nonuniform node deploy-

ment, we place several rectangular obstructions in the square
and distribute nodes u.a.r. outside these obstructions. Statis-
tics are gathered as in Section 6.1. Figure 9 shows Naps run
on such a graph.

Figure 10 plots average MCA as a function of density for
various neighbor thresholds in this obstructed environment.
We see that the obstructions negatively impact the connec-
tivity of both the underlying graph and the waking sub-

 0

 2

 4

 6

 8

 10

 12

 14

 0 2 4 6 8 10 12 14

Waking node
Sleeping node

Obstruction

Figure 9: A snapshot of Naps run in a deployment

with obstructions, c = 6, λ = 4, and A = 200.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 1 2 3 4 5 6 7 8

A
ve

ra
ge

 M
C

A

Density

Underlying graph
c = 6
c = 5
c = 4
c = 3

Figure 10: Average MCA as a function of density

in a node deployment with obstructions, for A = 625
and various c.

graphs. For example, in comparison with the unobstructed
case shown in Figure 3, for λ = 2 and c = 6 the average
size of the largest component in the original graph drops
from 0.97 to 0.93 and the average MCA drops from 0.93
to 0.81. Thus, one must consider deployment environment
when choosing c and when choosing deployment density, re-
gardless of whether or not a topology management algorithm
is used.

This illustrates a potential enhancement to Naps. Ide-
ally, nodes in well-connected regions would have lower c,
and those in poorly connected regions would choose higher
c. A mechanism for setting the neighbor threshold adap-
tively would allow one to avoid setting it to the highest
value needed in any region of the network, thus offering fur-
ther power savings in heterogeneous environments.

6.4 Mobility
To simulate mobility we use a random waypoint model.

Each node begins in a location chosen u.a.r., as before. It
then iteratively chooses a destination u.a.r., moves there at a
speed chosen u.a.r. from [smin, smax] units per time period

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400

A
ve

ra
ge

 M
C

A

Time

Immobile, uniform (1)
Immobile, clustered (2)

Mobile, no clustering (3)
Mobile, s_max = 0.2 (4)
Mobile, s_max = 16 (5)

Figure 11: Average MCA vs. time under various

deployment and mobility models, as described in the

text. A = 256, λ = 5, c = 6, r = 0.1, and a waking node

survives for time 100T . Averaged over 5 trials.

T , and pauses for time p before repeating. Statistics are
gathered as in Section 6.2.

Two properties of the random waypoint model have a sig-
nificant effect on Naps. First, the movement of nodes over
time improves load balance: it is less likely that a particular
node is forced to remain awake for a disproportionately large
amount of time due to a poor local topology. Second, nodes
cluster around the center of the deployment region [21] since
a node is more likely to move through the center of the re-
gion than through the edges on the way to its destination.
Thus, nodes near the center spend more time napping.

To observe the effect of mobility independent of clustering,
we set a very high smin and smax so that nodes essentially
reach their destinations instantly, and we use a pause time
of p = 10T . This has the effect of choosing a new location
for each node u.a.r. every 10 time periods. To observe
the effect of clustering independent of mobility, we generate
a clustered deployment of nodes by taking a snapshot of
the locations of nodes which have been moving according to
the random waypoint model for some time. We then begin
an immobile simulation at these locations. To observe the
effects of mobility and clustering simultaneously, we use the
random waypoint model with smin = 0 and p = 0, and plot
the results of smax = 0.2 and of smax = 16 =

√
A. Thus in

the latter case, the fastest nodes can move the entire width of
the deployment square in one time period. We choose p = 0
since it will cause the greatest fluctuation in neighbors [21]
and is therefore an extreme mobility scenario.

Figure 11 exhibits the effects of mobility and clustering in-
dependently and in combination. We show for reference an
immobile network with our standard uniform-random node
deployment in Line (1). Line (2) shows that clustering in an
immobile setting causes the nodes around the edges of the
network to fail earlier since the local density is lower, but
the majority of nodes are in the higher-density center and
survive longer. Line (3) shows that mobility without clus-
tering significantly improves load balance. Lines (4) and (5)
show the combination of these factors in the random way-
point mobility model. Even when nodes are moving slowly
(smax = 0.2), load balance is significantly improved. In

particular, almost all nodes now benefit from the clustering
since almost all nodes eventually travel through the center.
As smax increases, load balance improves further, though
with diminishing returns.

7. CONCLUSION
We have presented Naps, a scalable, robust local algo-

rithm for topology management in wireless ad hoc networks.
The major advantage of the algorithm is its simplicity; nodes
need only broadcast a single message every period and “nap”
for the remainder of the period after receiving a threshold
number of messages. Napping nodes may turn off hardware
components as necessary to conserve energy, as the subgraph
of waking nodes is very likely to be well-connected and may
assume responsibility for forwarding traffic. All topology
management algorithms, Naps included, require that higher
layers of software can adapt to a changing topology without
consuming inordinate amounts of energy. Initial work in this
direction has been pursued in the context of routing [10],
and we suspect that this will be an active and fruitful area
of research. Due to its limited reliance on topology, Naps
incurs no extra overhead as a result of mobility, and actually
performs better due to improved load balance.

Because Naps provides only probabilistic guarantees, more
complex algorithms may be necessary for some applications.
We suspect that in practice, however, node and communica-
tion unreliability will force applications to cope with prob-
abilistic guarantees anyway, so Naps may provide a simple
and viable alternative.

Acknowledgment
The authors would like to thank David Aldous, Alex Fab-
rikant, Dick Karp, and Ion Stoica for useful comments and
suggestions.

8. REFERENCES
[1] B. Chen, K. Jamieson, H. Balakrishnan, and

R. Morris, “Span: An energy-efficient coordination
algorithm for topology maintenance in ad hoc wireless
networks,” in Mobile Computing and Networking,
2001, pp. 85–96.

[2] V. Raghunathan, C. Schurgers, S. Park, and
M. Srivastava, “Energy aware wireless microsensor
networks,” IEEE Signal Processing Magazine, vol. 19,
no. 2, pp. 40–50, March 2002.

[3] C. Schurgers, V. Tsiatsis, S. Ganeriwal, and
M. Srivastava, “Optimizing sensor networks in the
energy-latency-density design space,” IEEE
Transactions on Mobile Computing, vol. 1, no. 1, pp.
70–80, January-March 2002.

[4] P. Gupta and P. Kumar, “The capacity of wireless
networks,” IEEE Transactions on Information
Theory, vol. 46, no. 2, pp. 388–404, March 2000.

[5] Michael R. Garey and David S. Johnson, Computers
and Intractability: A Guide to the Theory of
NP-Completeness, W. H. Freeman & Co., 1979.

[6] Geoffrey Grimmett, Percolation, Springer, 2nd edition,
1999.

[7] Mathew Penrose, Random Geometric Graphs, Oxford
University Press, 2003.

[8] P. Gupta and P. Kumar, “Critical power for
asymptotic connectivity in wireless networks,” in
Stochastic Analysis, Control, Optimization and
Applications: A Volume in Honor of W.H. Fleming,
W.M. McEneaney, G. Yin, and Q. Zhang, Eds., pp.
547–566. Birkhauser, Boston, 1998.

[9] Brad Karp and H. T. Kung, “GPSR: greedy perimeter
stateless routing for wireless networks,” in Mobile
Computing and Networking, 2000, pp. 243–254.

[10] Ananth Rao, Christos Papadimitriou, Scott Shenker,
and Ion Stoica, “Geographic routing without location
information,” in Proceedings of the 9th annual
international conference on Mobile computing and
networking. 2003, pp. 96–108, ACM Press.

[11] Y. Xu, S. Bien, Y. Mori, J. Heidemann, and D. Estrin,
“Topology control protocols to conserve energy in
wireless ad hoc networks,” submitted for review to
IEEE Transactions on Mobile Computing, January
2003.

[12] Y. Xu, J. Heidemann, and D. Estrin, “Adaptive
energy-conserving routing for multihop ad hoc
networks,” Tech. Rep. 527, USC/Information Sciences
Institute, 2000.

[13] Lichun Bao and J. J. Garcia-Luna-Aceves, “Topology
management in ad hoc networks,” in Proceedings of
the 4th ACM international symposium on Mobile ad
hoc networking & computing. 2003, pp. 129–140, ACM
Press.

[14] R. Zheng, J. C. Hou, and L. Sha, “Asynchronous
wakeup for ad hoc networks,” in Proceedings of the
Fourth ACM International Symposium on Mobile Ad
Hoc Networking and Computing, 2003.

[15] L. Booth, J. Bruck, M. Franceschetti, and R. Meester,
“Covering algorithms, continuum percolation, and the
geometry of wireless networks,” Annals of Applied
Probability, vol. 13, no. 2, May 2003.

[16] D. Tian and N.D. Georganas, “A coverage-preserving
node scheduling scheme for large wireless sensor
networks,” in Proc. ACM Workshop on Wireless
Sensor Networks and Applications, Atlanta, May 2003.

[17] Fabian Kuhn and Roger Wattenhofer, “Constant-time
distributed dominating set approximation,” in
Proceedings of the 22nd ACM Symposium on
Principles of Distributed Computing, 2003.

[18] O. Dousse, F. Baccelli, and P. Thiran, “Impact of
interferences on connectivity of ad hoc networks,” in
Proc. IEEE Infocom, San Francisco, April 2003.

[19] S. A. Zuev and A. T. Sidorenko, “Continuous models
of percolation theory i, ii,” Theoretical and
Mathematical Physics, vol. 62, pp. 51–58,171–177,
1985.

[20] S. Quintanilla, S. Torquato, and R. M. Ziff, “Efficient
measurement of the percolation threshold for fully
penetrable discs,” Journal of Physics A, vol. 33, no.
42, pp. L399–L407, October 2000.

[21] T. Camp, J. Boleng, and V. Davies, “A survey of
mobility models for ad hoc network research,”
Wireless Communications and Mobile Computing
(WCMC): Special issue on Mobile Ad Hoc
Networking: Research, Trends and Applications, vol.
2, no. 5, pp. 483–502, 2002.

