
Flexible Forwarding
Tim Sally

<tsally2@illinois.edu>

Tuesday, September 21, 2010

mailto:tsally2@illinois.edu
mailto:tsally2@illinois.edu

Current State of
Routing

• General idea: what to do with a packet
when it arrives at an inbound interface?

• Border Gateway Protocol (BGP) and
Interior Gateway Protocol (IGP) used to
exchange routing information.

Tuesday, September 21, 2010

BGP Shortcomings

• Small networks can use complete iBGP
graph, but this does not scale.

• Incomplete information results in
suboptimal routing and protocol
oscillations.

Tuesday, September 21, 2010

Some Solutions

• Replace BGP. Unlikely “flag day” is possible
today.

• Use route reflectors.

• Use a Routing Control Platform (today’s
paper).

Tuesday, September 21, 2010

Overview of Route
Reflectors

• Divide routers into two classes, servers and
peers.

• Forward updates from peers to servers
only.

• Forward updates from servers to everyone.

• Servers should perform some logic to only
forward the best routes.

Tuesday, September 21, 2010

Problems with Route
Reflectors

• Only an approximation of a complete
graph.

• What if two peers along a path are assigned
different routes by two different servers?

• We can stop inconsistent routes at the cost
of efficiency with a large number of servers.

Tuesday, September 21, 2010

Routing Control
Platform (RCP)

• A route reflector server that is connected
to every router.

• Can send different routes to different
routers.

• Makes the same decisions as a fully
connected network.

Tuesday, September 21, 2010

RCP Components

• IGP Viewer to get IGP topology
information.

• BGP Engine to learn BGP routes from
routers and send new routes.

• Route Control Server (RCS) uses the
information from above to compute
optimal routes.

Tuesday, September 21, 2010

Route Control
Server (RCS)

IGP
Viewer

BGP
Engine

Routing Control Platform (RCP)

Figure 3: RCP interacts with the routers using standard routing proto-
cols. RCP obtains IGP topology information by establishing IGP ad-
jacencies (shown with solid lines) with one or more routers in the AS
and BGP routes via iBGP sessions with each router (shown with dashed
lines). RCP can control and obtain routing information from routers in
separate network partitions (and). Although this figure shows
RCP as a single box, the functionality can be replicated and distributed,
as we describe in Section 3.2.

and BGP routes, every replica will make the same rout-
ing assignments, even without a consistency protocol.

3.1 RCP Modules

To compute the routes that each router would have se-
lected in a “full mesh” iBGP configuration, RCP must
obtain both the IGP topology information and the best
route to the destination from every router that learns a
route from neighboring ASes. As such, RCP comprises
of three modules: the IGP Viewer, the BGP Engine, and
the Route Control Server. The IGP Viewer establishes
IGP adjacencies to one or more routers, which allows
the RCP to receive IGP topology information. The BGP
Engine learns BGP routes from the routers and sends
the RCS’s route assignments to each router. The Route
Control Server (RCS) then uses the IGP topology from
the IGP Viewer information and the BGP routes from
the BGP engine to compute the best BGP route for each
router.

RCP communicates with the routers in an AS using
standard routing protocols, as summarized in Figure 3.
Suppose the routers in a single AS form an IGP con-
nectivity graph , where are the edges in
the IGP topology. Although the IGP topology within an
AS is typically a single connected component, failures of
links, routers, or interfaces may occasionally create par-
titions. Thus, contains one or more connected compo-
nents; i.e., . The RCS only com-
putes routes for partitions for which it has complete
IGP and BGP information, and it computes routes for
each partition independently.

3.1.1 IGP Viewer

The RCP’s IGP Viewer monitors the IGP topology and
provides this information to the RCS. The IGP Viewer
establishes IGP adjacencies to receive the IGP’s link-
state advertisements (LSAs). To ensure that the IGP
Viewer never routes data packets, the links between the
IGP Viewer and the routers should be configured with
large IGP weights to ensure that the IGP Viewer is not
an intermediate hop on any shortest path. Since IGPs
such as OSPF and IS-IS perform reliable flooding of
LSAs, the IGP Viewer maintains an up-to-date view of
the IGP topology as the link weights change or equip-
ment goes up and down. Use of flooding to disseminate
LSAs implies that the IGP Viewer can receive LSAs from
all routers in a partition by simply having an adjacency to
a single router in that partition. This seemingly obvious
property has an important implication:

Observation 1 The IGP Viewer has the complete IGP
topology for all partitions that it connects to.

The IGP Viewer computes pairwise shortest paths for
all routers in the AS and provides this information to the
RCS. The IGP Viewer must discover only the path costs
between any two routers in the AS, but it need not dis-
cover the weights of each IGP edge. The RCS then uses
these path costs to determine, from any router in the AS,
what the closest egress router should be for that router.

In some cases, a group of routers in the IGP graph all
select the same router en route to one or more destina-
tions. For example, a network may have a group of ac-
cess routers in a city, all of which send packets out of that
city towards one or more destinations via a single gate-
way router. These routers would always use the same
BGP router as the gateway. These groups can be formed
according to the IGP topology: for example, routers can
be grouped according to OSPF “areas”, since all routers
in the same area typically make the same BGP routing
decision. Because the IGP Viewer knows the IGP topol-
ogy, it can determine which groups of routers should be
assigned the same BGP route. By clustering routers in
this fashion, the IGP Viewer can reduce the number of
independent route computations that the RCS must per-
form. While IGP topology is a convenient way for the
IGP Viewer to determine these groups of routers, the
groups need not correspond to the IGP topology; for ex-
ample, an operator could dictate the grouping.

3.1.2 BGP Engine

The BGP Engine maintains an iBGP session with each
router in the AS. These iBGP sessions allow the RCP to
(1) learn about candidate routes and (2) communicate its
routing decisions to the routers. Since iBGP runs over

NSDI ’05: 2nd Symposium on Networked Systems Design & Implementation USENIX Association18

RCP Architecture
Tuesday, September 21, 2010

1
4

1iBGP
session

destination

W

IGP
link

2

V

AS A AS B

eBGP
session

YX

Z

Figure 2: Network with three egress routers connecting to two neigh-
boring ASes: Solid lines correspond to physical links (annotated with
IGP link weights) and dashed lines correspond to BGP sessions.

0. Ignore if egress router unreachable
1. Highest local preference
2. Lowest AS path length
3. Lowest origin type
4. Lowest MED (with same next-hop AS)
5. eBGP-learned over iBGP-learned
6. Lowest IGP path cost to egress router
7. Lowest router ID of BGP speaker

Table 1: Steps in the BGP route-selection process

Partitioning of functionality across routing proto-
cols: In most backbone networks, the routers partici-
pate in three different routing protocols: external Bor-
der Gateway Protocol (eBGP) to exchange reachabil-
ity information with neighboring domains, internal BGP
(iBGP) to propagate the information inside the AS, and
an Interior Gateway Protocol (IGP) to learn how to reach
other routers in the same AS, as shown in Figure 2. BGP
is a path-vector protocol where each network adds its
own AS number to the path before propagating the an-
nouncement to the next domain; in contrast, IGPs such
as OSPF and IS-IS are typically link-state protocols with
a tunable weight on each link. Each router combines the
information from the routing protocols to construct a lo-
cal forwarding table that maps each destination prefix to
the next link in the path. In our design, RCP assumes
responsibility for assigning a single best BGP route for
each prefix to each router and distributing the routes us-
ing iBGP, while relying on the routers to “merge” the
BGP and IGP data to construct their forwarding tables.

BGP route-selection process: To select a route for
each prefix, each router applies the decision process in
Table 1 to the set of routes learned from its eBGP and
iBGP neighbors [19]. The decision process essentially
compares the routes based on their many attributes. In
the simplest case, a router selects the route with the short-
est AS path (step 2), breaking a tie based on the ID of the
router who advertised the route (step 7). However, other
steps depend on route attributes, such as local preference,

that are assigned by the routing policies configured on
the border routers. RCP must deal with the fact that the
border routers apply policies to the routes learned from
their eBGP neighbors and all routers apply the route-
selection process to the BGP routes they learn.

Selecting the closest egress router: In backbone net-
works, a router often has multiple BGP routes that are
“equally good” through step of the decision process.
For example, router in Figure 2 learns routes to the
destination with the same AS path length from three bor-
der routers , , and . To reduce network resource
consumption, the BGP decision process at each router
selects the route with the closest egress router, in terms
of the IGP path costs. Router selects the BGP route
learned from router with an IGP path cost of . This
practice is known as “early-exit” or “hot-potato” rout-
ing. RCP must have a real-time view of the IGP topology
to select the closest egress router for each destination
prefix on behalf of each router. When the IGP topology
changes, RCP must identify which routers should change
the egress router they are using.

Challenges introduced by hot-potato routing: A
single IGP topology change may cause multiple routers
to change their BGP routing decisions for multiple pre-
fixes. If the IGP weight of link – in Figure 2 in-
creased from to , then router would start direct-
ing traffic through egress instead of . When mul-
tiple destination prefixes are affected, these hot-potato
routing changes can lead to large, unpredictable shifts
in traffic [20]. In addition, the network may experience
long convergence delays because of the overhead on the
routers to revisit the BGP routing decisions across many
prefixes. Delays of one to two minutes are not uncom-
mon [20]. To implement hot-potato routing, RCP must
determine the influence of an IGP change on every router
for every prefix. Ultimately, we view RCP as a way
to move beyond hot-potato routing toward more flexible
ways to select egress routers, as discussed in Section 5.4.

3 RCP Architecture

In this section, we describe the RCP architecture. We
first present the three building blocks of the RCP: the
IGP Viewer, the BGP Engine, and the Route Control
Server (RCS). We describe the information that is avail-
able to each module, as well as the constraints that the
RCS must satisfy when assigning routes. We then dis-
cuss how RCP’s functionality can be replicated and dis-
tributed across many physical nodes in an AS while
maintaining consistency and correctness. Our analysis
shows that there is no need for the replicas to run a sep-
arate consistency protocol: since the RCP is designed
such that each RCS replica makes routing decisions only
for the partitions for which it has complete IGP topology

NSDI ’05: 2nd Symposium on Networked Systems Design & ImplementationUSENIX Association 17

IGP Viewer

• Why do we even care
about the IGP topology?

• Say we have two optimal
BGP routes; we can pick
either one.

• Pick the BGP route with
the closet egress router
according to IGP.

Tuesday, September 21, 2010

BGP Engine

• iBGP session with every router.

• RCP can learn about candidate routes and
inform routers of optimal routes.

• We can forward different routes to
different routers.

Tuesday, September 21, 2010

Route Control Server

• Must have both IGP and BGP information.

• Simply execute the BGP decision making
process on behalf of all routers.

Tuesday, September 21, 2010

NOX Controller

app1 app2 app3

Network
View

OF switch

OF switch

wireless OF
switch

PC Server

Figure 1: Components of a NOX-based network:

OpenFlow (OF) switches, a server running a NOX

controller process and a database containing the net-

work view.

We argue for an affirmative answer to this question via proof-
by-example; herein we describe a network operating system
called NOX (freely available at http://www.noxrepo.org)
that achieves the goals outlined above.

Given the space limitations, we only give a cursory descrip-
tion of NOX, starting with an overview (Section 2), followed
by a sketch of NOX’s programmatic interface (Section 3) and
a discussion of a few NOX-based management applications
(Section 4). We discuss related work in Section 5, but be-
fore going further we want to emphasize NOX’s intellectual
indebtedness to the 4D project [3, 8, 14] and to the SANE
[7] and Ethane [6] designs. NOX is also similar in spirit, but
complementary in emphasis, to the Maestro system [4] which
was developed in parallel.

2 NOX Overview

We now give an overview of NOX by discussing its constituent
components, observation and control granularity, switch ab-
straction, basic operation, scaling, status and public release.

Components Figure 1 shows the primary components of
a NOX-based network: a set of switches and one or more
network-attached servers. The NOX software (and the man-
agement applications that run on NOX) run on these servers.
The NOX software can be thought of as involving several
different controller processes (typically one on each network-
attached server) and a single network view (this is kept in a
database running on one of the servers).4 The network view
contains the results of NOX’s network observations; appli-
cations use this state to make management decisions. For
NOX to control network traffic, it must manipulate network
switches; for this purpose we have chosen to use switches
that support the OpenFlow (OF) switch abstraction [1, 12],
which we describe later in this section.

Granularity An early and important design issue was the
granularity at which NOX would provide observation and
control. Choosing the granularity involves trading off scala-
bility against flexibility, and both are crucial for managing
large enterprise networks with diverse requirements. For
4For resilience, this database can be replicated, but these
replicas must be kept consistent (as can be done using tradi-
tional replicated database techniques).

observation, NOX’s network view includes the switch-level
topology; the locations of users, hosts, middleboxes, and
other network elements; and the services (e.g., HTTP or
NFS) being offered. The view includes all bindings between
names and addresses, but does not include the current state
of network traffic. This choice of observation granularity
provides adequate information for many network manage-
ment tasks and changes slowly enough that it can be scalably
maintained in large networks.

The question of control granularity was more vexing. A
centralized per-packet control interface would clearly be in-
feasible to implement across any sizable network. At the
other extreme, operating at the granularity of prefix-based
routing tables would not allow sufficient control, since all
packets between two hosts would have to follow the same
path. For NOX we chose an intermediate granularity: flows
(similar in spirit to [13]). That is, once control is exerted on
some packet, subsequent packets with the same header are
treated in the same way. With this flow-based granularity, we
were able to build a system that can scale to large networks
while still providing flexible control.

Switch Abstraction Management applications control net-
work traffic by passing instructions to switches. These switch
instructions should be independent of the particular switch
hardware, and should support the flow-level control granu-
larity described above. To meet these requirements, NOX
has adopted the OpenFlow switch abstraction (see [1, 12]
for details). In OpenFlow, switches are represented by flow
tables with entries of the form:5

�header : counters, actions�

For each packet matching the specified header, the counters
are updated and the appropriate actions taken. If a packet
matches multiple flow entries, the entry with the highest
priority is chosen. An entry’s header fields can contain
values or ANYs, providing a TCAM-like match to flows. The
basic set of OpenFlow actions are: forward as default (i.e.,
forward as if NOX were not present), forward out specified
interface, deny, forward to a controller process, and modify
various packet header fields (e.g., VLAN tags, source and
destination IP address and port). Additional actions may
later be added to the OpenFlow specification.

Operation When an incoming packet matches a flow entry
at a switch, the switch updates the appropriate counters and
applies the corresponding actions. If the packet does not
match a flow entry, it is forwarded to a controller process.6
These unmatching packets often are the first packet of a flow
(hereafter, flow-initiations); however, the controller processes
may choose to receive all packets from certain protocols (e.g.,
DNS) and thus will never insert a flow entry for them. NOX
applications use these flow-initiations and other forwarded
traffic to (i) construct the network view (observation) and

5It is important to distinguish between the levels of ab-
straction provided by OpenFlow and NOX. NOX provides
network-wide abstractions, much like operating systems pro-
vide system-wide abstractions. OpenFlow provides an ab-
straction for a particular network component, and is thus
more analogous to a device driver.
6Typically, only the first 200 bytes of the first packet (in-
cluding the header) are forwarded to the controller, but the
controller may adjust this, or request additional packets be
forwarded, if more information is deemed necessary.

ACM SIGCOMM Computer Communication Review 106 Volume 38, Number 3, July 2008

Network Operating
System (NOX)

• Abstraction of network
resources.

• Currently writing
applications for
networks is like using
hardware specific
assembly.

Tuesday, September 21, 2010

Active Networks

• Capsules (special packets) can program the
behavior of the network.

• Interface is decentralized but code has to
be certified by a central authority (or
maybe executed in a “sandbox”).

• Trade off between capsule processing and
packet forwarding at every router.

Tuesday, September 21, 2010

Thoughts on Flexible
Forwarding

• Interoperability with the current network is
a major concern.

• At the same time, we’d like to increase the
number of things that are possible in the
network.

• Seek to invent generalizations that cover
current implementations and allow for new
ones.

Tuesday, September 21, 2010

Thoughts on Flexible
Forwarding

• Typically this involves some sort of control
server (active networks take a different
approach).

• Keeping any necessary logic and state at
the control server minimizes changes that
need to be made to the network.

• A global view of the network is often quite
useful.

Tuesday, September 21, 2010

Thanks!

Tuesday, September 21, 2010

