Accountable Internet Protocol

Andersen et. al

Presented by: Virajith Jalaparti

Securing the Internet

- S-BGP, so-BGP, PG-BGP, StopIt, Listen & Whisper...
- Fundamental Problem
 - No Accountability
- Use CRYPTO!!!
 - source spoofing
 - DOS
 - route hijacking
 - route forgery
- Can we do this without loosing aggregation?
- How can we get anonymity?

AIP

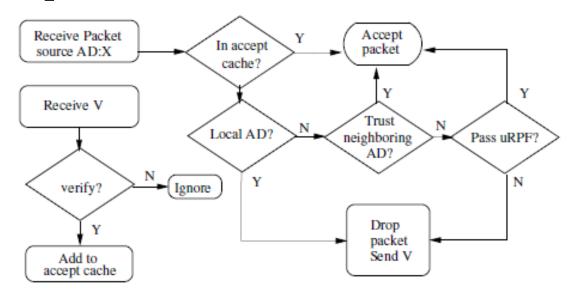
- Self-certifying addresses
- Use my public key as my address
- How to scale to size of Internet?
 - Network identifier
 - Accountability Domains (ADs)
 - End Host Identifier
- AD : EID : iface
- Other ways?
 - DHT of mapping from addresses to keys?
- EID associated with user rather than host

AIP

stack of src and dest AD's

Crypto vers	Public key hash	Interface
(8)	(144)	(8)

Figure 1: The structure of an AIP address. For AD addresses, the interface bits are set to zero.


Vers (4)	standard IP headers							
		random pkt id (32)	#dests (4)	next- dest (4)	#srcs (4)			
Source EID (160 bits)								
Source AD (top-level) (160 bits)								
Dest EID (160 bits)								
Dest AD (next hop) (160 bits)								
Dest AD stack (N*160 bits)								
Source AD stack (M*160 bits)								

Routing

- Inter-domain
 - At AD level rather than AS level
 - Practical? Contracts between ASes
- Intra-domain
 - Use EIDs
 - Probably lots of entries in tables?

Source Spoofing

First hop router verifies

Should be done at switch level

Source Spoofing

```
Let: rs = \text{Per-router secret, rotated once per minute}
HMAC_{\text{key}} \langle M \rangle = \text{Message authentication code of M}
H \langle P \rangle = \text{Hash of } P
\text{iface} = \text{Interface on which packet arrived}
\mathbf{Source} \ S_{AD} : S_{EID} \to \mathbf{Dest} \ D_{AD} : D_{EID}
\text{Packet P.}
\mathbf{Router} \ \mathbf{R1} \to \mathbf{Source}:
\text{Verification packet } V = \text{HMAC}_{rs} \langle S_{AD} : S_{EID} \to D_{AD} : D_{EID}, H \langle P \rangle, \text{iface} \rangle
\mathbf{Source} \to \mathbf{R1}:
\left\{ \text{accept}, K_{S_{EID}}, V \right\}_{K_{S_{EID}}^{-1}}
```

- Is this sufficient?
 - What happens after verification is passed?
 - First packet is a TCP-SYN, replay possible use a nonce
 - Explicit tear down of connection

Inter-domain verification

- B -> A
 - A trusts B
 - uRPF check
 - Send a verification packet
- Border routers verify src addresses and add to accept cache
 - Wildcard AD:* to bound number of entries
 - can be exploited, it the checks in src AD does not perform proper checks

Minting of addresses

- Start connections with arbitrary EID
- Easy
- Solution
 - Limit number of EIDs per
 - interface on switches/routers
 - AD
- Is this sufficient?
- Cant prevent a DOS using minting
 - Using Bots

Shut-off Protocol

- Prevent DOS
- Use smart NIC
 - require physical access to modify the firmware
- cache packets sent
- Protects against replays

```
Zombie \rightarrow Victim: Packet P.

Victim \rightarrow Zombie: \{\text{key} = K_{\text{victim EID}}, \text{TTL}, \text{hash} = H\langle P \rangle\}_{K^{-1}_{\text{victim EID}}}
```

- Is this sufficient?
 - Flooding attacks with bot-nets

Key Management

- Discovery
 - DNS Secure
- Detect compromise
 - Use of global registries
 - Keys
 - Revoked Keys
 - Peerings
 - ADs of EID
 - First hop routes
- Dealing with compromise
 - Change DNS record, insert new key
- Will this work? Requires out of band techniques to fix

Discussion

- Does it work?
- Is it practical?
- Distribution of keys
- Possibility of creating optimal ADs?
- Probably run in combination with IP
- Application (Routing!) level security