On Selfish Routing In Internet-like Environments

Lili Qiu (Microsoft Research)
Yang Richard Yang (Yale University)
Yin Zhang (AT&T Labs - Research)
Scott Shenker (ICSI)

ACM SIGCOMM 2003

Presented by Giang Nguyen
Adapted from Slides by Lili Qiu
Selfish Routing

- **IP routing is often sub-optimal in terms of user performance**
 - Many causes
 - policy routing, failures, instability
- **Emerging trend: Autonomous routing**
 - End users choose their own routes
 - Source routing (e.g. Nimrod)
 - Overlay routing (e.g. Detour, RON)
 - is selfish by nature
 - End hosts or routing overlays greedily select routes to optimize their own performance without considering system-wide criteria
 - Roughgarden proved: for general latency functions (e.g., \(M/M/1 \)) and topologies, the “worst-case ratio between the total latency of selfish routing and that of the global optima” can be unbounded.
 - But other theoretical works (e.g., Friedman) have also shown the degradation is “less severe in some perspectives.”
Questions

1. **Selfish source routing**
 - How does selfish source routing perform?
 - Are Internet-like environments among the worst cases?

2. **Selfish overlay routing**
 - How does selfish overlay routing perform?
 - Note that routing on an overlay has much less flexibility than routing directly on the physical network.

3. **Horizontal interactions**
 - Does selfish traffic co-exist well with compliant traffic?
 - Do selfish overlays co-exist well with each other?

4. **Vertical interactions**
 - How does selfish traffic interact with the underlying network control process, i.e. traffic engineering?
Routing Schemes

- **Routing on the physical network**
 - Source routing
 - Latency optimal routing

- **Routing on an overlay (less flexible!)**
 - Overlay source routing
 - Overlay latency optimal routing
 - Cooperative within an overlay, but selfish across overlays

- **Compliant (i.e. default) routing: OSPF**
 - Hop count, i.e. unit weight
 - Optimized weights
 - Minimize network cost [FRT02]
 - Random weights
Our Approach

• We take a game-theoretic approach to partially answer these questions through simulations
 - Metrics: avg user latency, max system link utilization, and network costs.
 - Algorithms to compute metrics of selfish and optimal routing. Simulate to find metrics of compliant routing.
 - M/M/1 latency function (others yield similar results).
 - Focus on intra-domain environments
 • Compare against theoretical worst-case results
 • Can use realistic topologies and traffic demands
1. Selfish Source Routing: Average Latency

Good news: Internet-like environments are far from the worst cases for selfish source routing.
1. Selfish Source Routing (cont):
Network Cost

Bad news: Low latency comes at much higher network cost
Selfish Overlay Routing and Horizontal Interactions

• **Similar results**
 - Selfish overlay routing
 • Close to optimal average latency at higher network cost.
 • Similar results whether overlay covers all physical nodes, or random (20-100%), or only edge nodes.
 - ‘Horizontal interactions’
 • Selfish overlays and compliant traffic can co-exist.
 • Multiple selfish overlays can co-exist.
4. Vertical Interactions

- **Vertical interaction:**
 An iterative process between two players
 - Traffic engineering: minimize network cost
 - current traffic pattern \rightarrow new routing matrix
 - Selfish overlays: minimize user latency
 - current routing matrix \rightarrow new traffic pattern

- **Question:**
 - Will the system reach a state with both low latency and low network cost?

- **Short Answer:**
 - It depends on how much control physical routing has.
Selfish Overlays vs. OSPF Optimizer

OSPF optimizer interacts poorly with selfish overlays because it only has very coarse-grained control.
MPLS optimizer interacts with selfish overlays much more effectively.
Conclusions

• Formulate a set of important research questions on selfish routing
• Use game theory and simulations to partially answer them in the intra-domain context
• A number of interesting findings
 - In contrast to the theoretical worst cases, selfish routing achieves close to optimal latency in Internet-like environments.
 - Selfish overlays co-exist well both with each other and with traffic using default IP routing.
 - Mismatch between objectives of selfish overlays and traffic engineering has significant impact on system performance.