Tag/Label Switching

CS598: Advanced Internet

Presented by: Imranul Hoque
How to go from A to B?

• Broadcast:
 – Go everywhere, stop at B
 – Never ask for directions

• Hop by hop routing:
 – Ask who is closer to B, go there, repeat!
 – You better go to X first …

• Source routing:
 – Get a list before starting
 – Go straight 5 blocks, take a left, 4 more blocks, …
How to go from A to B?

- Let someone go ahead of you
- At every road reserve a lane for you
- At intersection, post a sign (turn + lane)
What is it good for?

- Enable IP capabilities on devices that cannot forward IP datagrams
- Explicit routing – pre-calculated routes that do not match normal IP routing paths
- Virtual Private Network (VPN) services
What is it good for?

- Enable IP capabilities on devices that cannot forward IP datagrams
- Explicit routing – pre-calculated routes that do not match normal IP routing paths
- Virtual Private Network (VPN) services

One of the original goals is not on the list!
This Talk

• History

• Learn from Examples
 – Destination-based Forwarding
 – Explicit Routing
 – Virtual Private Networks and Tunnels

• Points to Ponder
 – What layer is MPLS?

• Where is MPLS now?
History

• **Ipsilon Networks**
 – IP switching, defined to work on ATM

• **Cisco Systems, Inc.**
 – Tag switching, proprietary proposal
 – Renamed label switching
 – Handed over to IETF

• **IETF**
 – Proposals from other vendors (Toshiba, IBM)
Destination-Based Forwarding
Benefits

• Exact match, as opposed to longest match
 – Simple to implement in hardware

• Forwarding Equivalence Class (FEC)
 – Set of packets that receive same forwarding treatment

• Devices not supporting IP can forward IP traffic
 – Example: carry IP traffic over ATM switches
 – How and Why?
How?

• Provide switches with:
 – IP routing protocols
 – A method to distribute label bindings (LDP)
• Result: IP control protocols with label-swapping forwarding
Why?

Set of routers connected over an ATM network (why?)

ATM switches are replaced with LSR (benefits?)
Explicit Routing

Questions:

- How to routers agree on what labels to use and how to forward packets with particular labels?
Applications of Explicit Routing

• Traffic Engineering
 – Controlling exactly which path the traffic flows

• Resilience in face of failure
 – Reroute traffic down a pre-calculated path
 – Known as Fast Reroute
Applications of Explicit Routing

• Traffic Engineering
 – Controlling exactly which path the traffic flows

• Resilience in face of failure
 – Reroute traffic down a pre-calculated path
 – Known as Fast Reroute

How to calculate the explicit routes?
Virtual Private Networks

- “Layer 2” VPN
 - Tunnel layer 2 data (Ethernet frames/ATM cells)
 - Pseudo-wire emulation
Virtual Private Networks

• “Layer 2” VPN
 – Tunnel layer 2 data (Ethernet frames/ATM cells)
 – Pseudo-wire emulation

What to do with non-IP traffic when it reaches the EOT?
VPN: ATM over IP

- Labels may be stacked on a packet to any depth
- A single tunnel can carry potentially large number of emulated circuits
- Same technique to provided hierarchy of routing knowledge
What Layer is MPLS?

• Layer 2.5

• Layer 2

• Layer 3
What Layer is MPLS?

• Layer 2.5
 – MPLS header is found between layer 3 and layer 2 headers

• Layer 2
 – IP packets are encapsulated inside MPLS headers
 – MPLS must be below IP

• Layer 3
 – MPLS uses IP routing protocols and IP addressing
Where is MPLS Now?

• Sufficiently popular among service providers
 – Almost all high-end routers include MPLS capabilities

• Two main applications:
 – Layer 3 VPN: Provide “private” IP services to corporations
 – Explicit Routing: TE and/or Fast Reroute
 • Difficult to determine how many providers are actually using this technology
Questions?