Congestion Control for High
Bandwidth-delay Product Networks

Dina Katabi, Mark Handley, Charlie Rohrs

Presented by Chi-Yao Hong
Adapted from slides by Dina Katabi
CS598pbg Sep. 10, 2009

Trends in the Future Internet

* High Bandwidth * High Latency
— Gigabit Links — Satellite
— Wireless

* As we will find out...these spell bad news
for TCP!

What's Wrong With TCP!?
As delay x bandwidth 1}

Oscillatory and prone to instability
Inefficiency due to additive increase

Link capacity does not improve the transfer
delay of short flows (majority)

TCP has undesirable bias against long RTT
flows (satellite links)

Efficiency and Fairness

* Efficiency of a link involves only the aggregate
traffic’s behavior

* Fairness is the relative throughput of flows
sharing a link.

* Coupled in TCP since the same control low is
used for both, uses AIMD (additive increase
multiplicative decrease).

What If We Could Do It Over?

* If you could build a new congestion control
architecture, what would it look like?

 Points of Observation

— Packet loss is a poor signal of congestion

* Dropping packets should be a congestion signal of last
resort

* Congestion is not a binary variable!

— Aggressiveness of sources should adjust accordiing
to the delay

* As delay increases, rate change should be slower

Points of Observations (Cont’d)

— Needs to be independent of number of flows

 Number of flows at AQM is not constant therefore it
cannot be fast enough to adapt to changes

— De-coupling of efficiency and fairness

* Done with both an efficiency controller and a fairness
controller

 Simplifies design and provides framework for
differential bandwidth allocations

XCP

eXplicit Control Protocol

* Like TCP, window-based congestion control
protocol intended for best effort

* Based on active congestion control and
feedback as we have previously discussed

XCP Header

H_ewnd (set to sender’s current cwnd)

H_rtt (set to sender’s rtt estimate)

_cwnd — sender’s current cong. Window
_rtt — sender’s current RTT estimate

_feedback — Modified by routers along path to

directly control the congestion windows

XCP Sender

Initialization steps:
|. In first packet of flow, H_rtt is set to zero
2. H feedback is set to the desired window

Increase
— E.g. For desired rate r:
 H_feedback = (r * rtt — cwnd) / # packets in window
3. When Acks arrive:
— ¢wnd = max(cwnd + H_feedback, s)

XCP Receiver

e Same as TCP

* Except when ack'ing a packet, copies the
congestion header into the ACK.

XCP Router

Packet flow

v

\ 4

\ 4

Efficiency Controller Fairness Controller

New H_feedback

* Key is the use of both an efficiency controller (EC) and a fairness
controller (IC)

* Both compute estimates of the RTT of the flows on each link

* Controller makes a single control decision every control
interval

 Current RTT average = d

The Efficiency Controller
Aggregate feedback ersistent queue size
. il

CD —ag*d*S- ,B\
.226 based on stability analysis

4 based on stability anaIyS|s Spare BW (input traffic rate— link cap.)

From the previous page (RTT)

* Purpose — to maximize link util. while minimizing drop rate
and persistent queues

* Important — Does not care about fairness

* @ is then used as feedback to add or subtract bytes that the
aggregate traffic transmits.

* Q = minimum queue seen by the arriving packet during last
propagation delay (avg. RTT — local queuing delay)

The Fairness Controller

Uses AIMD just like TCP to promote fairness
When O© > 0, allocate so the increase in throughput
of all flows is the same

— Athroughput; o< constant

When O <0, allocate so the decrease is proportional
to its current throughput

- Athroughput; < throughput,

When © = 0, use bandwidth shuffling, where every

average RTT, at least 10% of the traffic is
redistributed according to AIMD

Does It Work!

 Ns-2 simulations of XCP
VS.

* TCP Reno +
— Random Early Discard (RED)
— Random Early Marking (REM)
— Adaptive Virtual Queue (AVQ)
— Core Stateless Fair Queuing (CSFQ)

Simulation Network

Bottleneck

L) O®R. R, ..R,

Bottleneck Utilization

Utilization Vs. Bandwidth

50 long-lived TCP flows
80ms Prop. Delay

50 flows in reverse direction to create 2-way traffic
XCP is near optimal!

& & L = »
XCP o
RED x -
. CSFQ &
= —~
PNy REM ©
- P . AQ o
© g \
by Ty N -
05 T
0.4 F -
03 |]]]]]]
0 500 1000 1500 2000 2500 3000 3500 4000

Bottleneck Capacity (Mb/s)

Bottleneck Drops (packets)

Utilization Vs. Bandwidth

* XCP have no bottleneck drops!

90000
80000
70000
60000
50000
40000
30000
20000

I | T T I T |
XCP L 4
RED ..--x~
_GSFQ A .
REM O |
AVQ o) 1
AT |
A »N]
- - iX__"f7—7"7d—"_"_wi—,i_f_r_jf:_Tf_f_f,if,,-,,_..iff.ifffffif_[]
,%—“‘%,_, """ T | ---------------------------- E """"""""""""""""" I’ | I |
1000 1500 2000 2500 3000 3500 4000

Bottleneck Capacity (Mb/s)

Bottleneck Utilization

Utilization Vs. Delay

50 long-lived TCP flows
150 Mb/s Capacity
50 flows in reverse direction to create 2-way traffic

XCP wins again by adjusting it’s aggressiveness to
round trip delay

1 t }
M o s s s — op 3

o
0.9 | o RED x A
e . CSFQ -
08 g = ;Ee REM o]
07 L/ e A AVQ o |
N £ 1 T o \\‘X “““““““““ P
0.6 e BT TR .
e PR [SR S
05 |- T S |
0.4 | T
03 | | | 1 1 | K
0 0.2 0.4 0.6 0.8 1 1.2 1.4

Round-Trip Propagation Delay (sec)

XCP FRairness

30 long-lived FTP flows
Single 30 Mb/s bottleneck

Flows are increasing in RTT from 40-330 ms

XCP Is very fair!

Flow Throughput (Mb/s)

3

25

N
T

—_
o
I

—

o
)

o

K N ,
= RECT g X %
+ ANRC R A

L 8,
F " o
A

XCP
RED
CSFQ
REM
AVQ

Lo T
~ it -

+ X 0O e

1
15
(b) Different-RTT Flow ID

20

30

Sudden Traffic Demands!?

12

XCP
10

! ! ! ! ! o
- © © ¥ o ©
o o o o

LY Ue Jano pabelaay uonezi|inn

(a) Time (seconds)

12

XCP
10

o

| | | 1 |

O © © 9 9o o

S & & & o

L0 <t [ap] [a] —
(s19x01d) [BALLY 18308 1B 8hand)

(b) Time (seconds)

TCP...

- @ @ ¥
o o o

N
o

12

10

o

L1Y ue JaAo pabelaay uolezi|in

(c) Time (seconds)

TGP, ——

J

4

-_—

I l I l I
o o o o o
o) o o o

Lo

~—

10

o
o

(s1930ed) [BALLY 18)08Bd 1B 8nanp

(d) Time (seconds)

Security

Like TCP, need an additional mechanism that
polices flows

Unlike TCP, the agent can leverage the
explicit feedback to test a source

Can test a flow by sending a test feedback
requiring it to decrease it’s window

If the flow does not react in a single RTT then it is
unresponsive!

Deployment of XCP

* Can use XCP-based CSFQ by mapping TCP
or UDP into XCP flow across a network
cloud

* Or can make a TCP-friendly mechanism that
will allow weighing of the protocols to
compete for fairness

Conclusions

* Decoupling congestion control from fairness control

¢ XCP can handle the high-bandwidth and delay of
the future Internet

 Because of it’s almost instantaneous feedback, it
is a protocol that provides virtually zero drops

