Analysis of the Increase and Decrease Algorithms for Congestion Avoidance in Computer Networks

Dah-Ming Chiu, Raj Jain

Presented by: Ashish Vulimiri
Congestion Control

a. Flow control concerns with resources at the destination.

b. Congestion control concerns with resources in the network.
Congestion Avoidance

D.M. Chiu, R. Jain

Congestion Avoidance in Computer Networks
Congestion Avoidance

Congestion control vs congestion avoidance

D.M. Chiu, R. Jain

Congestion Avoidance in Computer Networks
- Single shared bottleneck resource
- Synchronous feedback
- Control applied by all users
- Feedback type: binary
Feedback mechanism: set signal bit on packets, processed by destination
- Rejected alternatives: extra signal packets, induce routing changes, signal bit processed by source
- TCP Tahoe (and derivatives): signal = packet loss
Feedback

- Binary feedback

\[y(t) = \begin{cases}
0 & \Rightarrow \text{Increase load} \\
1 & \Rightarrow \text{Decrease load}
\end{cases} \]

- \(x_i(t + 1) = x_i(t) + u_i(t) \)
- \(u_i \) can be an arbitrary function of \(x_i(t) \) and \(y(t) \)
- We focus on a linear model

\[x_i(t + 1) = \begin{cases}
a_l + b_l x_i(t) & \text{if } y(t) \Rightarrow \text{Increase} \\
a_D + b_D x_i(t) & \text{if } y(t) \Rightarrow \text{Decrease} \end{cases} \]
Criteria

1. Efficiency: load must be as close to knee point as possible

2. Fairness
 In a perfectly fair system, \(\forall i \forall j \quad x_i = x_j \)
 We use a fairness criterion:
 \[
 F = \left(\frac{\sum x_i}{n} \right)^2 \frac{\sum x_i^2}{\sum x_i^2}
 \]
 \(F \) lies between 0 and 1, higher values indicating greater fairness

3. Distributedness
 Users do not know anything about state of system
 Resource delivers only binary feedback to limit overhead

D.M. Chiu, R. Jain
Congestion Avoidance in Computer Networks
1. Efficiency: load must be as close to knee point as possible
Criteria

1. Efficiency: load must be as close to knee point as possible
2. Fairness
 - In a perfectly fair system, $\forall i \forall j x_i = x_j$
 - We use a fairness criterion:
 $$F = \frac{(\sum x_i)^2}{n(\sum x_i^2)}$$
 - F lies between 0 and 1, higher values indicating greater fairness
Criteria

1. **Efficiency**: load must be as close to knee point as possible

2. **Fairness**
 - In a perfectly fair system, $\forall i \forall j x_i = x_j$
 - We use a fairness criterion:
 \[
 F = \frac{(\sum x_i)^2}{n (\sum x_i^2)}
 \]
 - F lies between 0 and 1, higher values indicating greater fairness

3. **Distributedness**
 - Users do not know anything about state of system
 - Resource delivers only binary feedback to limit overhead
Convergence

- Constant-state convergence unlikely since we use only binary feedback
- We use two parameters: responsiveness (how quickly the steady state is reached), and smoothness (size of oscillations)
Constraints: Fairness

- Fairness must improve in at least one of increase and decrease, and not degrade in either.
- This implies: both $\frac{a_l}{b_l}$ and $\frac{a_D}{b_D}$ must be non-negative, and at least one must be positive.
Constraints: Fairness

- Fairness must improve in at least one of increase and decrease, and not degrade in either.
- This implies: both $\frac{a_I}{b_I}$ and $\frac{a_D}{b_D}$ must be non-negative, and at least one must be positive.
Feedback must be negative
Feedback must be negative
Consider a 2-user system with $x_1(t) = x_2(t) = 100$.

Suppose instead $x_1(t) = x_2(t) = 10$.

Then $x_1(t+1) = x_2(t+1) = 15$ → +ve feedback.
Efficiency: Example

Consider a 2-user system with $x_1(t) = x_2(t) = 100$
Let $y(t) = decrease, \ a_D = 10, \ b_D = 1/2$
Consider a 2-user system with $x_1(t) = x_2(t) = 100$

Let $y(t) = decrease$, $a_D = 10$, $b_D = 1/2$

Then $x_1(t + 1) = x_2(t + 1) = 60$
Consider a 2-user system with $x_1(t) = x_2(t) = 100$
Let $y(t) = \text{decrease}$, $a_D = 10$, $b_D = 1/2$
Then $x_1(t+1) = x_2(t+1) = 60 \rightarrow \text{-ve feedback}$
Consider a 2-user system with $x_1(t) = x_2(t) = 100$

Let $y(t) = \text{decrease}$, $a_D = 10$, $b_D = 1/2$

Then $x_1(t + 1) = x_2(t + 1) = 60 \rightarrow$ -ve feedback

Suppose instead $x_1(t) = x_2(t) = 10$
Consider a 2-user system with $x_1(t) = x_2(t) = 100$
Let $y(t) = \text{decrease}$, $a_D = 10$, $b_D = 1/2$
Then $x_1(t + 1) = x_2(t + 1) = 60 \rightarrow \text{-ve feedback}$
Suppose instead $x_1(t) = x_2(t) = 10$
Then $x_1(t + 1) = x_2(t + 1) = 15$
Consider a 2-user system with \(x_1(t) = x_2(t) = 100 \)

Let \(y(t) = \text{decrease}, \ a_D = 10, \ b_D = 1/2 \)

Then \(x_1(t + 1) = x_2(t + 1) = 60 \to -\text{ve feedback} \)

Suppose instead \(x_1(t) = x_2(t) = 10 \)

Then \(x_1(t + 1) = x_2(t + 1) = 15 \to +\text{ve feedback} \)
Feedback must be negative no matter what the load distribution at the other users.
This implies
\[a_I > 0 \quad b_I \geq 1 \]
\[a_D = 0 \quad 0 \leq b_d < 1 \]
Constraints can be loosened if bounds on \(X_{goal} \) and number of users are known.
Feedback must be negative no matter what the load distribution at the other users. This implies:

\[a_i > 0 \quad b_i \geq 1 \]

\[a_D = 0 \quad 0 \leq b_d < 1 \]

Constraints can be loosened if bounds on \(X_{goal} \) and number of users are known.
Constraints: Efficiency + Distributedness

- Feedback must be negative no matter what the load distribution at the other users.
- This implies

 \[a_I > 0 \quad b_I \geq 1 \]
 \[a_D = 0 \quad 0 \leq b_d < 1 \]

- Constraints can be loosened if bounds on \(X_{goal} \) and number of users are known.
Combined Constraints
Decrease

Linear decrease must be purely multiplicative
Increase must have an additive component, and optionally a multiplicative component

Multiplicative component 0 for optimal fairness convergence
Suppose

\[x_i(t + 1) = x_i(t) + \sum_{k=-\infty}^{\infty} \alpha_k (x_i(t))^k \]

Can derive constraints on \(\alpha_k \) and \(k \) by evaluating the criteria as done for linear feedback.

- Advantage: more flexibility
- Disadvantage: less robust – higher sensitivity to system parameters like \(X_{\text{goal}} \) and \(n \)
Unresolved Issues

- Effect of delayed feedback
- Utility of non-binary feedback
- X_{goal} can’t be known, but should users attempt to guess n?
- Asynchronous feedback
Other Issues

- Effect of packet loss due to errors
- Fault-resilience
- Can (and should) a scheme tailored to Internet traffic patterns be designed?
Other Issues

- Effect of packet loss due to errors
- Fault-resiliance
- Can (and should) a scheme tailored to Internet traffic patterns be designed?
- And . . . ?