Design Guidelines for Robust Internet Protocols

Tom Anderson* Scott Shenker!

Abstract

Robustness has long been a central design goal of the Inter-
net. Much of the initial effort towards robustness focused on
the “fail-stop” model, where node failures are complete and
eastly detectable by other nodes. The Internet is quite robust
against such failures, routinely surviving various catastro-
phes with only limited outages. This robustness is largely
due to the widespread belief in a set of guidelines for critical
design decisions such as where to initiate recovery and how
to maintain state.

However, the Internet remains extremely vulnerable to
more arbitrary failures where, through either error or mal-
ice, a node issues syntactically correct responses that are not
semantically correct. Such failures, some as simple as mis-
configured routing state, can seriously undermine the func-
tioning of the Internet. With the Internet playing such a
central role in the global telecommunications infrastructure,
this level of vulnerability is no longer acceptable.

In this paper we argue that to make the Internet more
robust to these kinds of arbitrary failures, we need to change
the way we design network protocols. To this end, we pro-
pose a set of siz design guidelines for improving the network
protocol design. These guidelines emerged from a study of
past examples of failures, and determining what could have
been done to prevent the problem from occurring in the first
place. The unifying theme behind the various guidelines is
that we need to design protocols more defensively, ezpecting
malicious attack, misimplementation, and misconfiguration
at every turn.

1 Introduction

Robustness has been, from the very beginning, one of the
central design goals of the Internet [9]. As a result, the In-
ternet architecture has been highly resilient to various kinds
of catastrophes; the Internet has survived hurricanes, earth-
quakes, tunnel fires, and terrorist attacks with only tempo-
rary and partial loss of end to end connectivity [26]. To a
large extent, this success story can be attributed to Internet
protocol designers following a set of guidelines for robust de-
sign: e.g., end hosts should be responsible for error recovery,
failures should be assumed to be the common case, and all
critical state should be refreshed periodically.

However, the vaunted robustness of the Internet does not
apply to all varieties of failures. An implicit but fundamen-

*CSE Department, University of Washington, e-
mails:{tom,djw}@cs.washington.edu. = This work was sup-
ported in part by DARPA Contract Number F30602-00-2-
0565. A more complete version of this paper is available at:
http://www.cs.washington.edu/homes/tom/design.pdf

f1csI Center for Internet Research,
shenker@icsi.berkeley.edu.

tEECS Department, Univeristy of California, Berkeley, e-
mail:istoica@cs.berkeley.edu. This work was supported in part by NSF
Contract Number NSF-ITR 0085879.

e-mail:

Ton Stoicat David Wetherall*

tal assumption underlying the early notion of robustness,
and hence the design of many Internet protocols, is that
systems are “fail-stop”—when systems fail they completely
and detectably stop working. Thus, Internet designers have
long assumed that nodes can recognize that another node
has failed by either absent or syntactically incorrect (mal-
formed) protocol responses.

Unfortunately, not all failures are so cleanly defined and
easily detected; either by malicious intent or by accident,
systems obeying the syntax of a protocol may in fact be
behaving incorrectly. These more arbitrary failures [11] oc-
cur with surprising regularity, in part because the increasing
scale and heterogeneity of the Internet makes subtle incon-
sistencies more likely. Many different protocol implemen-
tations, operational practices, and user motivations must
somehow safely coexist for the Internet to be highly robust.

Moreover, these arbitrary failures can often cascade
through the Internet with serious consequences to parties
not at fault. In one recent example, widespread outages were
triggered because one vendor’s BGP implementation ignores
but propagates incorrect route announcements, while an-
other vendor’s routers terminate any BGP session propagat-
ing an obviously incorrect announcement [18]. Simple opera-
tor errors in router configuration have recently led to several
significant disruptions to Internet connectivity [14, 23]. As
a final example, the CodeRed and Nimda worms triggered
widespread routing problems due to previously unknown
BGP instabilities [10]. To put these incidents in perspective,
each arguably caused a more serious Internet outage than
the September 11 terrorist attacks in which a large amount
of connectivity through New York City was severed by the
collapse of the World Trade Center.

We argue that to make the Internet robust in the face of
these arbitrary failures, we need to fundamentally rethink
the way we design network protocols. We show by example
that some protocol designs behave better than others when
there are bugs, mistakes, and attacks, even though they are
no less efficient or scalable. We examine these case studies
in an attempt to draw lessons as to how we should better
design protocols in the future. While some of these lessons
have already begun to be applied in an ad hoc manner to
individual protocols, we argue that we should apply them
systematically to all protocols that need to survive arbitrary
failures.

Our overarching recommendation is that we should de-
sign protocols defensively, keeping in mind that other nodes
are not to be trusted. We identify six guidelines within
this overall theme, and demonstrate by example that ro-
bustness could have been significantly improved had those
guidelines been applied systematically in the past. Of course,
the need for defensive design is not unique to networks—
software engineers apply defensive programming to reduce
bug rates [19], and operating systems apply defensive pro-
gramming to isolate errors to individual applications. How-
ever networks do pose some significant challenges not found
in other disciplines: network protocols often survive and

evolve for decades, they are typically implemented by nu-
merous separate organizations, and they often must work
across organizational boundaries. These requirements make
it all the more difficult and all the more important to de-
sign protocols to be robust against arbitrary failures of the
participants.

2 Related Approaches

There already exist some approaches that help protect
against arbitrary failures. This is because robustness in its
many guises has been a longstanding design goal for dis-
tributed systems. In particular, cryptographic authentica-
tion, fault-tolerance via consensus, and formal (and infor-
mal) protocol specification are extremely useful, and should
be used whenever appropriate. However, in this section we
argue that by themselves they do not suffice. We do so by
exploring a motivating example, an early ARPANET rout-
ing incident. We first present the failure and then consider
the utility of each of the above approaches in preventing it.

Routing in the early ARPANET was based on a link-
state design. In link-state protocols, the advertisements sent
by a node carry increasing sequence numbers that are used
to distinguish a new advertisement from old omnes; routers
forward new advertisements to all of their neighbors, and
silently discard old ones. In the ARPANET scheme, a “mod-
ulo” sequence number space was used to avoid the prob-
lem of becoming stuck when the maximum sequence number
was reached. That is, the sequence number counter simply
wrapped, and the test to determine whether one sequence
number was larger or smaller than another was whether
it was a shorter distance forward or backward in sequence
number space, respectively.

This scheme worked well when all the nodes were func-
tioning correctly. However, a network-wide storm was caused
by a malfunctioning router that injected a series of mes-
sages with incorrect sequence numbers before it crashed.
The faulty messages had sequence numbers that formed a
cycle of progressively “larger” advertisements. That is, the
sequence numbers increased by jumps, wrapping as neces-
sary, with each growing “larger”, yet the first in the sequence
was “larger” than the last. This led to an infinite sequence
of updates, forwarded in a cycle to all nodes in the network,
without any further input on behalf of the malfunctioning
node. To address this problem, the network had to be en-
tirely purged of the faulty messages—not a pleasant thought
were a similar self-sustaining chain of events to occur in the
Internet today. This is precisely the kind of unanticipated
critical failure that we would like to preclude by more robust
design.

How could this failure have been prevented? Clearly,
cryptographic security mechanisms would have been of no
help in this incident. In general, encryption-based authen-
tication is extremely important for helping prevent ma-
licious attackers from hijacking protocol communication.
Passwords and encryption can be used to validate that only
authorized users or machines are allowed to participate in a
protocol, eliminating a whole class of potential problems.
By itself, however, strong authentication is not sufficient
for completely eliminating arbitrary failures. Authentication
can demonstrate that the speaker is who she says she is,
but it cannot validate the semantic content of the proto-

col information—the speaker could have been compromised
or could be simply behaving incorrectly. In the ARPANET
case, authentication would not have prevented the malfunc-
tioning router from sending (authentic) messages with im-
proper sequence numbers.

Approaches for achieving fault tolerance via consensus
are also not a complete solution. There is a vast litera-
ture on the theory of algorithms for achieving Byzantine
agreement [17] as well as recent work on more practical sys-
tems [6]. However, these solutions typically depend on the
ability to replicate a computation and then run an agree-
ment algorithm to determine the correct answer. In some
cases, it can make sense to replicate state and computation,
and hence apply consensus techniques. However, in many
protocols it does not appear feasible to do so while preserv-
ing efficiency. For example, the computation that causes a
node to issue new routing advertisements depends on the
state of the attached links, state which is available only lo-
cally.

Finally, we consider whether better or more precise
specifications could have helped with the ARPANET inci-
dent. Unfortunately, the fact is that there is nothing wrong
with the protocol when it is implemented and operated as
specified—it does converge to the available routes as ex-
pected. It was only when a malfunctioning node injected
corrupt data that an unanticipated, cascading error was in-
duced. Our point is that despite being correct, the protocol
is fragile or vulnerable to arbitrary failures, which makes it
an undesirable design. Thus, even if we posit better tools for
checking the correctness of implementations before they are
applied to live systems [15], we also need to check whether
the protocol itself is vulnerable if some nodes are misimple-
mented or malicious. Formal methods that automatically
check specifications for vulnerabilities— while a promising
avenue for future research—are not yet in widespread use
beyond security protocols [5].

As an aside, the actual solution adopted in the
ARPANET routing protocol was to revise the design to re-
move modulo sequence numbers; modern routing protocols
such as OSPF and IS-IS follow this lead. Linear sequence
numbers were used instead, with a separate timeout-based
mechanism (that is, aging) for resetting when the maximum
sequence number is reached. With this design, no advertise-
ment can be propagated unless it was recently injected by
some router.

In sum, the traditional robustness techniques of authenti-
cation, consensus, and specification are invaluable in modern
distributed systems, and Internet protocols should incorpo-
rate them whenever applicable. However, these techniques
are not sufficient by themselves to make Internet protocols
robust against arbitrary failures. We believe that we must
complement these techniques with additional guidelines for
protocol design to protect against arbitrary failures.

3 Design Guidelines for Robust Protocols

The Internet is an immense and diverse distributed system.
It spans many different administrative domains, incorpo-
rates a wide variety of underlying technologies, and supports
a vast and rapidly evolving array of applications. One can-
not approach such a system with a rigid set of narrow rules
without killing the vitality that has been at the heart of the

Internet’s success. This was recognized by the early designers
of the Internet, who, instead of enforcing rigid rules, worked
with a set of much more general and imprecise guidelines
that offer advice on basic design decisions such as how and
where to keep state or initiate recovery. Examples include
endpoint error recovery, critical state should be refreshed
periodically, and implementations should be engineered to
interoperate with non-conforming peers.

The main purpose of this paper is to call for the identi-
fication of a similar set of guidelines to improve robustness
against arbitrary failures. The overarching philosophy of the
guidelines we propose is that one should design defensively.
That is, everpresent in the design process should be a recog-
nition that incoming information might be incorrect, and
that nodes might be malicious or broken. While one wants
to stop short of a paralyzing paranoia, protocols should al-
ways adopt a cautious skepticism. Of course, we are not the
first to propose defensive design, and many protocols already
exhibit this, albeit in an ad hoc fashion. Our goal is to syn-
thesize and generalize the underlying ideas behind some of
the better protocols that have been recently proposed, in
the hope that making these guidelines explicit will drive the
design of future protocols.

Our first guideline is perhaps the least controversial but
one of the hardest to achieve in practice: use very clean
and simple interfaces that do not overload mechanism with
multiple functions, have clean functional (not procedural)
semantics, and do not embed performance optimizations in
the protocol definition.

Guideline #1: Value conceptual simplicity

The natural tendency is for interfaces to become increas-
ingly complex over time, as designers evolve systems by
adding features in a backwardly compatible way. But this
can lead to problems! It is much harder for multiple par-
ties to correctly implement complex designs, and unforeseen
interactions between components can hide potentially dev-
astating vulnerabilities.

One illustration of the effect of complex semantics is
the persistent route oscillations that can arise in BGP [22].
In BGP, a router selects its best route among possible al-
ternatives according to an ordered decision criteria, e.g.,
the highest “local preference” before the shortest AS path
length. One of these criteria is the Multi-Exit Discrimina-
tor (MED), which is used by one ISP to specify ingress
preferences to another. This provides a traffic engineering
mechanism for overriding “hot-potato” or “early-exit” rout-
ing. Unfortunately, MED has semantics that differ from the
other attributes. The other attributes are straightforward in
that they can be used to order and directly compare routes,
so that the best route may be selected by simply selecting
amongst best candidates. MED, on the other hand, cannot
be used to order routes for selection directly because MED
values are only comparable when learned from the same
neighboring AS. This can result in, for example, a route
with a MED causing the current best route to be dropped,
yet without the MED route becoming the new current best
route. This means that with MEDs, all candidate routes
must be gathered and then selected in a single pass.

This dependence of routes on each other can manifest it-
self as oscillations when route reflectors [2] are used. Here, we

discuss only the overall problem and refer readers to [22] for
details. To understand the problem, note that BGP routers
within an AS must coordinate with each other to make
consistent route selections. This was originally achieved by
having every BGP router peer with every other router, a
configuration known as a BGP mesh in which all routers
receive all information and run compatible decision proce-
dures in parallel. However, meshes are inherently unscalable
to large ASes. A route reflector is a more scalable alterna-
tive in which a central location, the route reflector, receives
information from and redistributes best route information
to all BGP routers. Unfortunately the premise behind route
reflectors—scalability via information hiding—conflicts with
the semantics of MEDs because all information is required
at each router to ensure consistency. The result can be that
as routes propagate through the system they cause other
routes to change in a vicious cycle. This is handled today by
operational guidelines that discourage vulnerable configura-
tions, but arguably a better factoring in the protocol design
would have avoided the problem in the first place.

Our second guideline is less obvious: if other nodes are
potentially untrustworthy because they could be misimple-
mented or even malicious, then protocols should be explicitly
designed to reduce each node’s circle of trust to the minimal
set of information required to achieve the protocol’s purpose.
Caution in trusting other nodes is merely prudent in a large
and heterogeneous distributed system like the Internet.

Guideline #2: Minimize your dependencies

When protocols are being initially designed, it is often
more convenient to assume the other nodes participating
in a protocol are trustworthy, but that trust is often mis-
placed. The problems often manifest themselves not when
the protocol is first being deployed, but later as the protocol
is used by a wider population with differing motivations and
security policies. For example, the TCP congestion control
mechanism relies on information provided by the receiver as
to which packets arrived correctly. Although it seems natu-
ral that the TCP sender and receiver need to cooperate to
transfer data, the protocol is defined in such a way that a
sender must simply trust the congestion control information
being provided by a receiver. This allows malicious receivers
to trick today’s Web servers into sending at rates far above
TCP-friendly rates [27].

As one example vulnerability, the TCP fast recovery
mechanism uses duplicate acknowledgements to first trigger
a retransmission of the missing packet and then to trigger
additional sends, reasoning that each duplicate acknowledg-
ment implies that another packet has left the network. This
opens the door for an attack—an unscrupulous receiver can
send an infinite stream of duplicate acknowledgements! In-
deed, since the IP packet delivery model allows duplication,
this is an undetectable error in the existing TCP protocol
specification. A simple fix is to require selective acknowl-
edgements (SACK [21]). These are more robust than dupli-
cate acknowledgements because they can be designed to be
unambiguous and idempotent in their effects.

Of course, one cannot avoid all dependencies in proto-
cols. In cases where a node has to rely on information from
another node, the protocol designer should add mechanisms
into the protocol to allow for verification whenever possible,
for example, by actively testing the node’s responses or by

comparing the data to the information provided by other
nodes.

Guideline #3: Verify when possible

Note that explicitly adding redundancy into protocols
conflicts with the common practice of stripping out all re-
dundancy as superfluous. At times the desire to verify infor-
mation may conflict with the desire to reduce complexity;
that is, verification may require information that is not nec-
essary for the basic functioning of the protocol. How to best
balance these two competing goals-reducing complexity and
collecting enough information to reliably verify—will depend
on the context.

As a concrete example, consider Explicit Congestion No-
tification (ECN) [25]. With ECN, routers mark packets by
setting an ECN bit in the packet header when they become
congested. The marks are then returned from receiver to
sender via acknowledgement packets. If the ECN bit is set,
the server interprets it as a congestion indication and reacts
accordingly by reducing the congestion window. This mech-
anism has the advantage of signaling the congestion early
without causing loss.

However, it was observed in [13] that signaling congestion
with marks is not as robust as signaling with drops. Once
a packet is dropped, it cannot be “undropped”, at least not
in a manner that achieves reliable transport. This makes
it highly likely that drops will be observed by the sender.
Yet with marks, the receiver could fail to return the mark
signal to the sender, or the signal could be stripped off by
devices along the network path between the marking router
and original sender (e.g., firewalls that normalize IP header
bits or VPN boxes that strip off an outer IP header). This
kind of arbitrary failure can result in a flow obtaining much
more than its fair share of the bandwidth. And the fact that
a receiver that fails to return mark signals might receive
significantly more bandwidth encourages this form of failure.

A solution to this problem (described in [13]) is to re-
vise the design to use nonces, in a manner that general-
izes the TCP duplicate acknowledgement example above.
Packets carry a single-bit nonce that is erased by marking
routers to signal congestion. Receivers echo the nonce sum
in acknowledgements to the sender along with their indica-
tion of whether the packet was marked. (The sum is used to
cover sequences of packets because acknowledgements can
be lost.) When marks are not being signaled, this sum gives
the sender confidence that the packets were in fact received
and that they were not marked, ¢.e., that congestion has not
been signaled. This is a strong result because it depends on
no assumptions about receiver behavior for its correctness.

An important observation is that this verification mech-
anism is lightweight. It uses few header bits and little state
and computation at end systems to detect misbehavior prob-
abilistically. The chance that any incident of erasing a mark
will be detected is 50%, as only one bit of check informa-
tion is used. However, because nonces are random, each loss
represents an independent trial. This means that repeated
misbehavior will be detected quickly.

Our fourth guideline concerns unsolicited requests by
unauthenticated parties; this can leave systems vulnerable
to intentional or accidental resource exhaustion. Recent de-
nial of service attacks are just one example of this. Careful

planning is needed to keep the resources of one node from
being at the mercy of other nodes:

Guideline #4: Protect your resources

Although this may seem intractable, the potential for
resource exhaustion can be greatly reduced through care-
ful protocol design. Consider the example of the TCP con-
nection setup. Connection state is established on receipt of
an initial SYN packet and must be maintained until the
three-way handshake and subsequent connection completes,
or until the connection attempt is timed out. This behav-
ior has been exploited by “SYN flood” denial-of-service at-
tacks that send a flood of initial SYN packets (typically with
spoofed source addresses) and never complete the hand-
shake. A SYN flood can exhaust connection resources at a
server and thereby cause legitimate traffic to be shut out [7].
This problem is not readily addressed by verification because
the end-system receiving a TCP connection request cannot
determine, at the time a SYN packet arrives, whether the
packet is part of a legitimate connection establishment se-
quence. The vulnerability arises because the server allocates
resources to connection attempts that are not yet known to
be valid.

Fortunately, a simple re-design of the connection setup
protocol can protect the server’s resources by shifting the re-
source burden. Instead of keeping state on the server, return
the state to the initiating client, since they are the party for
whom the state is being maintained. This can be achieved
by returning the state as part of the SYN-ACK, and later
have the client re-supply the server with missing state when
the handshake is completed. Assuming there is an inexpen-
sive way to verify the integrity of the re-supplied state, the
server will not be left holding incomplete or incorrect con-
nection state. SYN cookies is a backwards-compatible Linux
implementation of this more robust connection setup proto-
col [3]. In SYN cookies, the initial sequence number (ISN)
is used to encode and return connection state to the client,
and the encoding is based on a secure hash that is efficient
to verify.

The above philosophy can be applied to protect the lo-
cal resources (computation, buffer space, connection state,
bandwidth, and so forth) that can be consumed in response
to messages received from parties whose behavior is uncer-
tain. In fact, the cookie technique is quite general, being
originally used in the design of Photuris [16], a protocol used
for establishing shared session keys, to avoid accumulating
state during the key exchange.

Fifth, we observe that since errors cannot always be pre-
vented or caught, we must also design protocols to limit
the possible damage resulting from incorrect behavior. We
would like to prevent instabilities from occurring in the first
place, but if they do occur, we also want to make sure the
effects do not cascade out of control.

Guideline #5: Limit the scope of vulnerability

Again, this can seem intractable, yet oftentimes very sim-
ple techniques can protect systems against broad classes of
unforeseen errors. Consider the example of route flapping.
Until fairly recently, router and link instabilities could cause
serious load issues for BGP because routes were “flapping”.

The problem was that, at the BGP level, route announce-
ments and withdrawals were essentially propagated through-
out the world, so that every location saw the cumulative sum
of all route flaps in the entire Internet. To decrease the ex-
tent to which local link and router instabilities effect distant
networks, a Route Flap Damping [12] mechanism has been
added to BGP. It works by holding down routes that are
repeatedly withdrawn and then announced, with infrequent
changes resulting in no hold-down, and oscillation causing
the greatest amount of hold-down. Every router that imple-
ments damping thus creates a barrier separating oscillations
from the rest of the network.

Another recent example is BGP error processing. The
BGP specification requires that an incorrect announcement
causes the entire session to be dropped and restarted, since
error checking is not provided at the announcement level (as
is done in OSPF and IS-IS). However, the result is that one
bad announcement can cause the entire routing session (that
is roughly 100K announcements today) to be dropped and
restarted. This was compounded when one vendor chose to
pass bad announcements rather than drop the entire session,
while other vendors dropped sessions as required [8]. In June
2001, a single operator’s misconfiguration tickled this bug:
it was propagated to a substantial fraction of the Internet,
where it caused many sessions to be dropped, resulting in
Internet-wide outages.

Finally, we observe that, as with the previous example,
some robustness problems can lie dormant, only being trig-
gered by other errors that occur in the system. Thus, making
systems more robust may also require that system designers
and operators seek out and fix errors before they begin to
cascade. Unfortunately, there is a tension here. If systems
can continue operating in the face of failures, errors can
persist indefinitely without anyone having the visibility or
motivation to fix the underlying problem. If left untreated,
however, failures can combine with severe unforeseen conse-
quences. Thus, we end with our sixth guideline:

Guideline #86: Ezpose errors

As an example, the recent investigation of TCP check-
sum failures resulted in the discovery that data was being
corrupted at hosts or routers [28]. Because these failures
were discovered at the receiver and then ignored (once the
packet was discarded) the sending host received no indica-
tion that anything was amiss, other than a negligible in-
crease in the rate of retransmissions. As another example,
researchers have recently found a flaw in a common BGP
configuration strategy by which ISPs connect to their cus-
tomers [20]. ISPs often filter routes advertised by their cus-
tomers, to prevent them from using the ISP to provide tran-
sit to other customers. The flawed configuration filters the
customer routes based on their prefixes. This works correctly
when there are no additional failures. However, if the cus-
tomer is multihomed, and the link to the customer fails, the
filtering rules may result in an ISP providing unintended
transit to the customer’s other ISP. This can be avoided by
repairing the latent misconfiguration, filtering on AS-PATH
rather than prefixes. Again, the more fundamental problem
is that the protocol is designed in such a way that an op-
erator cannot easily tell if they have a flawed configuration
without physically causing the failure.

4 Discussion

In this paper, we have argued that it is time to systemati-
cally rethink protocol design to defend against arbitrary fail-
ures — implementation bugs and other failures that, through
error or malice, are not fail-stop as are simple link and node
failures. We have discussed and categorized several exam-
ples of problems and solutions to argue three main points.
First, arbitrary failures occur surprisingly often and can re-
sult in significant disruptions to the Internet; consider the
TCP bugs that have proved to be pervasive and BGP vul-
nerabilities that have caused widespread outages. Hence ar-
bitrary failures must be tackled if we are to significantly im-
prove the dependability of the Internet. Second, arbitrary
failures are not sufficiently well addressed by existing bod-
ies of work. For example, authentication helps determine
which party sent a message but not whether the contents
of the message make sense. Third, we argue that the long-
term solution is to develop a set of design guidelines to help
protocol designers defend against arbitrary failures. Design
guidelines for robustness have been extremely successful at
providing a solid foundation for tolerating fail-stop failures.
Fail-stop failures are regularly considered during the design
stage and concepts such as soft-state are applied systemat-
ically. In contrast, arbitrary failures tend to be viewed as
isolated incidents and dealt with in an ad hoc fashion.

As the Internet evolves into a global communication in-
frastructure that encompasses all facets of the social and
economic life, we can no longer ignore the impact of these ar-
bitrary failures on the Internet. To make the Internet robust
in the presence of these failures, we need to fundamentally
change the way we design network protocols. In particular,
we put forward a candidate set of guidelines to be used in
future protocol designs. We presented examples that pro-
vide an existence proof that protocols can be designed to
withstand arbitrary failures, and that these designs can be
essentially as efficient and scalable as designs that do not
tolerate arbitrary failures. If we are to make the leap from
ad hoc treatment of arbitrary failures to systematically ap-
plying the principles of defensive design, then we must be
able to extract lessons from one protocol setting and apply
them in another.

‘We should note that some of our guidelines can be seen
as modifying previously established guidelines for designing
Internet protocols and implementations to be robust against
fail-stop errors. It is possible that the guidelines that helped
the Internet gain its success may need circumscribing now
that the Internet is so widely used by such a heterogeneous
community. Specifically, one popular guideline is to “Be lib-
eral in what you accept, and conservative in what you send”
[24, 4]; this is key to achieving quick, low cost interoper-
ability — by not insisting that every implementation exactly
follow the specification, we enhance the likelihood that two
different implementations will work together. However, it
can sometimes reduce a node’s ability to protect itself from
a misbehaving implementation or even a malicious attacker;
a more nuanced version might suggest “be liberal in what
you accept but be conservative in what you believe” [1].
Likewise, end-to-end error recovery mechanisms are clearly
key to end-to-end robustness in a distributed system like the
Internet where failures are the common case. However, those
recovery mechanisms can hide persistent problems that can
lurk uncorrected until they cause other, sometimes worse,

problems. Thus we believe end-to-end recovery must be com-
plemented with mechanisms to expose errors so that they
can be fixed.

Finally, all our effort will be for naught unless the guide-
lines that are ultimately developed are used in practice. Thus
we hope to raise the level of consciousness of arbitrary fail-
ures during the period that protocols are being designed.
One suggestion we would like to make is that every RFC
contain a “Robustness Considerations” section that answers
a simple question: What would go awry if the protocol mes-
sages are corrupted? We hope that such a “Robustness Con-
siderations” section, with its focus on a simple and direct
question, will be of more use than “Security Considerations”
sections have been in the past.

References

[1] Martin Abadi and Roger M. Needham. Prudent engi-
neering practice for cryptographic protocols. Software
Engineering, 22(1), 1996.

[2] T. Bates, R. Chandra, and E. Chen. BGP route re-
flection - an alternative to full mesh IBGP. RFC 2796,
IETF, Apr. 2000.

[3] D. J. Bernstein. SYN cookies. http://cr.yp.to/
syncookies.html, 1996.

[4] R. Braden. Requirements for Internet hosts — commu-
nication layers. RFC 1122, IETF, Oct. 1989.

[6] Michael Burrows, Martin Abadi, and Roger Needham.
A logic of authentication. ACM Transactions on Com-
puter Systems (TOCS), 8(1), Feb. 1990.

[6] Miguel Castro and Barbara Liskov. Practical Byzan-
tine fault tolerance. In Operating Systems Design and
Implementation (OSDI), 1999.

[7] CERT advisory ca-1996-21 TCP SYN flooding and IP
spoofing attacks. http://www.cert.org/advisories/
CA-1996-21.html, Sep. 1996.

[8] Cisco security advisory: Cisco I0S BGP attribute cor-
ruption vulnerability. http://www.cisco.com/warp/
public/707/ios-bgp-attr-corruption-pub.shtml,
May 2001.

[9] David D. Clark. The design philosophy of the DARPA
Internet protocols. In ACM SIGCOMM, Aug. 1988.

[10] Jim Cowie, Andy Ogielski, BJ Premore, and Yougu
Yuan. Global routing instabilities during Code Red II
and Nimda worm propagation. http://www.renesys.
com/projects/bgp_instability, Oct. 2001.

[11] Flaviu Cristian. Understanding fault-tolerant dis-
tributed systems. Communications of the ACM, 34(2),
1991.

[12] Ramesh Govindan Curtis Villamizar, Ravi Chandra.
BGP route flap damping. RFC 2439, IETF, Nov. 1998.

[13] David Ely, Neil Spring, David Wetherall, Stefan Sav-
age, and Tom Anderson. Robust congestion signaling.
In 9th International Conference on Network Protocols
(ICNP), Nov. 2001.

[14] Jim Farrar. C&W routing instability. NANOG mail
archives, Apr. 2001. http://www.merit.edu/mail.
archives/nanog/2001-04/msg00209.html.

[15] G. Holzmann. The model checker SPIN. IEEE Trans.
on Software Engineering, 23(5), May 1997.

[16] Phil Karn and William Allen Simpson. Photuris:
Session-key management protocol. RFC 2522, IETF,
March 1999.

[17] Leslie Lamport, Robert Shostak, and Marshall Pease.
The Byzantine generals problem. TOPLAS, 4(3), July
1982.

[18] Matt Levine. BGP mnoise tonight? NANOG mail
archives, Oct. 2001. http://www.merit.edu/mail.
archives/nanog/2001-10/msg00221 .html.

[19] Steve Maguire. Writing Solid Code : Microsoft’s Tech-
niques for Developing Bug-Free C Programs. Microsoft
Press, 1993.

[20] Ratul Mahajan, David Wetherall, and Tom Anderson.
Understanding BGP misconfiguration. In ACM SIG-
COMM, Aug. 2002.

[21] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow.
TCP selective acknowledgement options. RFC 2018,
IETF, April 1996.

[22] Danny McPherson, Vijay Gill, Daniel Walton, and
Alvaro Retana. BGP persistent route oscillation
condition. Internet Draft draft-mcpherson-bgp-route-
oscillation-01.txt, IETF, March 2001.

[23] Stephen A Misel. Wow, AS7007! NANOG mail
archives, Apr. 1997. http://www.merit.edu/mail.
archives/nanog/1997-04/msg00340.html.

[24] J. Postel. Internet Protocol (IP). RFC 791, IETF, Sept.
1981.

[25] K. Ramakrishnan, Sally Floyd, and D. Black. The ad-
dition of explicit congestion notification (ECN) to IP.
RFC 3168, IETF, Sep. 2001.

[26] Peter Salus. The Internet under stress. Talk at NANOG
23, Oct. 2001.

[27] Stefan Savage, Neal Cardwell, David Wetherall, and
Tom Anderson. TCP congestion control with a mis-
behaving receiver. Computer Communication Review,
29(5), 1999.

[28] Jonathan Stone and Craig Partridge. When the check-
sum and the data disagree. In ACM SIGCOMM, Aug.
2000.

