Internet Privacy

Markus Klein, Joshua Juen
University of Illinois
Fall 2011
“...they accept the premise that privacy is about hiding a wrong. It's not." Rather, privacy is most often an issue of accountability and trust.”

Bruce Schneier
Who Needs Privacy?

• Consider the following scenario:
 – Alice is an employee at XYZ inc. who suspects that her CFO Charlie is conducting insider trading.
 – Bob from the FBI is investigating Charlie’s suspected insider trading.
 – Bob interviews Alice and decides to keep in contact with Alice.

• Should Alice be afraid to send information to Bob through the company’s intranet?
• Bob is a resident of Iran who wants to access international news.
 – Bob’s government deems this material objectionable and limits access to Bob
 – The punishment to accessing such content is severe including possible imprisonment and fines
• This is a freedom of speech issue.
• Broad question, should we try to help Bob circumvent censorship?
Why is Privacy a Problem?

- Every packet has a source/destination IP address
- Packets traverse unknown/untrusted networks
- Difficult to determine who is looking at our packets
Privacy the Naïve Approach

- In the beginning there was the proxy:
 - Encrypt the destination address in the packet header and send to a trusted proxy.
 - Proxy forwards traffic on to the destination
 - CGIProxy and others....
Privacy the Naïve Approach cont.

- **Problems:**
 - What if the attacker can see the outbound traffic from the proxy? (Global Passive adversary)
 - What if the proxy is controlled by the attacker?
 - Anonymity set is non-existent

- **Goal** we want a system to defeat a global passive adversary that is difficult for the adversary to control
High Latency Mix Nets

• Goal: Send high latency messages anonymously
 – Ideal for E-mail
 – Mixmaster, Mixminion, Babel, and many others...

• Threat model and design goals:
 – Resistant against a global passive adversary (can see all traffic)
 – Distributed network of volunteers (some may be controlled by an adversary)
 – Assume that the adversary can add, drop, reorder, and delay packets
Mix Net Proxy Design

- Make all traffic the same size and look similar by using encrypted packets
- Make the input/output analysis more difficult by batching and adding cover traffic
- At each node every T unit of time:
 - Wait for N messages before forwarding
 - Forward 60% of the messages
 - Add dummy traffic that goes 1-4 hops
- Goal: even if the adversary observes all packets in a round, we want him to have $1/(\text{Total Messages})$ chance to guess the sender/recipient pair
Mix Nets

• Increase the anonymity set:
 – Use multiple routers as proxies to forward traffic each with their own public/private key.
 – Source route traffic through the network with layered encryption of the headers.
 – Each client maintains a full view of the network and chooses proxies uniformly at random from the set.
Mix Nets Overview
Mix Nets cont.

Diagram showing a network of servers with arrows indicating the flow of data or communication. The diagram includes a question mark and icons representing users Alice and Bob. The servers are interconnected, suggesting a secure or anonymized network.
Mix Nets: Conclusions

• Mix Nets are great because:
 – Resistant to global passive adversary.
 – Resistant to adversary controlling nodes.
 – Impossible to correlate traffic because all traffic is identical.

• Mix Nets are bad because:
 – They are high latency
 • Only send one batch every time period T.
 • Do not send if less than N messages.
 • Do not send with approximately 40% probability.
• Mixnets provide high privacy guarantees but are unusable for many applications

• Goal: Design a low-latency anonymous communication system based on onion routing

• TOR: The Onion Router
Tor: Low Latency Proxy Design

- To maintain low latency:
 - Nodes send the packets along the circuit as quickly as possible.
 - No batching and no rounds.
 - No cover traffic is added.
 - While traffic is sent in 512 B cells, the number of cells is unique depending on the load.
Client chooses three nodes to establish a circuit to send/receive traffic every ten minutes.

- Encrypt traffic so each onion router only sees the previous and next hop address
- Only the entry router knows the client
- Only the exit router knows the destination
- Example: $E_G(M || E_M(EX || E_{EX}(A || ToA)))$
Tor: Security Problem

• Susceptible to end-to-end traffic analysis
 – If the attacker controls entry and exit nodes
 – Correlate traffic coming into entry and exiting exit node to identify the client and server
• Thus Tor assumes a limited global passive adversary!!!
Tor: Conclusions

• Tor is Popular
 – The most widely deployed overlay network implementing onion routing
 – Currently* 2,500 volunteer nodes running forwarding onion routers
 – Currently* an estimated 250,000 users

• Protects end-to-end privacy as long as the adversary cannot compromise traffic going into the system and traffic coming out of the system.

*As of January 2010
Papers

Background

- As of 2010, 59 countries filter Internet traffic China, Saudi Arabia, Iran, ... But also France and Australia have recently garnered attention with controversial filtering practices

- Problem: Present systems use proxies which can be detected and blocked by censors
• **Availability**
 Even if a censor might block parts of the resources, the system should keep going

• **Deniability**
 Avoid to a certain degree that users of the system get identified by censors
Make use of user-generated content

- Embed communication into user-generated content
 i.e. hide data in image, texts or videos

- Use existing infrastructure of the Internet
 i.e. content hosts like Flickr, Picasa, YouTube
The Collage System

Sender's Machine
Application
Send Censored Message
Collage

User-generated Content Host (Rendezvous point)

Censor
Upload Media with Hidden Data
Download Media with Hidden Data

Receiver's Machine
Application
Receive Censored Message
Collage
Design of Collage

Application Layer

Message Layer

Vector Layer

Application

send

receive

Block Block \ldots Block

encode

Vector

decode

Message Data
Design of Collage

The pure message

Content Host

The pure message
Application Layer

- Message
- Vector *e.g. image, video, ...*
- Message Identifier (a pre-shared secret)

- Task: a way to send/receive data using a public data sharing-service

 e.g. “publish a photo tagged with ‘flowers’”
Design of Collage

Application Layer

- Task Database
 Contains pairs of tasks

<table>
<thead>
<tr>
<th>Content host</th>
<th>Sender task</th>
<th>Receiver task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flickr</td>
<td>PublishAsUser(‘User’, Photo, MsgData)</td>
<td>FindPhotosOfFlickrUser(‘User’)</td>
</tr>
<tr>
<td>Twitter</td>
<td>PostTweet(‘Watching the Olympics’, MsgData)</td>
<td>SearchTwitter(‘Olympics’)</td>
</tr>
</tbody>
</table>
Design of Collage

Message Layer

Goals:

- Split the message into smaller chunks
- Hide the chunks in user content
- Deliver/Receive the user content
Message Layer

Send function:

• Uses a rateless erasure encoder to split a message into chunks

• Encrypts the blocks from the encoder using the message identifier

• Encodes the cipher text into a vector
Message Layer

Receive function:

- Looks for possible vectors with hidden data in content hosts
- Decodes the cipher text from the user content
- Decrypts the cipher text using the message identifier
- When enough chunks have arrived, the rateless erasure decoder restores the original message
Vector Layer

• Is responsible for en-/decoding small chunks of data into a vector

• Relies on information hiding technology
 e.g. Steganography, Digital Watermarking
Rendezvous

- Use a hash-function
- Hash all tasks and store the resulting table

- To find the tasks to use for a given message, hash the message identifier and take m closest tasks
- The hash table has to be exchanged by all Collage members
Example Implementation

Web Content Proxy
Evaluation

• Big overhead in computation, storage and transfer time, depending on various factors:
 – Type of user-generated content
 – Method of encoding vectors
 – Chosen Tasks

• For instance: Web Proxy requires 9 JPEGs to transmit 23 KB of news summary
 Transfer time approx. 1 minute
Guarantees

• None actually 😊

• Achieving *availability* and *deniability* are both best effort
• BURNETT, S., FEAMSTER, N., AND VEMPALA, S. Chipping away at censorship with user-generated content. USENIX Security Symposium (2010).

• Switching the perspective: Can you think of any good argument which may legitimate censorship?
• Tor sacrifices some anonymity for lower latency. Do you think that Tor’s assumptions about the adversary are realistic with respect to users’ need for privacy?
• Avoiding censorship requires hiding the act of communication. The method here utilized user generated content. What are some other “hidden channels” of communication available for such systems?