
Congestion Control
Brighten Godfrey

CS 538 September 6 2011

Based on slides by Ion Stoica

TCP flow control

Make sure receiving end can handle data

Negotiated end-to-end, with no regard to network

Ends must ensure that no more than W packets are in
flight if buffer has size W

• Receiver ACKs packets
• When sender gets an ACK, it knows packet has arrived

Sliding window-based flow control

At the sender...

Sent and all
ACKs received

Window: Sent but
some ACKs not yet

received
Not yet sent

... ...

Sliding Window

1
2

3

4
56

5

67

Last ACKed (without gap) Last received (without gap)

7

5

Observations

What is the throughput in terms of RTT?

• Throughput is ~ (w/RTT)

Sender has to buffer all unacknowledged packets,
because they may require retransmission

Receiver may be able to accept out-of-order packets,
but only up to its buffer limits

What should the receiver ACK?

ACK every packet, giving its sequence number

Use negative ACKs (NACKs), indicating which packet
did not arrive

Use cumulative ACK, where an ACK for number n
implies ACKS for all k < n

Use selective ACKs (SACKs), indicating those that did
arrive, even if not in order

Error recovery

Must retransmit packets that were dropped

To do this efficiently

• Keep transmitting whenever possible
• Detect dropped packets and retransmit quickly

Requires:

• Timeouts (with good timers)
• Other hints that packet were dropped

Timer algorithm

Questions:

• Why not set timeout to mean delay? (Why include D?)
• Measure T(n) only for original transmissions. Why?
• Double Timeout after timeout. Why?

A(n) = b*A(n- 1) + (1 – b)T(n)
D(n) = b*D(n-1) + (1 – b)*(T(n) – A(n))

Timeout(n) = A(n) +4D(n)

T(n) = measured RTT of
this packet

mean:
deviation:

Hints

When should I suspect a packet was dropped?

When I receive several duplicate ACKs

• Receiver sends an ACK whenever a packet arrives
• ACK indicates seq. no. of last consecutively received

packet
• Duplicate ACKs indicates missing packet

TCP congestion control

Can the network handle the rate of data?

Determined end-to-end, but TCP is making guesses
about the state of the network

Two papers:

• Good science vs great engineering

Dangers of increasing load

Knee – point after which

• Throughput increases very
slow

• Delay increases fast

Cliff – point after which

• Throughput starts to
decrease very fast to zero
(congestion collapse)

• Delay approaches infinity

In an M/M/1 queue

• Delay = 1/(1 – utilization)
Load

Load

Th
ro

ug
hp

ut
D

el
ay

knee cliff

congestion
collapse

packet
loss

12

Cong. control vs. cong. avoidance

Congestion control goal

• Stay left of cliff

Congestion avoidance goal

• Stay left of knee

Load

Th
ro

ug
hp

ut

knee cliff

congestion
collapse

13

Control system model [CJ89]

Simple, yet powerful model

Explicit binary signal of congestion

User 1

User 2

User n

x1

x2

xn

Σ Σxi>Xgoal

y

Possible choices

 Multiplicative increase, additive decrease

- aI=0, bI>1, aD<0, bD=1

 Additive increase, additive decrease

- aI>0, bI=1, aD<0, bD=1

 Multiplicative increase, multiplicative decrease

- aI=0, bI>1, aD=0, 0<bD<1

 Additive increase, multiplicative decrease

- aI>0, bI=1, aD=0, 0<bD<1

Which should
we pick?

15

Mult. increase, additive decrease

User 1: x1

U
se

r
2:

 x
2

fairness
line

efficiency
line

(x1h,x2h)

(x1h+aD,x2h+aD)

(bI(x1h+aD), bI(x2h+aD)) Does not
converge to
fairness

 (Additive
decrease
worsens
fairness)

16

Additive increase, add. decrease

User 1: x1

U
se

r
2:

 x
2

fairness
line

efficiency
line

(x1h,x2h)

(x1h+aD,x2h+aD)

(x1h+aD+aI),
x2h+aD+aI)) Reaches

stable cycle,
but does not
converge to
fairness

17

Mult. increase, mult. decrease

User 1: x1

U
se

r
2:

 x
2

fairness
line

efficiency
line

(x1h,x2h)

(bdx1h,bdx2h)

(bIbDx1h,
bIbDx2h)

 Converges
to stable
cycle, but is
not fair

18

(bDx1h+aI,
bDx2h+aI)

Additive increase, mult. decrease

User 1: x1

U
se

r
2:

 x
2

fairness
line

efficiency
line

(x1h,x2h)

(bDx1h,bDx2h)

 Converges
to stable and
fair cycle

19

Modeling

Critical to understanding complex systems

• [CJ89] model relevant after 15 years, 106 increase of
bandwidth, 1000x increase in number of users

Criteria for good models

• Two conflicting goals: reality and simplicity
• Realistic, complex model → too hard to understand, too

limited in applicability
• Unrealistic, simple model → can be misleading

20

TCP congestion control

[CJ89] provides theoretical basis for basic congestion
avoidance mechanism

Must turn this into real protocol

21

TCP congestion control

Maintains three variables:

• cwnd: congestion window
• flow_win: flow window; receiver advertised window
• ssthresh: threshold size (used to update cwnd)

For sending, use: win = min(flow_win, cwnd)

22

TCP: slow start

Goal: reach knee quickly

Upon starting (or restarting):

• Set cwnd =1
• Each time a segment is acknowledged, increment cwnd

by one (cwnd++).

Slow Start is not actually slow

• cwnd increases exponentially

23

Slow start example

The congestion
window size grows
very rapidly

TCP slows down the
increase of cwnd
when
cwnd ≥ ssthresh

ACK 2

segment 1cwnd = 1

cwnd = 2 segment 2
segment 3

ACK 4

cwnd = 4 segment 4
segment 5
segment 6
segment 7

ACK8

cwnd = 8

24

Congestion avoidance

Slow down “Slow Start”

ssthresh is lower-bound guess about location of knee

If cwnd > ssthresh then
	
 each time a segment is acknowledged
	
 increment cwnd by 1/cwnd (cwnd += 1/cwnd).

So cwnd is increased by one only if all segments have
been acknowledged.

25

Slow start/cong. avoidance example

 Assume that
ssthresh = 8

0

4

8

11

15

t=0 t=1 t=2 t=3 t=4 t=5 t=6 t=7
Roundtrip times

C
w

nd
 (i

n
se

gm
en

ts
)

ssthresh

26

All together: TCP pseudocode

Initially:
	
 cwnd = 1;

	
 ssthresh = infinite;

New ack received:
	
 if (cwnd < ssthresh)

	
 /* Slow Start*/

	
 cwnd = cwnd + 1;

	
 else

	
 /* Additive increase */

	
 cwnd = cwnd + 1/cwnd;

Timeout:
	
 /* Multiplicative decrease */

	
 ssthresh = cwnd/2;

	
 cwnd = 1;

while (next < unack + win)
 transmit next packet;

where win = min(cwnd,
flow_win);

unack next

win

seq #

27

The big picture (so far)

Time

cwnd

Timeout

Slow Start

Congestion
Avoidance

28

Fast retransmit

Resend a segment
after 3 duplicate
ACKs

Avoids waiting for
timeout to
discover loss

ACK 2

segment 1cwnd = 1

cwnd = 2 segment 2
segment 3

ACK 4
cwnd = 4 segment 4

segment 5
segment 6
segment 7

ACK 3

3 duplicate
ACKs

ACK 4

ACK 4

ACK 4

29

Fast recovery

After a fast-retransmit set cwnd to ssthresh/2

• i.e., don’t reset cwnd to 1

But when RTO expires still do cwnd = 1

Fast Retransmit and Fast Recovery

• Implemented by TCP Reno
• Most widely used version of TCP today

Lesson: avoid RTOs at all costs!

30

Picture with fast retransmit & recov.

Retransmit after 3 duplicated acks

• prevent expensive timeouts

No need to slow start again

At steady state, cwnd oscillates around the optimal
window size

Time

cwnd

Slow Start

Congestion
Avoidance

31

Engineering vs. Science in CC

Great engineering by Jacoboson and others built
useful protocol

• TCP Reno, etc.

Good science by Chiu, Jain and others

• Basis for understanding why it works so well

Limitations of TCP CC

In what ways is TCP congestion control broken or
suboptimal?

A partial list...

Tends to fill queues (adding latency)

Slow to converge (for short flows or links with high
bandwidth•delay product)

Loss ≠ congestion

May not fully utilize bandwidth

Efficiency

A partial list...

Unfair to large-RTT flows (less throughput)

Unfair to short flows if ssthresh starts small

Equal rates isn’t necessarily “fair” or best

Vulnerable to selfish & malicious behavior

• TCP assumes everyone is running TCP!

Fairness

Announcements

Next time: “Fixing” TCP

• Efficiency
• Fairness

Reading:

• Briscoe: Flow Rate Fairness: Dismantling a Religion

Starting tomorrow: presentation topic scheduling

